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Abstract

In this supplementary document, we provide a detailed overview of our network
architecture and the training procedure. Subsequently, we describe the preprocess-
ing steps that we followed to filter out problematic rooms from the 3D-FRONT
dataset [7]. Next, we provide ablations on how different components of our system
impact the performance of our model on the scene synthesis task and we compare
ATISS with various transformer models that consider ordering. Finally, we provide
additional qualitative and quantitative results as well as additional details for our
perceptual study presented in Sec 4.3 in our main submission.

1 Implementation Details

In this section, we provide a detailed description of our network architecture. We then describe our
training protocol and provide details on the metrics computation during training and testing. Finally,
we also provide additional details regarding our baselines.

1.1 Network Architecture

Here we describe the architecture of each individual component of our model (from Fig. 2 in the
main submission). Our architecture comprises four components: (i) the layout encoder that maps the
room shape to a global feature representation F, (ii) the structure encoder that maps the M objects in
a scene into per-object context embeddings C = {Cj}Mj=1, (iii) the transformer encoder that takes F,
C and a query embedding q and predicts the features q̂ for the next object to be generated and (iv)
the attribute extractor that autoregressively predicts the attributes of the next object.

Layout Encoder: The first part of our architecture is the layout encoder that is used to map the
room’s floor into a global feature representation F. We follow [30] and we model the floor plan
with its top-down orthographic projection. This projection maps the floor plan into an image, where
pixel values of 1 indicate regions inside the room and pixel values of 0 otherwise. The layout
encoder is implemented with a ResNet-18 architecture [10] that is not pre-trained on ImageNet [2].
We empirically observed that using a pre-trained ResNet resulted in worse performance. From the
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Figure 1: Structure Encoder. The structure encoder predicts the per-object context embeddings Cj

conditioned on the object attributes. For the object category cj , we use a learnable embedding λ(·),
whereas for the location tj , the size sj and orientation rj we employ the positional encoding from
(1). Note that the positional encoding γ(·) is applied separately in each dimension of tj and sj .

original architecture, we remove the final fully connected layer and replace it with a linear projection
to 64 dimensions, after average pooling.

Structure Encoder: The structure encoder maps the attributes of each object into a per-object
context embedding Cj . For the object category cj , we use a learnable embedding, which is simply
a matrix of size C × 64, that stores a per-object category vector, for all C object categories in the
dataset. For the size sj , the position tj and the orientation rj , we use the positional encoding of [29]
as follows

γ(p) = (sin(20πp), cos(20πp), . . . , sin(2L−1πp), cos(2L−1πp)) (1)

where p can be any of the size, position or orientation attributes and γ(·) is applied separately in each
attribute’s dimension. In our experiments, L is set to 32. The output of each embedding layer, used to
map the category, size, location and orientation in a higher dimensional space, are concatenated into
an 512-dimensional feature vector, which is then mapped to the per-object context embedding. A
pictorial representation of the structure encoder is provided in Fig. 1.

Transformer Encoder: We follow [29, 3] and implement our transformer encoder as a multi-
head attention transformer without any positional encoding. Our transformer consists of 4 layers
with 8 attention heads. The queries, keys and values have 64 dimensions and the intermediate
representations for the MLPs have 1024 dimensions. To implement the transformer architecture we
use the transformer library provided by Katharopoulos et al. [12]2. The input set of the transformer
is I = {F} ∪ {Cj}Mj=1 ∪ q, where M denotes the number of objects in the scene and q ∈ R64 is a
learnable object query vector that allows the transformer to predict output features q̂ ∈ R64 used for
generating the next object to be added in the scene.

Attribute Extractor: The attribute extractor autoregressively predicts the attributes of the next object
to be added in the scene. The MLP for the object category is a linear layer with 64 hidden dimensions
that predicts C class probabilities per object. The MLPs for the location, orientation and size predict
the mean, variance and mixing coefficient for the K logistic distributions for each attribute. In our
experiments we set K = 10. The size, location and orientation attributes are predicted using a 2-layer
MLP with RELU non-linearities with hidden size 128 and output size 64. A pictorial representation
for the MLPs tθ(·) and σθ(·) used to predict the parameters of the mixture of logistics distribution for
the location and the size is provided in Fig. 2. Note that rθ is defined in a similar manner.

2https://github.com/idiap/fast-transformers
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(a) tθ(·) predicts the parameters of the mixture of
logistics distribution for the location t.

(b) sθ(·) predicts the parameters of the mixture of
logistics distribution for the size s.

