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ABSTRACT

Traditional causal discovery approaches typically assume the absence of latent
variables, a simplification that often does not align with real-world situations. Re-
cently, there has been a surge of causal discovery methods that explicitly consider
latent variables. While some works aim to reveal causal relations between ob-
served variables in the presence of latent variables, others seek to identify latent
variables and recover the causal structure over them. The latter typically entail
strong distributional and graphical assumptions, such as the non-Gaussianity, pu-
rity, and two-pure-children assumption. In this paper, we endeavor to recover the
whole causal structure involving both latent and observed variables under milder
assumptions. We formulate two cases, one allows entirely arbitrary distribution
and requires only one pure child per latent variable, and the other requires no pure
child and imposes the non-Gaussianity requirement on only a subset of variables,
and they both avoid the purity assumption. We prove the identifiability of linear
latent variable models in both cases, and our constructive proof leads to theoreti-
cally sound and computationally efficient algorithms.

1 INTRODUCTION

Understanding causal relations is a fundamental element of artificial intelligence (Schölkopf et al.,
2021; Schott et al., 2018; Dominguez-Olmedo et al., 2022; Wang et al., 2021; Yao et al., 2021;
Lin et al., 2023; Huang et al., 2023; Hong et al., 2024). The gold standard is to use randomized
experiments, but this is usually too expensive or even impractical. Therefore, there has been sig-
nificant attention towards revealing causal relations through analysis of observational data, com-
monly known as causal discovery. Most traditional approaches focus on the situation without latent
variables, such as constraint-based PC algorithm (Spirtes et al., 2000), score-based Greedy Equiv-
alence Search (GES) (Chickering, 2002), and some Functional Causal Model-(FCM-)based algo-
rithms (Shimizu et al., 2006; 2011; Hoyer et al., 2008a; Zhang & Hyvarinen, 2009; Peters et al.,
2014; Mooij et al., 2016). However, in complex systems, we typically fail to collect and measure all
task-relevant variables. Many algorithms have been proposed to handle the situation with latent vari-
ables, such as constraint-based Fast Causal Inference (FCI) (Spirtes et al., 1995), score-based Greedy
PAG Search (GPS) (Claassen & Bucur, 2022), and also some FCM-based algorithms (Hoyer et al.,
2008b; Tashiro et al., 2014; Salehkaleybar et al., 2020; Maeda & Shimizu, 2020; Cai et al., 2023).

While the above approaches can reveal causal relations between observed variables with or without
latent variables, they cannot identify latent variables, let alone infer their causal relations. However,
researchers may care more about the causal structure over latent variables in many cases (Silva et al.,
2006). Assuming linear causal relations and no observed variable being the parent of any latent one
in the underlying causal graph, many existing works employed sparsity of causal edges to facilitate
latent causal structure learning. For instance, some early works (Silva et al., 2006; Kummerfeld
& Ramsey, 2016) have proven that latent causal structure can be recovered under the three-pure-
children assumption that each latent variable has at least three pure children (an observed variable 𝑂
is called a pure child of a latent variable 𝐿 if 𝑂 has no child and only one parent 𝐿, see Definition 2.).
Others (Cai et al., 2019; Xie et al., 2020; 2022) have relaxed the three-pure-children assumption to
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Figure 1: The whole causal structure can be recovered in both the above cases where none of the
purity, non-Gaussianity, and two-pure-children assumption holds.

the two-pure-children assumption that each latent variable has at least two pure children. However,
they entailed two additional assumptions: the purity assumption that there is no causal edge between
observed variables and the non-Gaussianity assumption that noises of all variables are non-Gaussian.
On this basis, Xie et al. (2023b) made a further step by eliminating the purity assumption.

In the real world, since some variables might have nearly Gaussian distributions (Lyon, 2014), the
non-Gaussianity assumption might not hold. Besides, some observed variables may directly influ-
ence others, violating the purity assumption, e.g., in financial markets, while stock returns may be
confounded by some economic or political factors, they may also be causally related (Adams et al.,
2021). Moreover, the occurrence of pure children will become less frequent without the purity as-
sumption. Finally, when observed variables are also causally related, we usually want the whole
causal structure involving both latent and observed variables rather than only the latent causal struc-
ture. Therefore, we endeavor to recover the whole causal structure in the case where none of the
non-Gaussianity, purity, and two-pure-children assumption holds.

Recovery of the whole causal structure requires us to first identify latent variables and then infer
causal relations between any two variables. Existing works typically identify a latent variable by
detecting its pure children from observed variables, which can be achieved under strong graphical
and distributional assumptions. We notice that previously used assumptions are sufficient but not
necessary for detecting the pure children, and some special impure children can play a similar role
as pure ones. Based on this, we formulate two sets of assumptions which are milder than previous
ones. They both allow causal edges between observed variables, one allows entirely arbitrary distri-
bution and requires only one pure child per latent variable, and the other requires no pure child and
imposes the non-Gaussianity requirement on only a subset of variables, two illustrative examples
are shown in Figure 1. We prove identifiability of latent variables under either set of assumptions,
and corresponding algorithms directly derive from our constructive proof. After this, we perform
some pre-processing procedures and then modify the PC-MIMBuild (Silva et al., 2006) which has
already been proved asymptotically correct to infer causal relations between any two variables.

In summary, our main contributions are three-fold. First, we introduce two sets of milder assump-
tions, both of which avoid the non-Gaussianity, purity, and two-pure-children assumption simulta-
neously. Second, we prove that the whole causal structure of linear latent variable models can be
recovered under either set of assumptions. Third, from our constructive proof, we derive algorithms
to recover the whole causal structure from purely observational data, which are both theoretically
sound and computationally efficient.

2 PRELIMINARIES

In this paper, we focus on linear latent variable models with graph structure G = (V,E) which is a
directed acyclic graph (DAG). V = L ∪ O where L = {𝐿𝑖}𝑖 and O = {𝑂𝑖}𝑖 respectively denote the
set of latent and observed variables. In the causal graph G, each variable follows:

𝐿𝑖 =
∑︁

𝐿 𝑗 ∈PaGL (𝐿𝑖 )

𝑏 𝑗𝑖𝐿 𝑗 + 𝜖𝐿𝑖
, 𝑂𝑖 =

∑︁
𝐿 𝑗 ∈PaGL (𝑂𝑖 )

𝑐 𝑗𝑖𝐿 𝑗 +
∑︁

𝑂 𝑗 ∈PaGO (𝑂𝑖 )

𝑑 𝑗𝑖𝑂 𝑗 + 𝜖𝑂𝑖
, (1)

where PaGL (𝑉), PaGO (𝑉) respectively denote the set of latent parents and observed parents of 𝑉 in G.
Moreover, PaG (𝑉) = PaGL (𝑉) ∪ PaGO (𝑉), PaG (V) = ∪𝑉∈VPaG (𝑉), and ChG (·),NeiG (·) respectively
denote children and neighbors. 𝑏 𝑗𝑖 , 𝑐 𝑗𝑖 , 𝑑 𝑗𝑖 respectively denote the causal strength from 𝐿 𝑗 to 𝐿𝑖 ,
from 𝐿 𝑗 to 𝑂𝑖 , from 𝑂 𝑗 to 𝑂𝑖 . 𝜖𝐿𝑖

and 𝜖𝑂𝑖
refer to noises, which are continuous and independent of

any other noise. Without loss of generality, we suppose that each variable has zero mean.
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Definition 1. (linear latent variable model) A causal model with graph structure G = (V,E) where
G is a DAG and V = L ∪O is called a linear latent variable model if

