
Neural Reflectance Surfaces (NeRS)
Supplementary Materials

We describe an additional ablation on view-dependence in Sec. 0.1, some limitations of our illumina-
tion model in Sec. 0.2, implementation details for NeRS and the baselines in Sec. 0.3 and Sec. 0.4
respectively, and details for in-the-wild novel view synthesis in Sec. 0.5. We also evaluate the effect
of increasing the number of training images on novel view synthesis in Fig. 1, ablate removing any
view-dependence prediction altogether in Fig. 2, compare the learned shape models with volume
carving in Fig. 4, and describe the architectures of NeRS networks in Fig. 3.

0.1 View-Dependence Ablation

To evaluate the importance of learning a BRDF for illumination estimation, we train a NeRS that
directly conditions the radiance prediction on the position and view direction, similar to NeRF. More
specifically, we concatenate the uv with view direction ω as the input to ftex which still predicts an
RGB color value, and do not use fenv. We include the quantitative evaluation on using our Multi-view
Marketplace Cars (MVMC) dataset for fixed camera novel-view synthesis in Tab. 1 and in-the-wild
novel-view synthesis in Tab. 2.

Video qualitative results are available on the figures page1 of the project webpage. We observe that
the NeRS with NeRF-style view-direction conditioning has qualitatively similar visual artifacts to the
NeRF baseline, particularly large changes in appearance despite small changes in viewing direction.
This suggests that learning a BRDF is an effective way to regularize and improve generalization of
view-dependent effects.

Method MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
NeRF∗ (Mildenhall et al., 2020) 0.0393 16.0 0.698 0.287 231.7
MetaNeRF (Tancik et al., 2021) 0.0755 11.4 0.345 0.666 394.5
MetaNeRF-ft (Tancik et al., 2021) 0.0791 11.3 0.500 0.542 326.8
IDR (Yariv et al., 2020) 0.0698 13.8 0.658 0.328 190.1
NeRS (Ours) 0.0254 16.5 0.720 0.172 60.9
NeRS + NeRF-style View-dep 0.0315 15.6 0.68 0.271 285.3

Table 1: Quantitative evaluation of novel-view synthesis on MVMC using fixed pseudo-ground truth cam-
eras. Here, we evaluate novel view synthesis with fixed pseudo-ground truth cameras, constructed by manually
correcting off-the-shelf cameras that are jointly optimized by our method. In addition to the baselines from the
main paper, we compare against an ablation of our approach that directly conditions the radiance on the uv and
viewing direction (“NeRS + NeRF View-dep") in a manner similar to NeRF.

0.2 Limitations of illumination model

In order to regularize lighting effects, we assume all lighting predicted by fenv to be grayscale. For
some images with non-white lighting (see Fig. 5), this can cause the lighting color to be baked into
the predicted texture in an unrealistic manner. In addition, if objects are gray in color, there is a
fundamental ambiguity as to whether the luminance is due to the object texture or lighting e.g. dark
car with bright illumination or light car with dark illumination (see Fig. 6).

1https://jasonyzhang.com/ners/paper_figures

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://jasonyzhang.com/ners/paper_figures


2 4 6 8 10 12 14
Number of Training Images

0.14

0.16

0.18

0.20

0.22

0.24

0.26

LP
IP

S 
(

)

More Training Images Improves Novel View Synthesis
Mean
Std. Error

Figure 1: Relationship between number of training images and reconstruction quality. We quantify the
number of images needed for a meaningful reconstruction using NeRS on a specific instance from MVMC with
16 total images. Given one of the images as a target image, we randomly select one of the remaining images
as the initial training image. Then, we iteratively increase the number of training images, adding the image
corresponding to the pseudo-ground truth pose furthest from the current set. This setup is intended to emulate
how a user would actually take pictures of objects in the wild (i.e. taking wide baseline multi-view images
from far away viewpoints). Note that once the sets of training images are selected, we use the in-the-wild novel
view synthesis training and evaluation protocol. In this plot, we visualize the mean and standard error over 16
runs. We find that increasing the number of images improves the quality in terms of perceptual similarity, with
performance beginning to plateau after 8 images.

Target Camera Method MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Approx.
Camera

NeRF∗ (Mildenhall et al., 2020) 0.0657 12.7 0.604 0.386 290.7
IDR (Yariv et al., 2020) 0.0836 11.4 0.591 0.413 251.6
NeRS (Ours) 0.0527 13.3 0.620 0.284 100.9
NeRS + NeRF-style View-dep. 0.0573 13.0 0.624 0.356 296.4

Refined
Approx.
Camera

NeRF∗ (Mildenhall et al., 2020) 0.0464 14.7 0.660 0.335 277.9
IDR (Yariv et al., 2020) 0.0454 14.4 0.685 0.297 242.3
NeRS (Ours) 0.0338 15.4 0.675 0.221 92.5
NeRS + NeRF-style View-dep. 0.0482 13.9 0.659 0.316 293.5

Table 2: Quantitative evaluation of in-the-wild novel-view synthesis on MVMC. To evaluate in-the-wild
novel view synthesis, each method is trained with (and can refine) approximate cameras estimated using Xiao
et al. (2019). To compensate for the approximate test camera, we allow each method to refine the test camera
given the target image. In this table, we show the performance before (“Approx. Camera") and after (“Refined
Approx. Camera") this refinement. All methods improve from the refinement. In addition, we compare against
an ablation of our approach that directly conditions the radiance on the uv and viewing direction (“NeRS +
NeRF View-dep") in a manner similar to NeRF.