Figure 2: Attribute Extractor. The attribute extractor consists of four MLPs that autoregressively
predict the object attributes. Here we visualize the MLP tθ(·) for the location attribute (left side) and
the MLP sθ(·) for the size attribute (right side).

1.2 Object Retrieval

During inference, we select 3D models from the 3D-FUTURE dataset [8] to be placed in the scene
based on the predicted category, location, orientation and size. In particular, we perform nearest
neighbor search through the 3D-FUTURE dataset[8] to find the closest model in terms of object
dimensions. While prior work [24, 31] explored more complex object retrieval schemes based on
object dimensions and object cooccurrences (i.e. favor 3D model of objects that frequently co-occur
in the dataset), we note that our simple object retrieval strategy consistently resulted in visually
plausible rooms. We leave more advanced object retrieval schemes for future research.

1.3 Training Protocol

In all our experiments, we use the Adam optimizer [13] with learning rate η = 10−4 and no weight
decay. For the other hyperparameters of Adam we use the PyTorch defaults: β1 = 0.9, β2 = 0.999
and ε = 10−8. We train all models with a batch size of 128 for 100k iterations. During training, we
perform rotation augmentation with random rotations between [0, 360] degrees. To determine when
to stop training, we follow common practice and evaluate the validation metric every 1000 iterations
and use the model that performed best as our final model.

1.4 Metrics Computation

As mentioned in our main submission, we evaluate our model and our baselines using the KL diver-
gence between the object category distributions of synthesized and real scenes and the classification
accuracy of a classifier trained to discriminate real from synthetic scenes as well as the FID [11]
score between 2562 top-down orthographic projections of synthesized and real scenes using the code
provided by Parmar et al. [19]3. For the metrics computation, we generate the same amount of scenes
as in the test set and we compute each metric using real scenes from the test set. In particular, for the
KL divergence, we measure the frequency of object category occurrences in the generated scenes and
compare it with the frequency of object occurrences in real scenes. Regarding the scene classification
accuracy, we train a classifier to distinguish real from generated scenes. Our classifier is an Alexnet
[14] pre-trained on ImageNet, that takes as input a 2562 top-down image-based representation of
a room and predicts whether this scene is real or synthetic. Both for the FID and the classification
accuracy, we repeat the metric computation 10 times and report the average.

1.5 Baselines

In this section, we provide additional details regarding our baselines. We compare our model with
FastSynth [24] and SceneFormer [31]. Both methods were originally evaluated on the SUNCG dataset
[26], which is currently unavailable, thus we retrained both on 3D-FRONT using the augmentation
techniques described in the original papers. To ensure fair comparison, we use the same object
retrieval for all methods and no rule-based post-processing on the generated layouts.

3https://github.com/GaParmar/clean-fid
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FastSynth: In FastSynth [24], the authors employ a series of image-based CNNs to sequentially
predict the attributes of the next object to be added in the scene. In addition to 2D labeled bounding
boxes they have auxiliary supervision in the form of object segmentation masks, depth maps, wall
masks etc. For more details, we refer the reader to [30]. During training, they assume that there
exists an ordering of objects in each scene, based on the average size of each category multiplied by
its frequency of occurrences in the dataset. Each CNN module is trained separately and the object
properties are predicted in an autoregressive manner: object category first, followed by location,
orientation and size. We train [24]4 using the provided PyTorch [23] implementation with the default
parameters until convergence.

SceneFormer: In SceneFormer [31], the authors utilize a series of transformers to autoregressively
add objects in the scene, similar to [24]. In particular, they train a separate transformer for each
attribute and they predict the object properties in an autoregressive manner: object category first,
followed by orientation, location and size. Similar to [24], they also treat scenes as ordered sequences
of objects ordered by the frequency of their categories. We train [31]5 using the provided PyTorch
[23] implementation with the default parameters until convergence.

2 3D-FRONT Dataset Filtering

We evaluate our model on the 3D-FRONT dataset [7], which is one of the few available datasets
that contain indoor environments. 3D-FRONT contains a collection of 6813 houses with roughly
14629 designed rooms, populated with 3D furniture objects from the 3D-FUTURE dataset [8]. In
our experiments, we focused on four room types: (i) bedrooms, (ii) living rooms, (iii) dining rooms
and (iv) libraries. Unfortunately, 3D-FRONT contains multiple problematic rooms with unnatural
sizes, misclassified objects as well as objects in unnatural positions e.g. outside the room boundaries,
lamps on the floor, overlapping objects etc. Therefore, in order to be able to use it, we had to
perform thorough filtering to remove problematic scenes. In this section, we present in detail the
pre-processing steps for each room type. We plan to release the names/ids of the filtered rooms, when
the paper is published.