1. each variable follows Equation (1);
2. the distribution over V is both Markov and faithful to G;

Equation (1) implies that all causal relations are linear and no observed variable is a parent of
any latent one, both of which have almost become standard assumptions of latent causal structure
learning since proposed by the seminal work (Silva et al., 2006), although very few works avoid them
at the expense of other significant limitations. For instance, Kivva et al. (2021) allow non-linearity,
but they assume that all latent variables are discrete. By the way, some of out theoretical results can
still generalize to certain special nonlinear cases, please see Appendix C.1 for more details.
Definition 2. (Pure child) An observed variable 𝑂 ∈ O is called a pure child of a latent variable
𝐿 ∈ L if PaG (𝑂) = {𝐿} and ChG (𝑂) = ∅.1
Example 1. In Figure 1(a), 𝐿1 has 3 pure children: 𝑂1, 𝑂2, 𝑂3; 𝐿2 has 2 pure children: 𝑂4, 𝑂5;
𝐿3 has only 1 pure child 𝑂10.
Definition 3. (Pure pair) An observed pair {𝑂1, 𝑂2} ⊂ O is called a pure pair if ∃𝐿 ∈ L s.t. both
𝑂1 and 𝑂2 are pure children of 𝐿.
Definition 4. (Pseudo-pure pair) An observed pair {𝑂1, 𝑂2} ⊂ O is called a pseudo-pure pair if
∃𝐿 ∈ L s.t. (a) PaG (𝑂1) = {𝐿},ChG (𝑂1) = {𝑂2}, PaG (𝑂2) = {𝐿,𝑂1},ChG (𝑂2) = ∅ or (b)
PaG (𝑂2) = {𝐿},ChG (𝑂2) = {𝑂1}, PaG (𝑂1) = {𝐿,𝑂2} and ChG (𝑂1) = ∅.
Definition 5. (Generalized pure pair) An observed pair {𝑂1, 𝑂2} ⊂ O is called a generalized pure
pair if it is either a pure pair or a pseudo-pure pair.
Example 2. In Figure 1(a), there are 4 pure pairs: {𝑂1, 𝑂2}, {𝑂1, 𝑂3}, {𝑂2, 𝑂3}, {𝑂4, 𝑂5}, 3
pseudo-pure pairs: {𝑂6, 𝑂7}, {𝑂8, 𝑂9}, {𝑂11, 𝑂12}, and hence 7 generalized pure pairs.
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Figure 2: With only the two-pure-children as-
sumption, the structure in (a) cannot be discrim-
inated against (b).

Xie et al. (2023b) suggest that with only the
two-pure-children assumption, latent variables
cannot be fully identified. The problem is that
a pseudo-pure pair may be falsely identified as
a pure pair, once this happens, a single latent
variable will be split into multiple ones, an ex-
ample is shown in Figure 2. In fact, pseudo-
pure pairs are not uncommon in the real world,
e.g., in psychometric questionnaires, “insom-
nia” and “concentration” might be a pseudo-
pure pair because the former directly influences the latter and they are also confounded by a latent
variable “depression”. To handle this problem, they further introduce the non-Gaussianity assump-
tion which enables discrimination between pure and pseudo-pure pairs, while such ambiguity can
also be avoided with the previously used three-pure-children assumption (Kummerfeld & Ramsey,
2016). However, both the non-Gaussianity and three-pure-children assumption are only sufficient
but not necessary conditions. Besides, we find that pseudo-pure pairs may even benefit causal dis-
covery because they can play a similar role as pure pairs. This motivates us to investigate the case
where none of the non-Gaussianity, purity, and two-pure-children assumption holds.

3 IDENTIFYING LATENT VARIABLES

To recover the whole causal structure, the first step is to identify latent variables. To this end, we
formulate Assumption 1, 2, 3 at the outset of Section 3.1, 3.2, 3.3 respectively. Assumption 1 is a
preliminary assumption enabling partial identification of latent variables, which can be achieved by
Algorithm 1. On this basis, if Assumption 2 or Assumption 3 is also satisfied, latent variables can
be fully identified. Taking the output of Algorithm 1 as the input, Algorithm 2 and 3 can accomplish
this goal under Assumption 2 and 3 respectively.

3.1 PARTIALLY IDENTIFYING LATENT VARIABLES

Assumption 1. (a) ∀𝐿 ∈ L, 𝐿 has at least one generalized pure pair as children, (b) ∀𝐿 ∈ L,
NeiGL (𝐿) ≠ ∅, and (c) ∀𝑂 ∈ O, if PaG (𝑂) = ∅, then |ChG (𝑂) | ≥ 3.

1Some recent works such as Xie et al. (2022) focused on the scenario where pure children may still be latent,
which is out of our scope. We discuss the relation between these works and ours in Section 5.
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Algorithm 1: Partially identifying latent variables.
Input: Observed variable O
Output: Candidate variables OC, generalized pure pairs S, purity indicator function 1pure (·)

1 Find all candidate variables based on Definition 6.
2 Find all generalized pure pairs based on Theorem 1.
3 Identify as many pure pairs as possible based on Lemma 1.

Assumption 1(a) indicates that a latent variable with a pseudo-pure pair as children can have no
pure child. Assumption 1(b) has already been used by previous works like Kummerfeld & Ramsey
(2016), which can be replaced by a much weaker assumption, please see Appendix C.2 for more
details. Assumption 1(c) means that each root observed variable has a sufficient number of children.
Definition 6. (Candidate variable) Given an observed variable 𝑂1 ∈ O, we call 𝑂1 is a candidate
variable if ∀{𝑂𝑖 , 𝑂 𝑗 } ⊂ O\{𝑂1}, ∃𝑂2 ∈ O\{𝑂1, 𝑂𝑖 , 𝑂 𝑗 } s.t. 𝑂1 ⫫∕ 𝑂2, 𝑂1 ⫫∕ 𝑂2 |{𝑂𝑖}, 𝑂1 ⫫∕
𝑂2 |{𝑂 𝑗 }, and 𝑂1 ⫫∕ 𝑂2 |{𝑂𝑖 , 𝑂 𝑗 }.

We denote the set of candidate variables by OC.
Definition 7. (Tetrad constraint) Given an observed pair {𝑂1, 𝑂2} ⊂ O and a set of observed
variables O′ ⊂ O\{𝑂1, 𝑂2} s.t. |O′ | ≥ 2, we call ({𝑂1, 𝑂2},O′) satisfies the tetrad constraint if
∀{𝑂𝑖 , 𝑂 𝑗 } ⊂ O′,Cov(𝑂1, 𝑂 𝑗 )Cov(𝑂2, 𝑂𝑖) = Cov(𝑂1, 𝑂𝑖)Cov(𝑂2, 𝑂 𝑗 ).
Theorem 1. Suppose the underlying linear latent variable model satisfies Assumption 1 and
{𝑂1, 𝑂2} ⊂ O. Then {𝑂1, 𝑂2} ⊂ OC and ({𝑂1, 𝑂2},O\{𝑂1, 𝑂2}) satisfies the tetrad constraint if
and only if {𝑂1, 𝑂2} is a generalized pure pair.