0.3 Implementation Details and Hyper-Parameters

To encourage plausible lighting, we found it helpful to also optimize a perceptual loss on the
illumination of the mean texture, similar to Wu et al. (2021). During optimization, we render an
image Î with full texture using ftex as well as a rendering Ī using the mean output of ftex. We compute
a perceptual loss on both Î and Ī . We weight these two perceptual losses differently, as shown in
Tab. 3. To compute illumination, we sample environment rays uniformly across the unit sphere, and
compute the normals corresponding to each vertex, ignoring rays pointing in the opposite direction of
the normal.

2



Reference Image No 𝑓𝑓env NeRS (Ours) Env. MapIllum. of Mean Tex.

Figure 2: Comparison with NeRS trained without view dependence. Here we compare the full NeRS
(column 3) with a NeRS trained without view dependence by only rendering using ftex without fenv (column 2).
We find that NeRS trained without view-dependence cannot capture lighting effects when they are inconsistent
across images. The difference between NeRS trained with and without view-dependence is best viewed in
video form. We also visualize the environment map and the illumination of the car with the mean texture. The
environment maps show that the light is coming primarily from one side for the first car, uniformly from all
directions for the second car, and strongly front left for the third car. [Video]

0.4 Implementation Details of Baselines

NeRF2 (Mildenhall et al., 2020): We find that a vanilla NeRF struggles when given sparse views. As
such, we make the following changes to make the NeRF baseline as competitive as possible: 1. we
add a mask loss that forces rays to either pass through or be absorbed entirely by the neural volume,
analogous to space carving (Kutulakos and Seitz, 2000) (see Fig. 4); 2. a canonical volume that zeros
out the density outside of a tight box where the car is likely to be. This helps avoid spurious “cloudy"
artifacts from novel views; 3. a smaller architecture to reduce overfitting; and 4. a single rendering
pass rather than dual coarse/fine rendering passes. In the main paper, we denote this modified NeRF
as NeRF∗. For in-the-wild novel-view synthesis, we refine the training and test cameras directly,
similar to Wang et al. (2021).

MetaNeRF3 (Tancik et al., 2021): We fine-tuned the pre-trained 25-view ShapeNet model on our
dataset. We used the default hyper-parameters for the MetaNeRF baseline. For MetaNeRF-ft, we
increased the number of samples to 1024, trained with a learning rate of 0.5 for 20,000 iterations,
then lowered the learning rate to 0.05 for 50,000 iterations.

IDR4 (Yariv et al., 2020): Because each instance in our dataset has fewer images than DTU, we
increased the number of epochs by 5 times and adjusted the learning rate scheduler accordingly.
IDR supports both fixed cameras (which we use for fixed camera novel-view synthesis) and trained
cameras (which we use for in-the-wild novel-view synthesis).

0.5 In-the-wild Novel-view Synthesis Details

For in-the-wild novel-view synthesis without ground truth cameras, we aim to evaluate the capability
of each approach to recover a meaningful 3D representation while only using approximate off-the-
shelf cameras. Given training images with associated approximate cameras, each method is required
to output a 3D model. We then evaluate whether this 3D model can generate a held-out target image
under some camera pose.

2https://github.com/facebookresearch/pytorch3d/tree/main/projects/nerf
3https://github.com/tancik/learnit
4https://github.com/lioryariv/idr

3

https://jasonyzhang.com/ners/paper_figures#fig10
https://github.com/facebookresearch/pytorch3d/tree/main/projects/nerf
https://github.com/tancik/learnit
https://github.com/lioryariv/idr


PE (6)

(𝑢𝑢, 𝑣𝑣)

FCN (256)

IN (256)

Sigmoid

𝑅𝑅𝑅𝑅𝑅𝑅

LeakyReLU

FCN (3)

x7

PE (4)

𝜔𝜔

FCN (64)

IN (64)

ReLU

𝐿𝐿𝑖𝑖

LeakyReLU

FCN (1)

x7

PE (6)

(𝑢𝑢, 𝑣𝑣)

FCN (128)

IN (128)

LeakyReLU

FCN (3)

x2

+

𝑋𝑋𝑋𝑋𝑋𝑋

Figure 3: Network Architectures. Here, we show the architecture diagrams for ftex, fenv, and fshape. We
parameterize (u, v) coordinates as 3-D coordinates on the unit sphere. Following Mildenhall et al. (2020);
Tancik et al. (2020), we use positional encoding to facilitate learning high frequency functions, with 6 sine and
cosine bases (thus mapping 3-D to 36-D). We use blocks of fully connected layers, instance norm (Ulyanov et al.,
2016), and Leaky ReLU. To ensure texture is between 0 and 1 and illumination is non-negative, we use a final
sigmoid and ReLU activation for ftex and fenv respectively. We pre-train fshape to output the category-specific
mesh template. Given a category-specific mesh, we use an off-the-shelf approach to recover the mesh-to-sphere
mapping: https://github.com/icemiliang/spherical_harmonic_maps.