The 3D-FRONT dataset provides scenes for the following room types: bedroom, diningroom, elderly-
room, kidsroom, library, livingdiningroom, livingroom, masterbedroom, nannyroom, secondbedroom
that contain 2287, 3233, 233, 951, 967, 2672, 1095, 3313, 16 and 2534 rooms respectively. Since
some room types have very few rooms we do not consider them in our evaluation.

Bedroom: To create training and test data for bedroom scenes, we consider rooms of type bedroom,
secondbedroom and masterbedroom, which amounts to 8134 rooms in total. We start by removing
rooms of unnatural sizes, namely rooms that are larger than 6m × 6m in floor size and taller than 4m.
Next, we remove infrequent objects that appear in less than 15 rooms, such as chaise lounge sofa,
l-shaped sofa, barstool, wine cabinet etc. Subsequently, we filter out rooms that contain fewer than
3 and more than 13 objects, since they amount to a small portion of the dataset. Since the original
dataset contained various rooms with problematic object arrangements such overlapping objects,
we also remove rooms that have objects that are overlapping as well as misclassified objects e.g.
beds being classified as wardrobes. This results in 5996 bedrooms with 21 object categories in total.
Fig. 3a illustrates the number of appearances of each object category in the 5996 bedroom scenes
and we remark that the most common category is the nightstand with 8337 occurrences and the least
common is the coffee table with 45.

Library: We consider rooms of type library that amounts to 967 scenes in total. For the case of
libraries, we start by filtering out rooms with unnatural sizes that are larger than 6m × 6m in floor
size and taller than 4m. Again we remove rooms that contain overlapping objects, objects positioned
outside the room boundaries as well as rooms with unnatural layouts e.g. single chair positioned in
the center of the room. We also filter out rooms that contain less than 3 objects and more than 12
objects since they appear less frequently. Our pre-processing resulted in 622 rooms with 19 object
categories in total. Fig. 3b shows the number of appearances of each object category in the 622

4https://github.com/brownvc/fast-synth
5https://github.com/cy94/sceneformer
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libraries. The most common category is the bookshelf with 1109 occurrences and the least common
is the wine cabinet with 19.

0 1000 2000 3000 4000 5000 6000 7000 8000

# Objects

coffee table
sofa

armchair
dressing chair

children cabinet
kids bed

bookshelf
shelf
stool
desk

dressing table
single bed

table
cabinet

chair
tv stand

ceiling lamp
pendant lamp

double bed
wardrobe

nightstand

(a) Bedrooms

0 200 400 600 800 1000

# Objects

wine cabinet
dining table

wardrobe
multi seat sofa

loveseat sofa
round end table

cabinet
stool

console table
shelf

armchair
chinese chair

corner side table
dining chair
ceiling lamp
lounge chair

pendant lamp
desk

bookshelf

(b) Libraries

Figure 3: Number of object occurrences in Bedrooms and Libraries.

Living Room: For the living rooms, we consider rooms of type livingroom and livingdiningroom,
which amounts to 3767 rooms. We follow a similar process as before and we start by filtering out
rooms with unnatural sizes. In particular, we discard rooms that are larger than 12m × 12m in floor
size and taller than 4m. We also remove uncommon objects that appear in less than 15 rooms such as
bed and bed frame. Next, we filter out rooms that contain less than 3 objects and more than 13 objects,
since they are significantly less frequent. For the case of living rooms, we observed that some of the
original scenes contained multiple lamps without having any other furniture. Since this is unnatural,
we also removed these scenes together with some rooms that had either overlapping objects or objects
positioned outside the room boundaries. Finally, we also remove any scenes that contain any kind of
bed e.g. double bed, single bed, kid bed etc. After our pre-processing, we ended up with 2962 living
rooms with 24 object categories in total. Fig. 4a visualizes the number of occurrences of each object
category in the living rooms. We observe that the most common category is the dining chair with
9009 occurrences and the least common is the chaise lounge sofa with 30.

Dining Room: For the dining rooms, we consider rooms of type diningroom and livingdiningroom,
since the diningroom scenes amount to only 233 scenes. This results in 3233 rooms in total. For
the dining rooms, we follow the same filtering process as for the living rooms and we keep 2625
rooms with 24 objects in total. Fig. 4b shows the number of occurrences of each object category in
the dining rooms. The most common category is the dining chair with 9589 occurrences and the least
common is the chaise lounge sofa with 19.