Based on Theorem 1, we can detect all generalized pure pairs, the set of which is denoted by S. Since
each latent variable has at least one generalized pure pair as children according to Assumption 1(a),
every latent variable can be detected at least once. The soundness of Theorem 1 heavily relies on
Assumption 1. Roughly speaking, Assumption 1(a) and 1(b) guarantees that if 𝑂1 and 𝑂2 both have
latent parents, they are always candidate variables, and the tetrad constraint is satisfied if and only
if {𝑂1, 𝑂2} is a generalized pure pair. Assumption 1(c) guarantees that if 𝑂1 or 𝑂2 has no latent
parent, they are not both candidate variables or the tetrad constraint is not satisfied.
Lemma 1. Suppose S ∈ S. Then S is a pure pair if (but not only if) ∃S′ ∈ S s.t. S ∩ S′ ≠ ∅.

To fully identify latent variables, we still need to determine whether any two generalized pure pairs
share a common latent parent, which requires us to first discriminate pure pairs against pseudo-pure
pairs. Unfortunately, this issue can only be partially addressed based on Lemma 1 at this point, so
latent variables can only be partially identified. We define a purity indicator function 1pure (·) on S. If
S ∈ S is identified as a pure pair, 1pure (S) = 1; if S is identified as a pseudo-pure pair, 1pure (S) = 0;
otherwise, if S ∈ S is unidentifiable temporarily, 1pure (S) = −1. The algorithm is summarized in
Algorithm 1, which has O(|O|4) complexity. A detailed version can be found in Appendix D.

3.2 FULLY IDENTIFYING LATENT VARIABLES: CASE I

Assumption 2. (a) ∀𝐿 ∈ L, 𝐿 has at least one pure child, (b) ∀𝐿 ∈ L, |NeiG (𝐿) | ≥ 4. Furthermore,
if |NeiG (𝐿) | = 4, NeiGL (𝐿) = {𝐿

′}, and ChGO (𝐿) = {𝑂1, 𝑂2, 𝑂3} where {𝑂1, 𝑂2} is a pure pair, then
NeiG (𝑂3) ≠ {𝐿, 𝐿′}.

Assumption 2(a) requires only one pure child per latent variable. On the basis of Assumption 1
and 2(a), given an 𝐿 ∈ L, there are only two cases where Assumption 2(b) is violated.

1. 𝐿 has one latent neighbor 𝐿′, two pure children {𝑂1, 𝑂2}, and no other neighbor;
2. 𝐿 has one latent neighbor 𝐿′, three observed children {𝑂1, 𝑂2, 𝑂3}, and no other neighbor,

where {𝑂1, 𝑂2} is a pure pair, 𝑂3 has two latent parents {𝐿, 𝐿′} and no other neighbor.
In other words, Assumption 2(b) can be satisfied in various forms, including but not limited to
|NeiGL (𝐿) | ≥ 2, or |NeiGO (𝐿) | ≥ 4, or ∃𝑂 ∈ ChGO (𝐿) s.t. NeiGO (𝑂) ≠ ∅, etc. In particular, if the
three-pure-children assumption is satisfied, Assumption 2 holds, so we say our assumption is milder.
Lemma 2. Suppose the underlying linear latent variable model satisfies Assumption 1 and 2, S =

{𝑂1, 𝑂2} ∈ S and 1pure (S) = −1. Then S is a pseudo-pure pair if and only if ∃𝑂3 ∈ OC\{𝑂1, 𝑂2}
s.t. ({𝑂1, 𝑂3},O\{𝑂1, 𝑂2, 𝑂3}) satisfies the tetrad constraint.

4



Published as a conference paper at ICLR 2024

Algorithm 2: Fully identifying latent variables in Case I.

Input: Observed variables O, candidate variables OC, generalized pure pairs S, purity indicator
function 1pure (·)

Output: Updated purity indicator function 1pure (·), sibling indicator function 1sib (·, ·).
1 Discriminate pure pairs against pseudo-pure pairs based on Lemma 2.
2 Check whether two generalized pure pairs share a common latent parent based on Proposition 1.

Given a pseudo-pure pair S = {𝑂1, 𝑂2}, we denote by Ref (S) any (not all) auxiliary variable 𝑂3
that satisfies the condition in Lemma 2.
Corollary 1. Suppose S is a pseudo-pure pair. Then Ref (S) is a pure child of PaGL (S).

Based on Lemma 2, we can completely discriminate pure pairs against pseudo-pure pairs. Besides,
Corollary 1 indicates that Ref (S) is not an ordinary variable but a pure child of PaGL (S). The
soundness of Lemma 2 heavily relies on Assumption 2. With Assumption 2(a), for any pseudo-
pure pair, its latent parent has at least one pure child, which can serve as the auxiliary variable that
makes the tetrad constraint in Lemma 2 hold; Without Assumption 2(b), given a pure pair, the tetrad
constraint in Lemma 2 may still hold, an example is shown in Figure 2(b): for a pure pair {𝑂4, 𝑂5},
({𝑂4, 𝑂1},O\{𝑂1, 𝑂4, 𝑂5}) satisfies the tetrad constraint, where O\{𝑂1, 𝑂4, 𝑂5} = {𝑂2, 𝑂3}.
Proposition 1. Let {S1,S2} ⊂ S.

1. SupposeS1 andS2 are two pure pairs. Then PaGL (S1) = PaGL (S2) if and only if (1)S1∩S2 ≠

∅, or (2) ∃S3 ∈ S s.t. S1 ∩ S3 ≠ ∅ and S2 ∩ S3 ≠ ∅.
2. Suppose S1 is a pure pair and S2 is a pseudo-pure pair. Then PaGL (S1) = PaGL (S2) if and

only if (1) Ref (S2) ∈ S1, or (2) ∃S3 ∈ S s.t. Ref (S2) ∈ S3 and S1 ∩ S3 ≠ ∅.
3. Suppose S1 and S2 are two pseudo-pure pairs. Then PaGL (S1) = PaGL (S2) if and only if (1)

Ref (S1) = Ref (S2), or (2) ∃S3 ∈ S s.t. Ref (S1) ∈ S3 and Ref (S2) ∈ S3.
Based on Proposition 1, we can determine whether any two generalized pure pairs share a common
latent parent. We define a sibling indicator function 1sib (·, ·) on S × S. If {S1,S2} ⊂ S share
a common latent parent, 1sib (S1,S2) = 1; otherwise, 1sib (S1,S2) = 0. The algorithm for fully
identifying latent variables is summarized in Algorithm 2, which has O(|O|4) complexity. A detailed
version can be found in Appendix D. With its output, we assign each S𝑖 ∈ S with a latent variable
𝐿𝑖 , and let 𝐿𝑖 = 𝐿 𝑗 if 1sib (S𝑖 ,S 𝑗 ) = 1, such that latent variables are fully identified.
Theorem 2. Suppose the underlying linear latent variable model satisfies Assumption 1 and 2. Then
latent variables can be fully identified.

3.3 FULLY IDENTIFYING LATENT VARIABLES: CASE II

Assumption 3. (a) ∀S𝑖 = {𝑂𝑖1 , 𝑂𝑖2 } ∈ S s.t. ∀S 𝑗 ∈ S\{S𝑖},S𝑖 ∩ S 𝑗 = ∅, 𝜖𝑂𝑖1
and 𝜖𝑂𝑖2

are both

non-Gaussian. (b) ∀S ∈ S with PaGL (S) = {𝐿}, if S is a pseudo-pure pair, then ∃𝑉1 ∈ ChG (𝐿)\S
s.t. 𝐿 ⫫ PaG (𝑉1)\{𝐿}. Furthermore, if PaG (𝐿) = ∅, then ∃𝑉2 ∈ ChG (𝐿)\S s.t. 𝐿 ⫫ PaG (𝑉2)\{𝐿}
and 𝑉1 ⫫ 𝑉2 |𝐿.