Reference 
Image

Initial 
Cameras

Pretrained
Cameras

Optimized 
Cameras

Predicted 
Shape

Predicted 
Textured Mesh

Figure 4: Shape from Silhouettes using Volume Carving. We compare shapes carved from the silhouettes of
the training views with the shape model learned by our approach. We construct a voxel grid of size 1283 and keep
only the voxels that are visible when projected to the masks using the off-the-shelf cameras (“Initial Cameras"),
pre-trained cameras from Stage 1 (“Pretrained Cameras"), and the final cameras after Stage 4 (“Optimized
Cameras"). We compare this with the shape model output by fshape. We show the nearest neighbor training view
and the final NeRS rendering for reference. While volume carving can appear reasonable given sufficiently
accurate cameras, we find that the shape model learned by NeRS is qualitatively a better reconstruction. In
particular, the model learns to correctly output the right side of the pickup truck and reconstructs the sideview
mirrors from the texture cues, suggesting that a joint optimization of the shape and appearance is useful. Also,
we note that the more “accurate" optimized cameras are themselves outputs of NeRS. [Video]

In practice, we recover approximate cameras using Xiao et al. (2019). However, as these only
comprise of a rotation, we further refine them using the initial template and foreground mask. The
initial approximate cameras we use across all methods are in fact equivalent to those obtained by our
method after Stage 1 of training, and depend upon: i) prediction from Xiao et al. (2019), and ii) input
mask and template shape. During training, each method learns a 3D model while jointly optimizing
the camera parameters using gradient descent. Similarly, at test time, we refine approximate test
camera with respect to the training loss function for each method (i.e. (7) for NeRS, MSE for NeRF,
and RGB+Mask loss for IDR) using the Adam optimizer for 400 steps. We show all metrics before
and after this camera refinement in Tab. 2.

References
Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

4

https://github.com/icemiliang/spherical_harmonic_maps
https://jasonyzhang.com/ners/paper_figures#fig11


Figure 5: Non-white lighting. Our illumination model assumes environment lighting to be grayscale. In this
car, the indoor lighting is yellow, which causes the yellow lighting hue to be baked into the predicted texture
(Predicted Texture) rather than the illumination (Illum. of Mean Texture).

Figure 6: Gray texture-illumination ambiguity. For gray cars, there is a brightness ambiguity between texture
and lighting. Although the car shown here is silver, another possible interpretation is that the car is dark grey
with very bright illumination and specularity.

Kiriakos N Kutulakos and Steven M Seitz. A Theory of Shape by Space Carving. IJCV, 38(3):
199–218, 2000.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV,
2020.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier Features Let Networks
Learn High Frequency Functions in Low Dimensional Domains. In NeurIPS, 2020.

Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srinivasan, Jonathan T. Bar-
ron, and Ren Ng. Learned Initializations for Optimizing Coordinate-Based Neural Representations.
In CVPR, 2021.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance Normalization: The Missing
Ingredient for Fast Stylization. arXiv:1607.08022, 2016.

Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. NeRF–: Neural
Radiance Fields Without Known Camera Parameters. arXiv:2102.07064, 2021.

Shangzhe Wu, Ameesh Makadia, Jiajun Wu, Noah Snavely, Richard Tucker, and Angjoo Kanazawa.
De-rendering the World’s Revolutionary Artefacts. In CVPR, 2021.

Yang Xiao, Xuchong Qiu, Pierre-Alain Langlois, Mathieu Aubry, and Renaud Marlet. Pose from
Shape: Deep Pose Estimation for Arbitrary 3D Objects. In BMVC, 2019.

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen, and Yaron
Lipman. Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance.
In NeurIPS, 2020.

5



Stage Optimize Num.
Iters

Loss Weights

Mask DT Chamfer Perc. Perc. mean Reg.

1 {Πi}Ni=1 500 2 20 0.02 0 0 0
2 Above + fshape 500 2 20 0.02 0 0 0.1
3 Above + ftex 1000 2 20 0.02 0.5 0 0.1
4 Above + fenv, α, ks 500 2 20 0.02 0.5 0.15 0.1

Table 3: Multi-stage optimization loss weights and parameters. We employ a 4 stage training process:
first optimizing just the cameras before sequentially optimizing the shape parameters, texture parameters, and
illumination parameters. In this table, we list the parameters optimized during each stage as well as the number
of training iterations and loss weights. All stages use the Adam optimizer (Kingma and Ba, 2015). “Perc. refers"
to the perceptual loss on the rendered image with full texture while “Perc. mean" refers to the perceptual loss on
the rendered image with mean texture.

6


	View-Dependence Ablation
	Limitations of illumination model
	Implementation Details and Hyper-Parameters
	Implementation Details of Baselines
	In-the-wild Novel-view Synthesis Details