To generate the train, test and validation splits, we split the preprocessed rooms such that 70% is used
for training, 20% for testing and 10% for validation. Note that the 3D-FRONT dataset comprises
multiple houses that may contain the same room, e.g the exact same object arrangement might appear
in multiple houses. Thus splitting train and test scenes solely based on whether they belong to
different houses could result in the same room appearing both in train and test scenes. Therefore,
instea of randomly selecting rooms from houses but we select from the set of rooms with distinct
object arrangements.

3 Ablation Study

In this section, we investigate how various components of our model affect its performance on the
scene synthesis task. In Sec. 3.1, we investigate the impact of the number of logistic distributions in
the performance of our model. Next, in Sec. 3.2, we examine the impact of the architecture of the
layout encoder. In Sec. 3.3, we compare ATISS with two variants of our model that consider ordered
sets of objects. Unless stated otherwise, all ablations are conducted on the bedroom scenes of the
3D-FRONT [7] dataset.

3.1 Mixture of Logistic distributions

We represent objects in a scene as labeled 3D bounding boxes and model them with four random
variables that describe their category, size, orientation and location, oj = {cj , sj , tj , rj}. The
category cj is modeled using a categorical variable over the total number of object categories C in the
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Figure 4: Number of object occurrences in Living Rooms and Dining Rooms.

dataset. For the size sj ∈ R3, the location tj ∈ R3 and the orientation rj ∈ R1, we follow [25, 28]
and model them with a mixture of logistic distributions

sj ∼
K∑
k=1

πsklogistic(µsk, σ
s
k) tj ∼

K∑
k=1

πtklogistic(µtk, σ
t
k) rj ∼

K∑
k=1

πrklogistic(µrk, σ
r
k) (2)

where πsk, µsk and σsk denote the weight, mean and variance of the k-th logistic distribution used for
modeling the size. Similarly, πtk, µtk and σtk and πrk, µrk ans σrk refer to the weight, mean and variance
of the k-th logistic of the location and orientation, respectively.

In this experiment, we test our model with different numbers for logistic distributions for modelling
the object attributes. Results are summarized in Tab. 1.

FID (↓) Classification Accuracy (↓) Category Distribution (↓)
K = 1 41.71 ± 0.4008 0.7826 ± 0.0080 0.0491
K = 5 40.41 ± 0.2491 0.5667 ± 0.0405 0.0105
K = 10 38.39 ± 0.3392 0.5620 ± 0.0228 0.0085
K = 15 40.41 ± 0.4504 0.5980 ± 0.0074 0.0095
K = 20 40.39 ± 0.3964 0.6680 ± 0.0035 0.0076

Table 1: Ablation Study on the Number of Logistic Distributions. This table shows a quantitative
comparison of our approach with different numbers of K logistic distributions for modelling the size,
the location and the orientation of each object.

As it is expected, using a single logistic distribution (first row in Tab. 1) results in worse performance,
since it does not have enough representation capacity for modelling the object attributes. We also
note that increasing the number of logistic distributions beyond 10 hurts performance wrt. FID and
classification accuracy. We hypothesize that this is due to overfitting. In our experiments we set
K = 10.

3.2 Layout Encoder

We further examine the impact of the layout encoder on the performance of our model. To this end,
we replace the ResNet-18 architecture [10], with an AlexNet [14]. From the original architecture, we
remove the final classifier layers and keep only the feature vector of length 9216 after max pooling.
We project this feature vector to 64 dimensions with a linear projection layer. Similar to our vanilla
model, we do not use an AlexNet pre-trained on ImageNet because we empirically observed that it
resulted in worse performance.

FID (↓) Classification Accuracy (↓) Category Distribution (↓)
AlexNet 40.40 ± 0.2637 0.6083 ± 0.0034 0.0064
ResNet-18 38.39 ± 0.3392 0.5620 ± 0.0228 0.0085

Table 2: Ablation Study on the Layout Encoder Architecture. This table shows a quantitative
comparison of ATISS with two different layout encoders.

Tab. 2 compares the two variants of our model wrt. to the FID score, the classification accuracy
and the KL-divergence. We remark that our method is not particularly sensitive to the choice of the
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FID (↓) Classification Accuracy (↓) Category Distribution (↓)
Ours+Perm+Order 40.18 ± 0.2831 0.6019 ± 0.0060 0.0089
Ours+Order 38.67 ± 0.5552 0.7603 ± 0.0010 0.0533
Ours 38.39 ± 0.3392 0.5620 ± 0.0228 0.0085

Table 3: Ablation Study on Ordering. This table shows a quantitative comparison of our approach
wrt. two variants of our model that represent rooms as ordered sequence of objects.