Assumption 3(a) imposes the non-Gaussianity requirement on only some generalized pure pairs,
which are exactly those on which 1pure (·) is -1. Assumption 3(b) is a bit complicated. Specifically,
for any pseudo-pure pair S with latent parent 𝐿,

1. if 𝐿 is a non-root node, Assumption 3(b) requires that ∃𝑉 ∈ ChG (𝐿)\S s.t. there is no
mediator or confounder between 𝐿 and 𝑉 , where 𝑉 is not necessarily an observed variable
and 𝑉 may have other parent besides 𝐿;

2. if 𝐿 is a root node, Assumption 3(b) requires that ∃{𝑉1, 𝑉2} ⊂ ChG (𝐿)\S s.t. there is no
mediator between 𝐿 and 𝑉1, no mediator between 𝐿 and 𝑉2, and no confounder between 𝑉1
and 𝑉2 besides 𝐿.

Clearly, if the non-Gaussianity assumption holds, Assumption 3(a) is satisfied; if the two-pure-
children assumption holds, Assumption 3(b) is satisfied, so we say our assumption is milder. By the
way, it is obvious that if Assumption 2 holds, Assumption 3(b) is satisfied.
Lemma 3. Suppose the underlying linear latent variable model satisfies Assumption 1 and 3, S =

{𝑂1, 𝑂2} and 1pure (S) = −1. Then S is a pseudo-pure pair if and only if ∃(𝑂3, 𝑂4) ⊂ O\{𝑂1, 𝑂2}
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Algorithm 3: Fully identifying latent variables in Case II.
Input: Observed variables O, generalized pure pairs S, purity indicator function 1pure (·)
Output: Updated indicator function 1pure (·), sibling indicator function 1sib (·, ·)

1 Discriminate pure pairs against pseudo-pure pairs based on Lemma 3.
2 Check whether two generalized pure pairs share a common latent parent based on Proposition 2.

which is an ordered pair s.t. 𝑂1 + 𝛼𝑂2 + 𝛽𝑂3 ⫫ 𝑂1 where 𝛼, 𝛽 satisfy

Var(𝑂1) + 𝛼Cov(𝑂1, 𝑂2) + 𝛽Cov(𝑂1, 𝑂3) = 0, (2)
Cov(𝑂1, 𝑂4) + 𝛼Cov(𝑂2, 𝑂4) + 𝛽Cov(𝑂3, 𝑂4) = 0; (3)

or 𝑂2 + 𝛼𝑂1 + 𝛽𝑂3 ⫫ 𝑂2 where 𝛼, 𝛽 satisfy

Var(𝑂2) + 𝛼Cov(𝑂2, 𝑂1) + 𝛽Cov(𝑂2, 𝑂3) = 0, (4)
Cov(𝑂2, 𝑂4) + 𝛼Cov(𝑂1, 𝑂4) + 𝛽Cov(𝑂3, 𝑂4) = 0. (5)

Corollary 2. Suppose S = {𝑂1, 𝑂2} ∈ S and ∃(𝑂3, 𝑂4) ⊂ O\{𝑂1, 𝑂2} which is an ordered pair
s.t. 𝑂1 + 𝛼𝑂2 + 𝛽𝑂3 ⫫ 𝑂1 where 𝛼, 𝛽 satisfy Equation (2) and (3). Then S̃ = {�̃�1, �̃�2} is a pure
pair with latent parent PaGL (S) where �̃�1 = 𝑂1 and �̃�2 = 𝑂2 + 1

𝛼
𝑂1.

Based on Lemma 3, we can completely discriminate pure pairs against pseudo-pure pairs. Besides,
each pseudo-pure pair S can be converted into a pure one S̃ based on Corollary 2. The soundness
of Lemma 3 heavily relies on Assumption 3. Without Assumption 3(a), 𝑂1 + 𝛼𝑂2 + 𝛽𝑂3 ⫫ 𝑂1 in
Lemma 3 may hold even if {𝑂1, 𝑂2} is a pure pair since if 𝑂1, 𝑂2, 𝑂3 are all Gaussian, Equation (2)
entails 𝑂1 + 𝛼𝑂2 + 𝛽𝑂3 ⫫ 𝑂1. Assumption 3(b) ensures that for any pseudo-pure pair S with latent
parent 𝐿, we can find two auxiliary variables {𝑂3, 𝑂4} which makes the condition in Lemma 3 hold.
If 𝐿 is not a root node, 𝑂3 can be 𝑉1 (or its child) in Assumption 3(b), 𝑂4 can be an observed child
of 𝐿’s any parent; if 𝐿 is a root node, 𝑂3, 𝑂4 can be 𝑉1, 𝑉2 (or their children) in Assumption 3(b).
Proposition 2. Let {S1,S2} ⊂ S where S1 = {𝑂1, 𝑂2} and S2 = {𝑂3, 𝑂4}. Then

1. SupposeS1 andS2 are two pure pairs. Then PaGL (S1) = PaGL (S2) if and only if (1)S1∩S2 ≠

∅, or (2) ∃S3 ∈ S s.t. S1 ∩ S3 ≠ ∅ and S2 ∩ S3 ≠ ∅.
2. Suppose S1 is a pure pair and S2 is a pseudo-pure pair. Then PaGL (S1) = PaGL (S2) if and

only if ({𝑂2, �̃�3}, {𝑂1, �̃�4}) satisfies the tetrad constraint.
3. Suppose S1 and S2 are two pseudo-pure pairs. Then PaGL (S1) = PaGL (S2) if and only if
({�̃�2, �̃�3}, {�̃�1, �̃�4}) satisfies the tetrad constraint.

Based on Proposition 2, we can determine whether two generalized pure pairs share a common latent
parent. The algorithm for fully identifying latent variables is summarized in Algorithm 3, which has
O(|O|3) complexity. A detailed version can be found in Appendix D. With its output, we assign
each S𝑖 ∈ S with a latent variable 𝐿𝑖 , and let 𝐿𝑖 = 𝐿 𝑗 if 1sib (S𝑖 ,S 𝑗 ) = 1, such that latent variables
are fully identified.
Theorem 3. Suppose the underlying linear latent variable model satisfies Assumption 1 and 3. Then
latent variables can be fully identified.

3.4 DISCUSSION

In Section 3.2 and 3.3, we respectively formulate two cases where none of the non-Gaussianity,
purity, and two-pure-children assumption holds but latent variable can still be fully identified. These
two cases make different trade-offs between graphical and distributional assumption. In terms of the
graphical assumption, Case II requiring no pure child is more general than Case I entailing one pure
child per latent variable; in terms of the distributional assumption, Case I allowing entirely arbitrary
distribution is more general than Case II requiring partial non-Gaussianity.

Algorithm 2 and 3 are proposed to handle Case I and Case II respectively. Without sufficient
prior knowledge about the underlying causal model, it is a non-trivial problem to choose between
them. We design an expedient to handle this issue. We first run Algorithm 1. After that, if
∀S ∈ S, 1pure (S) ≠ −1, latent variables can be fully identified; otherwise, ∀{𝑂𝑖 , 𝑂 𝑗 } ∈ S s.t.
1pure ({𝑂𝑖 , 𝑂 𝑗 }) = −1, we find an 𝑂 ∈ O\{𝑂𝑖 , 𝑂 𝑗 } s.t. Cov(𝑂𝑖 , 𝑂)Cov(𝑂 𝑗 , 𝑂) ≠ 0, if one of
𝑂𝑖 , 𝑂 𝑗 , 𝑂𝑖 − Cov(𝑂𝑖 ,𝑂)

Cov(𝑂 𝑗 ,𝑂)𝑂 𝑗 is Gaussian, then 𝜖𝑂𝑖
or 𝜖𝑂 𝑗

is Gaussian, violating Assumption 3(a), in
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Algorithm 4: PC-MIMBuild

Input: Variables V = L ∪OD ∪OU, and each variable in L ∪OU has at least two indicators
Output: A partially directed acyclic graph Ĝ over V

1 Find separation set for variables in L ∪OU based on Theorem 19 in Silva et al. (2006) to
recover the skeleton over L ∪OU, which is denoted by Ĝ.

2 Orient v-structures in Ĝ based on the separation sets.
3 Orient each undirected edge between a latent variable and an observed variable in Ĝ.
4 Orient as many undirected edges in Ĝ as possible by Meek’s rules (Meek, 1995).
5 Add variables in OD and corresponding causal edges to Ĝ.

which case we choose Algorithm 2, otherwise we choose Algorithm 3. Although this is not a per-
fect method, it is much better than making a random choice. In fact, most previous works about
latent causal structure learning just assumed some properties of the underlying causal models and
circumvented the procedure of testing these assumptions.

4 INFERRING CAUSAL RELATIONS BETWEEN ANY TWO VARIABLES

After identifying latent variables, the next step is to infer causal relations between any two variables.
In Section 4.1, we describe some pre-processing procedures. In Section 4.2, we present the modified
PC-MIMBuild for inferring causal relations. No extra assumption is introduced in this section.

4.1 PRE-PROCESSING

Given an observed variable 𝑂, if ∃S ∈ S s.t. 𝑂 ∈ S in Case I or Case II, or ∃S ∈ S s.t. 𝑂 = Ref (S)
in Case I, its causal relations with any other variable is determined. Specifically, if 𝑂 ∈ S and S
is a pure pair in Case I or Case II, it has no other neighbor except a latent parent; if 𝑂 ∈ S and
S is a pseudo-pure pair in Case I or Case II, it has no other neighbor except a latent parent and
an observed neighbor; if 𝑂 = Ref (S) in Case I, it has no other neighbor except a latent parent
based on Corollary 1. Such observed variables are called determined observed variables otherwise
undetermined observed variables, the set of which are denoted by OD and OU respectively. To
recover the whole causal structure, we only need to focus on variables in L ∪OU.

Proposition 3. No variable in OD is a parent of any variable in L ∪OU.

To recover the causal structure over latent variables, PC-MIMBuild requires that each latent variable
has at least two measured indicators that can be represented as its linear function plus an independent
noise. Given a latent variable 𝐿, if 𝐿 has multiple pure children, these pure children can be detected
and serve as the indicators of 𝐿, otherwise, 𝐿 must has a pseudo-pure pair {𝑂1, 𝑂2} as children
according to Assumption 1(a). In Case I, 𝑂1 and Ref ({𝑂1, 𝑂2}) can serve as indicators of 𝐿; in
Case II, {�̃�1, �̃�2} derived by Corollary 2 can serve as indicators of 𝐿. Furthermore, our objective
is to recover the whole causal structure involving both latent and observed variables. Since L ∪
OU is causally sufficient based on Proposition 3, if we create two auxiliary indicators for each
undetermined observed variable by adding independent noises to it, causal relations between any
two variables in L ∪OU can be revealed by PC-MIMBuild.

4.2 PC-MIMBUILD

An overview of PC-MIMBuild are summarized in Algorithm 4. Since no observed variable is a
parent of any latent one in linear latent variable models, when searching for the separation set of any
two latent variables in line 1, we limit the search space to L to reduce computational cost. For the
same reason, we can orient each undirected edge between a latent variable and an observed one in
line 3, which allows more undirected edges to be oriented by Meek’s rules (Meek, 1995) in line 4.

Theorem 4. Suppose the underlying linear latent variable model satisfies Assumption 1 and 2 or
Assumption 1 and 3, in the limit of infinite data, Ĝ satisfies that (1) Ĝ has the same skeleton and
v-structures as G; (2) ∀{𝑂𝑖 , 𝑂 𝑗 } ⊂ O s.t. 𝑂𝑖 ∈ PaG (𝑂 𝑗 ) and PaGL (𝑂𝑖) ≠ PaGL (𝑂 𝑗 ), 𝑂𝑖 ∈ PaĜ (𝑂 𝑗 ).

It is not surprising that without further assumptions, the causal structure can only be identified up
to Markov equivalence. Fortunately, Chen et al. (2022) have proposed additional distributional
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conditions under which the causal structure can be identified completely and also a corresponding
algorithm, which could apply to Ĝ directly if their proposed conditions hold.

5 RELATION TO EXISTING WORK

Most traditional causal discovery approaches typically assume the absence of latent variables, but
they usually yield unreliable results in situations involving latent variables which may cause spuri-
ous correlations. This has inspired extensive researches into causal discovery with latent variables.
While some works aim to reveal causal relations between observed variables in the presence of latent
variables, others attempt to identify latent variables and recover the latent causal structure. An im-
portant line of works employs sparsity of causal edges to facilitate latent causal structure learning for
linear latent variable models. The seminal work (Silva et al., 2006) suggested that the latent causal
structure can be identified under the three-pure-children assumption. On this basis, Kummerfeld
& Ramsey (2016) proposed a more efficient algorithm which allows partial non-linearity based on
the work of Spirtes (2013). Cai et al. (2019) first showed that two-pure-children assumption could
also enable identification of latent causal structure. Subsequently, Xie et al. (2020) and Zeng et al.
(2021) attempted to generalize the results of Cai et al. (2019) to more challenging scenarios. The
former could address the scenario where observed variables have multiple latent parents while the
latter could recover the latent causal structure shared by multiple domains. Although the require-
ment for pure children has been relaxed, they additionally entailed the non-Gaussianity and purity
assumption. Xie et al. (2023b) made a further step by eliminating the purity assumption. Instead, we
formulate two more general cases where none of the non-Gaussianity, purity, and two-pure-children
assumption holds. By the way, the purity assumption is also required by some other works which
utilized matrix decomposition (Anandkumar et al., 2013) or mixture oracle (Kivva et al., 2021) for
latent causal structure learning, so our work is also more general than theirs in this regard.

Recently, latent hierarchical causal structure learning has drawn significant attention, where “hi-
erarchical” means that some latent variables may lack observed children. The seminal work (Xie
et al., 2022) relied on the non-Gaussianity, purity, and generalized two-pure-children (pure children
could be either latent or observed) assumption. Huang et al. (2022) used more general assumptions
that allow arbitrary distribution. Chen et al. (2023) highlighted that the assumptions in Huang et al.
(2022) may not hold if there exist three mutually adjacent variables, they overcome this limitation
by requiring more pure children. At a high level, each of these works decomposes the hierarchical
structure into multiple layers, and then infers latent variables and their causal relations from lower
to higher levels recursively. Since most algorithms used within a single level originate from those
designed for conventional linear latent variable models, our results can be potentially generalized to
this scenario. Some recent works leveraged counterfactual data (Brehmer et al., 2022; Ahuja et al.,
2022) or interventional data (Ahuja et al., 2023; Seigal et al., 2023) rather than purely observa-
tional data for latent causal structure learning. Although they have avoided many distributional and
graphical assumptions, interventional or counterfactual data is not always available in practice.