Figure 5: Failure Case Detection and Correction. Starting from a room with an unnatural object
arrangement, our model identifies the problematic objects (first row and third row, in green) and
relocates them into meaningful positions (second and fourth row).

layout encoder. However, using an AlexNet results in slightly worse performance, hence we utilize a
ResNet-18 in all our experiments.

3.3 Transformers with Ordering

In this section, we analyse the benefits of synthesizing rooms as unordered sets of objects in contrast
to ordered sequences. To this end, we train two variants of our model that utilize a positional
embedding [29] to incorporate order information to the input. The first variant is trained with random
permutations of the input (Ours+Perm+Order), similar to our model, whereas the second with a fixed
ordering based on the object frequency (Ours+Order) as described in [24, 31]. We compare these
variants to our model on the scene synthesis task and observe that the variant with the fixed ordering
(second row Tab. 3) performs significantly worse as the classifier can identify synthesized scenes
with 76% accuracy. Moreover, we remark that besides enabling all the applications presented in our
main submission, training with random permutations also improves the quality of the synthesized
scenes (first row Tab. 3). However, our model that is permutation invariant, namely the prediction
is the same regardless of the order of the partial scene, performs even better (third row Tab. 3). We
conjecture that the invariance of our model will be more even more crucial for training with either
larger datasets or larger scenes i.e. scenes with more objects, because observing a single order allows
reasoning about all permutations of the partial scene.

4 Applications

In this section, we provide additional qualitative results for various interactive applications that benefit
greatly by our unordered set formulation.
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Sofa Nightstand Nothing Lamp Stool Armchair

TV-stand Lamp Sofa Cabinet Bookshelf Cabinet

Figure 6: Object Suggestion. A user specifies a region of acceptable positions to place an object
(marked as red boxes, first and third row) and our model suggests suitable objects (second and fourth
row) to be placed in this location.

4.1 Failure Case Detection And Correction

In this experiment, we investigate whether our model is able to identify unnatural furniture layouts
and reposition the problematic objects such that they preserve their functional properties. As we
described in our main submission, we identify problematic objects as those with low likelihood and
as soon as a problematic object is identified, we sample a new location from our generative model to
reposition it. Fig. 5 shows additional qualitative results on this task. The first and third row show
examples of unnatural object arrangements, together with the problematic object, highlighted in green,
for each scenario. We note that our model successfully identifies objects in unnatural positions e.g.
flying bed (first row, first column Fig. 5), light inside the bed (first row, third column Fig. 5) or table
outside the room boundaries (third row, fourth column Fig. 5 ) as well as problematic objects that do
not necessarily look unnatural, such as a cabinet blocking the corridor (first row, sixth column Fig. 5),
a chair facing the wall (third row, first column Fig. 5) or a lamp being too close to the table (third
row, third column Fig. 5). After having identified the problematic object, our model consistently
repositions it at plausible position.

4.2 Object Suggestion

For this task, we examine the ability of our model to provide object suggestions given a scene and
user specified location constraints. For this experiment, the user only provides location constraints,
namely valid positions for the centroid of the object to be generated. Fig. 6 shows examples of
the location constraints, marked with red boxes, (first and third row) and the corresponding objects
suggested by our model (second and fourth row). We observe that our model consistently makes
plausible suggestions, and for the cases that a user specifies a region that overlaps with other objects
in the scene, our model suggests adding nothing (first row, third column Fig. 6). In Fig. 6, we also
provide two examples, where our model makes different suggestions based on the same location
constraints, such as sofa and nightstand for the scenario illustrated in the first and second column and
stool and armchair for the scenario illustrated in the fifth and sixth column in the first row.
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Figure 7: Scene Completion. Starting from a partially complete scene (first row), we visualize two
examples of scene completions using our model (second and third row).

TV-stand Bookshelf Sofa Wardrobe Chair Coffee table

Figure 8: Object Placement. Starting from a partially complete scene, the user specifies an object to
be added in the scene and our model places it at a reasonable position. The first rows illustrates the
starting scene and the second row the generated scened using the user specified object (third row).

4.3 Scene Completion

Starting from a partial scene, we want to evaluate the ability of our model to generate plausible
object arrangements. To generate the partial scenes, we randomly sample scenes from the test set and
remove the majority of the objects in them. Fig. 7 shows examples for various partial rooms (first row
Fig. 7), as well as two alternative scene completions using our model (second and third row Fig. 7).
We observe that our model generates diverse arrangements of objects that are consistently meaningful.
For example, for the case where the partial scene consists of a chair and a bed (last column Fig. 7),
our model generates completions that have nightstands surrounding the bed as well as a desk in front
of the chair.