Instead of the causal structure over only latent variables, we attempt to recover the whole causal
structure involving both latent and observed variables. Previously, Adams et al. (2021) have in-
troduced much weaker graphical assumptions for recovery of the whole causal structure, but they
still required the non-Gaussianity assumption and their proposed algorithms are computationally in-
tractable. A contemporaneous work (Xie et al., 2023a) proposed efficient algorithms to recover the
whole causal structure of n-factor causal models with latent hierarchical structure, which are beyond
our ability. However, they still required the non-Gaussianity and (generalized) two-pure-children
assumption, and only allowed edges between particular observed variables.

In this paper, we decompose the recovery of the whole causal structure into two sub-problems:
identification of latent variables and inference of causal relations between any two variables. In
Section 3, we provide main theoretical results about the first sub-problem, the proofs of which
heavily rely on the Tetrad Representation Theorem (Spirtes et al., 2000) and Darmois-Skitovich
Theorem (Kagan, 1989), which are presented in Appendix B.1 and B.7. The former builds a con-
nection between the structure of underlying causal model and the covariance of variables that can
be calculated from samples. The latter means that as long as two variables share any non-Gaussian
component, they cannot be statistically independent. Although many existing works (Silva et al.,
2006; Xie et al., 2020; 2023b) also used them as cornerstones, their results cannot be directly in-
volved in our framework where their required assumptions are mostly not satisfied. In Section 4, we

8



Published as a conference paper at ICLR 2024

Table 1: Performance on synthetic data derived by causal models with structure G1 and G2.

Graph Algorithm 𝑁=500 𝑁=1000 𝑁=2000

LO LC WI Err LO LC WI Err LO LC WI Err

G1

BPC 0.33±0.37 0.00±0.00 0.19±0.16 1.0 0.30±0.28 0.00±0.00 0.16±0.13 1.0 0.27±0.13 0.00±0.00 0.16±0.08 1.0
FOFC 0.93±0.13 0.00±0.00 0.02±0.05 1.0 1.00±0.00 0.00±0.00 0.00±0.00 1.0 1.00±0.00 0.00±0.00 0.00±0.00 1.0
GIN 0.50±0.27 0.00±0.00 0.66±0.17 1.0 0.60±0.20 0.00±0.00 0.75±0.09 1.0 0.57±0.21 0.00±0.00 0.71±0.16 1.0
Ours 0.07±0.13 0.03±0.10 0.03±0.06 0.4 0.03±0.10 0.00±0.00 0.01±0.04 0.2 0.00±0.00 0.00±0.00 0.00±0.00 0.0

G2

BPC 0.30±0.23 0.00±0.00 0.29±0.13 1.0 0.27±0.20 0.00±0.00 0.30±0.11 1.0 0.27±0.13 0.00±0.00 0.28±0.11 1.0
FOFC 0.90±0.15 0.00±0.00 0.03±0.04 1.0 0.97±0.10 0.00±0.00 0.01±0.02 1.0 1.00±0.00 0.00±0.00 0.00±0.00 1.0
GIN 0.10±0.15 0.07±0.13 0.20±0.15 1.0 0.07±0.13 0.07±0.13 0.23±0.13 1.0 0.00±0.00 0.07±0.13 0.30±0.07 1.0
Ours 0.13±0.22 0.00±0.00 0.11±0.17 0.5 0.10±0.21 0.00±0.00 0.07±0.15 0.3 0.03±0.10 0.00±0.00 0.03±0.10 0.2

present algorithms for the second sub-problem, which are mostly based on the PC-MIMBuild (Silva
et al., 2006). To make it more adaptable to our framework, we design pre-processing procedures in
Section 4.1 and also make some modifications to itself in Section 4.2.

6 EXPERIMENTAL RESULTS

We apply our proposed algorithms to both synthetic and real-world data to demonstrate their effec-
tiveness. Due to the space limit, we only present experimental results on synthetic data derived by
causal models with structure G1 and G2 as shown in Figure 1 in the main text and provide more de-
tails in Appendix A. For each graph, we draw 10 sample sets of size 𝑁=500, 1000, 2000 respectively.
Each causal strength is sampled from a uniform distribution over [−2.0,−0.5]∪ [0.5, 2.0]. Noises of
causal models with structure G1 are Gaussian variables with mean 0 and standard error drawn from
uniform(0.5,1), those of causal models with structure G2 are the seventh power of uniform(-1,1)
variables, which are then normalized to have a standard error also drawn from uniform(0.5,1).

We compare our proposed methods with BPC (Silva et al., 2006), FOFC (Kummerfeld & Ramsey,
2016), and GIN (Xie et al., 2020). We use Latent Omission (LO), Latent Commission (LC), Wrong
Indicator (WI) as the evaluation metrics. LO and LC are respectively the number of omitted and
redundant latent variables divided by the total number of latent variables in ground truth graph. WI
is the number of wrong indicators divided by the total number of observed variables in the ground
truth graph, where an indicator is called wrong if it measures at least one wrong latent variable or
it is still dependent of some other indicators given the latent variable it measures. Besides, we also
report the Error Rate (Err) which is the number of sample sets on which LO, LC, and WI are not all
0 divided by the total number of sample sets.

The experimental results are summarized in Table 1. No previous approach can yield correct re-
sults since their required assumptions are not satisfied. For instance, FOFC requires the three-pure-
children assumption, and its implementation in TETRAD (Ramsey et al., 2018) actually prefers
at least four pure children per latent variable, so it cannot detect latent variables, leading to high
LO. Using the expedient proposed in Section 3.4, we choose Algorithm 1 plus 2 to recover G1
and Algorithm 1 plus 3 to recover G2. Because causal models with structure G1 and G2 both satisfy
Assumption 1 and respectively satisfy Assumption 2 and 3, our algorithms can return correct results.

7 CONCLUSION AND FUTURE WORK

In this paper, we endeavor to recover the whole causal structure of linear latent variable models
under milder graphical and distributional assumptions. Firstly, we formulate two cases where none
of the non-Gaussianity, purity, and two-pure-children assumption holds. Secondly, we prove that
the whole causal structure involving both latent and observed variables is identifiable in either case.
Thirdly, we also provide efficient algorithms for causal structure recovery.

Although we prove identifiability under milder assumptions, they may still not hold in practice. For
instance, an observed variable might be the cause of some latent variables (Adams et al., 2021),
some causal relations might be non-linear (Kaltenpoth & Vreeken, 2023) or non-stationary (Liu &
Kuang, 2023), and the underlying causal graph may be cyclic because feedback loops are not uncom-
mon (Sethuraman et al., 2023). Actually, some causal questions might be answered even without
a fully identified causal graph, so it is useful to investigate to which extent the causal structure can
be recovered under less restrictive assumptions. Finally, to guarantee a trustworthy result, we need
special algorithms to test whether the required assumptions are satisfied, for which we only propose
an imperfect expedient in Section 3.4 while most existing works directly circumvent this procedure.
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Organization of Appendix:

• Section A: More experimental results.

• Section B: Proof.

• Section C: More theoretical results.

• Section D: Details of algorithms.

A MORE EXPERIMENTAL RESULTS

First, we compare Algorithm 1 plus 2 to existing algorithms on more causal models with structure
G3,G4,G5 as shown in Figure 3(a,b,c). For each graph, we draw 10 sample sets of size 𝑁=1000.
Each causal strength is sampled from a uniform distribution over [−2.0,−0.5] ∪ [0.5, 2.0]. All
noises are Gaussian variables generated following Section 6. Experimental results are summarized
in Table 2.