4.4 Object Placement

Finally, we showcase the ability of our model to add a specific object in a scene on demand. Fig. 8
illustrates the original scene (first row) and the complete scene (second row) using the user specified
object (third row). To perform this task, we condition on the given scene and instead of sampling
from the predicted object category distribution, we use the user provided object category and sample
the rest of the object attributes i.e. translation, size and orientation. Also in this task, we note that the
generated objects are realistic and match the room layout.
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5 Scene Synthesis

In this section, we provide additional qualitative results for our scene synthesis experiment on the four
3D-FRONT rooms. Moreover, since, we repeat the FID score and classification accuracy computation
10 times, in Tab. 4, we also report the standard deviation for completeness.

FID Score (↓) Scene Classification Accuracy Category KL Divergence (↓)
FastSynth SceneFormer Ours FastSynth SceneFormer Ours FastSynth SceneFormer Ours

Bedrooms 40.89 ± 0.5098 43.17 ± 0.6921 38.39 ± 0.3392 0.883 ± 0.0010 0.945 ± 0.0009 0.562 ± 0.0228 0.0064 0.0052 0.0085
Living 61.67 ± 1.2136 69.54 ± 0.9542 33.14 ± 0.4204 0.945 ± 0.0010 0.972 ± 0.0010 0.516 ± 0.0075 0.0176 0.0313 0.0034
Dining 55.83 ± 1.0078 67.04 ± 1.3043 29.23 ± 0.3533 0.935 ± 0.0019 0.941 ± 0.0008 0.477 ± 0.0027 0.0518 0.0368 0.0061
Library 37.72 ± 0.4501 55.34 ±0.1056 35.24 ± 0.2683 0.815 ± 0.0032 0.880 ± 0.0009 0.521 ± 0.0048 0.0431 0.0232 0.0098

Table 4: Quantitative Comparison. We report the FID score (↓) at 2562 pixels, the KL divergence (↓) between
the distribution of object categories of synthesized and real scenes and the real vs. synthetic classification
accuracy for all methods. Classification accuracy closer to 0.5 is better.

Conditioned on a floor plan, we evaluate the performance of our model on generating plausible
furniture arrangements and compare with FastSynth [24] and SceneFormer [31]. Fig. 20 provides a
qualitative comparison of generated bedroom scenes conditioned on the same floor layout using our
model and our baselines. We observe that in contrast to [24, 31], our model consistently generates
layouts with more diverse objects. In particular, [31] typically generates bedrooms that consist only
of a bed, a wardrobe and less frequently also a nightstand, whereas both our model and FastSynth
synthesize rooms with more diverse objects. Similarly generated scenes for living rooms and dining
rooms are provided in Fig. 21 and Fig. 22 respectively. We observe that for the case of living rooms
and dining rooms both baselines struggle to generate plausible object arrangements, namely generated
objects are positioned outside the room boundaries, have unnatural sizes or populate a small part of
the scene. We hypothesize that this might be related to the significantly smaller amount of training
data compared to bedrooms. Instead our model, generates realistic living rooms and dining rooms.
For the case of libraries (see Fig. 23), again both [24, 31] struggle to generate functional rooms.

5.1 Object Co-occurrence

To further validate the ability of our model to reproduce the probabilities of object co-occurrence in
the real scenes, we compare the probabilities of object co-occurrence of synthesized scenes using our
model, FastSynth [24] and SceneFormer [31] for all room types. In particular, in this experiment, we
generate 5000 scenes using each method and report the difference between the probabilities of object
co-occurrences between real and synthesized scenes. Fig. 9 summarizes the absolute differences
for the bedroom scenes. We observe that our model better captures the object co-occurrence than
baselines since the absolute differences for most object pairs are consistently smaller.
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Figure 9: Absolute Difference between Object Co-occurrence in Bedrooms. We visualize the
absolute difference of the probabilities of object co-occurrence computed between real and synthe-
sized scenes using ATISS (left), FastSynth (middle) and SceneFormer (right). Larger differences
correspond to warmer colors and are worse.
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Figure 10: Absolute Difference between Object Co-occurrence in Living Rooms. We visualize
the absolute difference of the probabilities of object co-occurrence computed between real and
synthesized scenes using ATISS (left-most column), FastSynth (middle column), SceneFormer
(right-most column). Lower is better.
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Figure 11: Absolute Difference between Object Co-occurrence in Dining Rooms. We visualize
the absolute difference of the probabilities of object co-occurrence computed between real and
synthesized scenes using ATISS (left-most column), FastSynth (middle column), SceneFormer
(right-most column). Lower is better.

This is also validated for the case of living rooms (Fig. 10), dining rooms (Fig. 11) and libraries
(Fig. 12), where our model better captures the object co-occurrences than both FastSynth [24] and
SceneFormer [31]. Note that from our analysis it becomes evident that while our method better
reproduces the probabilities of object co-occurrence from the real scenes, all methods are able to
generate scenes with plausible object co-occurrences. This is expected, since learning the categories
of objects to be added in a scene is a significantly easier task in comparison to learning their sizes
and positions in 3D space.

Finally, in Fig. 13, we visualize the per-object difference in frequency of occurrence between
synthesized and real scenes from the test set for all room types. We observe that our model generates
object arrangements with comparable per-object frequencies to real rooms. In particular, for the case
of living rooms (13b), dining rooms (13c) and libraries (13d) that are more challenging rooms types
due to their smaller size, our model has an even smaller discrepancy wrt. the per-object frequencies.

5.2 Visualizations of Predicted Distributions

In this section, we provide examples of the predicted location distributions for different input scenes.
In particular, we randomly select 6 bedroom floor plans and conditioned on them we generate 5000
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Figure 12: Absolute Difference between Object Co-occurrence in Libraries. We visualize the
absolute difference of the probabilities of object co-occurrence computed between real and synthe-
sized scenes using ATISS (left-most column), FastSynth (middle column), SceneFormer (right-most
column). Lower is better.
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Figure 13: Difference of Per-Object Frequencies. We visualize the absolute difference between
the per-object frequency of generated and real scenes using our method, FastSynth [24] and Scene-
Former [31] for all room types. Lower is better.
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Figure 14: Location Distributions for Chair.

scenes conditioned on each floor plan. Based on the locations of the generated objects, we create
scatter plots for the locations of various object categories i.e. chair (Fig. 14), desk (Fig. 15), nightstand
(Fig. 16), wardrobe (Fig. 17). We observe that for all object categories the location distributions of
the generated objects are consistently meaningful.

5.3 Computational Requirements

In this section, we provide additional details regarding the computational requirements of our method,
presented in Table 2 and 3 in our main submission. We observe that ATISS requires significantly less
time to generate a scene compared to [31, 24]. Note that the computational cost varies depending
on the room type, due to the different average number of objects for each room type. Living rooms
and dining rooms are typically larger in size, thus more objects need to be generated to cover the
empty space. All reported timings are measured on a machine with an NVIDIA GeForce GTX 1080
Ti GPU.

Even though the implementations are not directly comparable, since we cannot guarantee that all
have been equally optimized, our findings meet our expectations. Namely, FastSynth [24] requires
rendering the scene each time a new object is added, thus it is expected to be significantly slower
than both SceneFormer and our model. On the other hand, SceneFormer [31] utilizes four different
transformer models for generating the attributes of each object, hence it is expected to be at least four
times slower than our model, when generating the same number of objects.

6 Perceptual Study

We conducted two paired Amazon Mechanical Turk perceptual studies to evaluate the quality of our
generated layouts against FastSynth [24] and SceneFormer [31]. To this end, we first sampled 211
floor plans from the test set and generated 6 scenes per floor plan for each method; no filtering or
post-processing was used, and samples were randomly and independently drawn for all methods.
Originally, we considered rendering the rooms with the same furniture objects for each floor plan to
allow participants to only focus on the layout itself, which is the main focus of our work. However,
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Figure 15: Location Distributions for Desk.

Figure 16: Location Distributions for Nightstand.
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Figure 17: Location Distributions for Wardrobe.

since the object retrieval is done based on the object dimensions, rescaling the same furniture piece to
fit all predicted dimensions would result in unrealistically deformed pieces that could skew perceptual
judgements even more heavily. To avoid having participants focusing on the individual furniture
pieces, we added prominent instructions to focus on the layout and not the properties of selected
objects (see Fig. 18). Each 3D room was rendered as an animated gif using the same camera rotating
around the room.

Figure 18: Perceptual Study UI. A/B paired questions with rotating 3D scenes (zoom in).

In each user study, users were shown paired question sets: two rooms generated using our method and
two generated with the baseline conditioned on the same floor plan. We randomly selected two out of
the 6 pre-rendered scenes for the given floor plan, and 5 different workers answered the question set
about every floor plan. Namely, the majority of the 6 layouts were shown more than once on average.
A / B order was randomized to avoid bias. The question sets posed the same two questions about
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scenes generated with program A and B, in order to let users focus on the details of the results and to
assess errors of the generated layouts. The last question forced participants to choose between A or
B, based on which scene looks more realistic.