Table 2: Comparison of Algorithm 1 plus 2 with others.

Algorithm G3 G4 G5

LO LC WI Err LO LC WI Err LO LC WI Err

BPC 0.00±0.00 0.00±0.00 0.05±0.09 0.2 0.67±0.30 0.00±0.00 0.30±0.26 1.0 0.40±0.13 0.00±0.00 0.39±0.12 1.0
FOFC 0.07±0.13 0.00±0.00 0.01±0.02 0.2 1.00±0.00 0.00±0.00 0.00±0.00 1.0 0.97±0.10 0.00±0.00 0.02±0.07 1.0
GIN 0.53±0.16 0.00±0.00 0.58±0.14 1.0 0.50±0.22 0.00±0.00 0.78±0.00 1.0 0.67±0.00 0.00±0.00 0.78±0.00 1.0
Ours 0.03±0.10 0.00±0.00 0.00±0.00 0.1 0.00±0.00 0.23±0.15 0.40±0.13 1.0 0.00±0.00 0.00±0.00 0.13±0.07 1.0

1. Since G3 satisfies the three-pure-children assumption, BPC and FOFC can yield correct
results. Because Assumption 1 and 2 are also satisfied in this case, our algorithm can also
return correct results. As all noises are Gaussian and there exist edges between observed
variables in G3, GIN always produce wrong results.

2. Since 𝐿1 in G4 has no pure child, Assumption 2(a) is not satisfied. In this case, our algo-
rithm will falsely identify both {𝑂1, 𝑂2} and {𝑂3, 𝑂4} as pure pairs which do not share a
common latent parent. Therefore, 𝐿1 will be split into two latent variables, whose indica-
tors are respectively {𝑂1, 𝑂2} and {𝑂3, 𝑂4}, leading to high LC and WI. Therefore, our
algorithms cannot yield correct results. Any other algorithm also fails.

3. Since 𝐿3 in G5 has exactly one latent parent 𝐿2 and three observed children 𝑂7, 𝑂8, 𝑂9
where 𝑂7, 𝑂8 are both pure child of 𝐿3 and PaG (𝑂7) = {𝐿2, 𝐿3}, Assumption 2(b) is not
satisfied. In this case our algorithm will falsely identify {𝑂8, 𝑂9} as a pseudo-pure pair
and Ref ({𝑂8, 𝑂9}) = 𝑂7, so 𝑂7, 𝑂8 will serve as the indicators of 𝐿3, leading to high WI.
Therefore, our algorithms cannot yield correct results. Any other algorithm also fails.

Second, we compare Algorithm 1 plus 3 to existing algorithms on more causal models with structure
G6,G7,G8 as shown in Figure 3(d,e,f). For each graph, we draw 10 sample sets of size 𝑁=1000.
Each causal strength is sampled from a uniform distribution over [−2.0,−0.5] ∪ [0.5, 2.0]. All
noises of causal models with structure G6 and G8 are non-Gaussian variables generated following
Section 6. For causal models with structure G7, noises of {𝑂2, 𝑂4, 𝑂6, 𝑂8} are non-Gaussian while
other noises are Gaussian. Experimental results are summarized in Table 3.

Table 3: Comparison of Algorithm 1 plus 3 with others.

Algorithm G6 G7 G8

LO LC WI Err LO LC WI Err LO LC WI Err

BPC 0.63±0.31 0.00±0.00 0.14±0.13 1.0 0.53±0.16 0.00±0.00 0.35±0.12 1.0 0.77±0.15 0.00±0.00 0.28±0.21 1.0
FOFC 1.00±0.00 0.00±0.00 0.00±0.00 1.0 0.97±0.10 0.00±0.00 0.03±0.08 1.0 1.00±0.00 0.00±0.00 0.00±0.00 1.0
GIN 0.47±0.43 0.00±0.00 0.00±0.00 0.6 0.50±0.27 0.03±0.10 0.68±0.11 1.0 0.53±0.22 0.03±0.10 0.75±0.00 1.0
Ours 0.00±0.00 0.00±0.00 0.00±0.00 0.0 0.43±0.21 0.00±0.00 0.65±0.12 1.0 0.07±0.20 0.00±0.00 0.30±0.10 1.0
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Figure 3: Causal graphs used to synthesize data, noises of red variables are non-Gaussian.

1. Since causal models with structure G6 satisfy the non-Gaussianity, purity, and two-pure-
children assumption, GIN can yield correct results. In this case, Assumption 1 and 3 are
also satisfied, so our algorithms can also return correct results. Furthermore, because al-
gorithms use both second-order and high-order statistics while GIN purely relies on high-
order statistics, our Err is remarkably lower than GIN. Since the three-pure-children as-
sumption is not satisfied, both BPC and FOFC always produce wrong results.

2. Since S = {{𝑂1, 𝑂2}, {𝑂3, 𝑂4}, {𝑂5, 𝑂6}, {𝑂7, 𝑂8}} in G7 and noises of {𝑂2, 𝑂4, 𝑂6, 𝑂8}
in causal models with structure G7 are all Gaussian, Assumption 3(a) is not satisfied. In
this case, our algorithm may falsely identify pure pairs as pseudo-pure ones and pseudo-
pure pairs cannot be converted into pure ones correctly. It is possible that a single latent
variable is split into multiple ones or multiple latent variables are merged into a signle one.
Therefore, our algorithms cannot yield correct results. Any other algorithm also fails.

3. Since the 𝐿3 in G8 has a pseudo-pure pair {𝑂7, 𝑂8} as children but has no other child,
Assumption 3(b) is not satisfied. In this case, our algorithm will falsely identify {𝑂7, 𝑂8}
as a pure one, and both of them will serve as the indicators of 𝐿3, leading to high WI.
Therefore, our algorithms cannot yield correct results. Any other algorithm also fails.

Moreover, we investigate the behavior of different algorithms on causal models with structure G9,
G10, and G11 as shown in Figure 3(g,h,i), where there is no latent variable. For each graph, we
draw 10 sample sets of size 𝑁=1000. Each causal strength is sampled from a uniform distribution
over [−2.0,−0.5] ∪ [0.5, 2.0]. All noises are non-Gaussian variables generated following Section 6.
Overall, our algorithms return no generalized pure pair in G9,G10, and G11, indicating that there
exists no latent variable. This is because no tetrad constraint is satisfied in G9 and there exists
only one candidate variable 𝑂1 and 𝑂2 in G10 and G11 respectively. However, all other algorithms
introduce a latent variable being the parent of all observed ones in G10 and G11. Note that in G10, the
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root variable 𝑂1 has only one child 𝑂2, violating Assumption 1(c), but our algorithms can still yield
correct results. In the case without latent variable, PC-MIMBuild can be replaced by the vanilla PC.

Finally, we compare our algorithms with others on two real-world datasets: HolzingerSwine-
ford1939 (HS1939) (Rosseel, 2012) and Teacher Burnout (TB) (Byrne, 2013). The experimental
results are summarized in Table 4.

Table 4: Experimental results on real-world datasets.

Algorithm HS1939 Teacher Burnout

LO LC WI LO LC WI

BPC 0.00 0.00 0.00 0.42 0.00 0.13
FOFC 1.00 0.00 0.00 1.00 0.00 0.00
GIN 0.33 0.00 0.22 0.75 0.00 0.34
Ours 0.00 0.00 0.00 0.25 0.00 0.06

1. HolzingerSwineford1939 (HS1939) dataset consists of mental ability test scores of seventh-
and eighth-grade children. 9 observed variables are influenced by 3 latent variables (visual,
textual and speed). Please refer to Section 4 in Rosseel (2012) for more details of the
dataset and the ground-truth causal graph.