Specifically, users were instructed to pay attention to errors like interpenetrating furniture and
furniture outside of the floor area and answer if none, one or both layouts for each method had errors.
We aggregated these statistics to obtain average error rate per layout, with our method performing
nearly twice better than the best baseline [24]. The results on realism in Table 4. in our main
submission (first and second row) specify the fraction of the times users chose the baseline over ours.
For example, [24] was judged more realistic than ours only 26.9% of the time. Because there was no
intermediate option, this means that 73.1% of the time our method was preferred. The last line in
Table 4, in our main submission, aggregated preference for our method across both studies.

Workers were compensated $0.05 per question set for a total of USD $106. The participation risks
involved only the regular risks associated with the use of a computer.

7 Additional Related Work on Indoor Synthesis

In this section, we discuss alternative lines of work on indoor scene synthesis. Fisher et al. [5]
propose to represent scenes using relationship graphs that encode spatial and semantic relationships
between objects in a scene as well as the identity and semantic classification of each object. Then,
they introduce a graph kernel-based scene comparison operator that allows for retrieving similar
scenes, performing context-based model search etc. Such representations have been subsequently
adopted in models that generate scenes conditioned on user provided constraints and interior design
guidelines [16] or rely on a set of example images for generating plausible room layouts [4]. Another
line of research [6, 9] leverage activity-associated object relation graphs for generating semantically
meaningful object arrangements. Finally, another line of research [1, 15] parses text descriptions into
a scene relationship graph that is subsequently used for arranging objects in a 3D scene.

8 Discussion and Limitations

Figure 19: Failure Cases. We visualize various failure cases of our model for different toom types.

Lastly, we discuss the limitations of our model and show some examples of failure cases in Fig. 19.
One type of failure case that is illustrated in Fig. 19 is overlapping objects, in particular chairs for
the case of living rooms and dining rooms (see second and third column in Fig. 19). As we already
discussed in Sec. 2, to be able to use the 3D-FRONT dataset, we performed intense filtering to remove
objects that intersect with each other. However, we found out that not all problematic arrangements
were removed from the dataset, which we hypothesize is the reason for such failure cases. Another
type of failure case that we observed, which is also related to the existence of problematic rooms in
our training data, is the unnatural orientation of objects (e.g. chair facing the bookshelf in first column
of Fig. 19 or chair facing opposite of the table in last column of Fig. 19.) Note that these failure cases
are quite rare, as also indicated by our quantitative analysis in Sec. 4.1 in the main submission as
well as the perceptual study in Sec. 4.3, but our method does not guarantee error-free layouts and
there is room for improvement.

Our approach is currently limited to generating object properties using a specific ordering (category
first, followed by location, then orientation and lastly size). To further expand the interactive
possibilities of our model, we believe that also the object attributes should be generated in an order
invariant fashion, similar to the objects in the scene. Furthermore, in our current formulation, the
object retrieval is disconnected from the attribute generation. As a result we cannot guarantee that the
retrieved objects would match with existing objects in the scene. To address this, in the future, we
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plan to also incorporate style as an additional object attribute to allow for improved object retrieval.
Incorporating style information, would also allows us to generate rooms conditioned on a specific
style. Another exciting research direction that we would like to explore is combining ATISS with
existing compositional representations of objects [27, 21, 17, 22, 20, 18]. This will allow us to
generate 3D scenes with control over the object arrangement, object parts and part relationships. Due
to the unique characteristics of compositional representations representations, our generated scenes
will be fully controllable i.e. it will be possible to manipulate objects and object parts, edit specific
parts of the scene etc.
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Scene Layout Training Sample FastSynth SceneFormer Ours

Figure 20: Qualitative Scene Synthesis Results on Bedrooms. Generated scenes for bedrooms
using FastSynth, SceneFormer and our method. To showcase the generalization abilities of our model
we also show the closest scene from the training set (2nd column).
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Scene Layout Training Sample FastSynth SceneFormer Ours

Figure 21: Qualitative Scene Synthesis Results on Living Rooms. Generated scenes for living
rooms using FastSynth, SceneFormer and our method. To showcase the generalization abilities of our
model we also show the closest scene from the training set (2nd column).
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Scene Layout Training Sample FastSynth SceneFormer Ours

Figure 22: Qualitative Scene Synthesis Results on Dining Rooms. Generated scenes for dining
rooms using FastSynth, SceneFormer and our method. To showcase the generalization abilities of our
model we also show the closest scene from the training set (2nd column).

20



Scene Layout Training Sample FastSynth SceneFormer Ours

Figure 23: Qualitative Scene Synthesis Results on Libraries. Generated scenes for libraries using
FastSynth, SceneFormer and our method. To showcase the generalization abilities of our model we
also show the closest scene from the training set (2nd column).
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