2. Teacher Burnout (TB) dataset is used to investigate the influence of organization and per-
sonality on burnout in full-time elementary teachers. 32 observed variables are influenced
by 12 latent variables (role ambiguity, role conflict, work overload, classroom climate, de-
cision making, superior support, peer support, self-esteem, external locus of control, emo-
tional exhaustion, depersonalization and personal accomplishment). Please refer to Chapter
6 in Byrne (2013) for more details of the dataset and the ground-truth causal graph.

B PROOFS

B.1 PROOF OF THEOREM 1

We begin with the Tetrad Representation Theorem (Spirtes et al., 2000) which is essential for our
proof.
Theorem 5. (Tetrad Representation Theorem) In a linear latent variable model with graph structure
G, let 𝐼1, 𝐼2, 𝐽1, 𝐽2 be four variables in G. Then ({𝐼1, 𝐼2}, {𝐽1, 𝐽2}) satisfies the tetrad constraint if
and only if there is a choke point between {𝐼1, 𝐼2} and {𝐽1, 𝐽2}.

Theorem 5 entails some graphical definitions. Specifically, in a directed acyclic (DAG) graph,

1. a path is a sequence of distinct variables 𝑉1, ..., 𝑉𝑚, such that 𝑉𝑘 is adjacent to 𝑉𝑘+1 for all
𝑘 = 1, ..., 𝑚 − 1. In particular, a single variable is also a path.

2. a collider on a path 𝑉1, ..., 𝑉𝑚 is a variable 𝑉𝑖 , 1 < 𝑖 < 𝑛, such that 𝑉𝑖−1 and 𝑉𝑖+1 are both
parents of 𝑉𝑖;

3. a trek is a path that does not contain any collider;
4. the source of a trek is the unique node in the trek to which no arrows are directed.
5. the 𝐼 side of a trek between 𝐼 and 𝐽 with source 𝑆 is the subpath directed from 𝑆 to 𝐼. In

particular, it is possible that 𝑆 = 𝐼;
6. a choke point between two set of variables I and J is a variable 𝑉 that lies on every trek

between any element of I and any element of J, and 𝑉 is either on the I side of every such
trek or on the J side of every such trek.

Then we further define pseudo-pure child and generalized pure child for ease of exposition.
Definition 8. (Pseudo-pure child) An observed variable 𝑂1 ∈ O is called a pseudo-pure child of a
latent variable 𝐿 ∈ L if 𝑂1 ∈ ChGO (𝐿) and ∃𝑂2 s.t. {𝑂1, 𝑂2} is a pseudo-pure pair. Furthermore,
if 𝑂1 ∈ PaG (𝑂2), 𝑂1 is called a type-I pseudo-pure child of 𝐿; otherwise, 𝑂1 is called a type-II
pseudo-pure child of 𝐿.

16



Published as a conference paper at ICLR 2024

Definition 9. (Generalized pure child) An observed variable 𝑂 ∈ O is called a generalized pure
child of a latent variable 𝐿 ∈ L if 𝑂 is a pure child or a pseudo-pure child of 𝐿.

Assumption 1. (a) ∀𝐿 ∈ L, 𝐿 has at least one generalized pure pair as children, (b) ∀𝐿 ∈ L,
NeiGL (𝐿) ≠ ∅, and (c) ∀𝑂 ∈ O, if PaG (𝑂) = ∅, then |ChG (𝑂) | ≥ 3.

Assumption 1(a) indicates that each latent variable has at least two generalized pure children.

Before proving Theorem 1, we present three lemmas about candidate variables under Assumption 1.

Lemma 4. Suppose 𝑂1 ∈ O and PaGL (𝑂1) ≠ ∅. Then 𝑂1 ∈ OC.

Proof. Let 𝐿1 ∈ PaGL (𝑂1). According to Assumption 1(a), 𝐿1 has a generalized pure child 𝑂2 ≠ 𝑂1.
Besides, 𝐿1 has a latent neighbor 𝐿2 according to Assumption 1(b) and 𝐿2 has two generalized
pure children {𝑂3, 𝑂4} ⊂ O\{𝑂1, 𝑂2} according to Assumption 1(a). Therefore, there are 3 treks
𝑂1 ← 𝐿1 → 𝑂2, 𝑂1 ← 𝐿1 − 𝐿2 → 𝑂3, 𝑂1 ← 𝐿1 − 𝐿2 → 𝑂4. That is, ∀{𝑂𝑖 , 𝑂 𝑗 } ⊂ O\{𝑂1},
let 𝑂𝑘 ∈ {𝑂2, 𝑂3, 𝑂4}\{𝑂𝑖 , 𝑂 𝑗 }, we have 𝑂1 ⫫∕ 𝑂𝑘 , 𝑂1 ⫫∕ 𝑂𝑘 |{𝑂𝑖}, 𝑂1 ⫫∕ 𝑂𝑘 |{𝑂 𝑗 }, and 𝑂1 ⫫∕
𝑂𝑘 |{𝑂𝑖 , 𝑂 𝑗 }, so 𝑂1 ∈ OC. □

Lemma 5. Suppose 𝑂1 ∈ O and PaGL (𝑂1) = ∅. If 𝑂1 ∈ OC, |NeiGO (𝑂1) | ≥ 2.

Proof. This lemma is proved by contradiction. Suppose |NeiGO (𝑂1) | < 2, combined with Assump-
tion 1(c), 𝑂1 is a leaf node which has no other neighbor besides an observed parent 𝑂2. Based on
the local Markov property (Peters et al., 2017), 𝑂1 ⫫ O\{𝑂1, 𝑂2}|{𝑂2}, so 𝑂1 ∉ OC, which leads
to contradiction. □

Lemma 6. Suppose {𝑂1, 𝑂2} ⊂ O and PaGL (𝑂1) = PaGL (𝑂2) = ∅. If {𝑂1, 𝑂2} ⊂ OC, then
|NeiGO (𝑂1) ∪ NeiGO (𝑂2)\{𝑂1, 𝑂2}| ≥ 2.

Proof. This lemma is proved by contradiction. Suppose |NeiGO (𝑂1) ∪ NeiGO (𝑂2)\{𝑂1, 𝑂2}| ≤ 1.
There are two possible cases.

1. Suppose 𝑂2 ∉ NeiGO (𝑂1), then |NeiGO (𝑂1) ∪ NeiGO (𝑂2)\{𝑂1, 𝑂2}| ≤ 1 implies that
|NeiGO (𝑂1) | ≤ 1, based on Lemma 5, 𝑂1 ∉ OC, which leads to contradiction.

2. Suppose 𝑂2 ∈ NeiGO (𝑂1). If |NeiGO (𝑂1) ∪ NeiGO (𝑂2)\{𝑂1, 𝑂2}| = 0, then NeiGO (𝑂2) =
{𝑂1}, based on Lemma 5, 𝑂1 ∉ OC, which leads to contradiction. If |NeiGO (𝑂1) ∪
NeiGO (𝑂2)\{𝑂1, 𝑂2}| = 1, since |NeiGO (𝑂1) | ≥ 2 and |NeiGO (𝑂2) | ≥ 2, there exists
𝑂3 ∈ O\{𝑂1, 𝑂2} s.t. NeiGO (𝑂1) = {𝑂2, 𝑂3} and NeiGO (𝑂2) = {𝑂1, 𝑂3}. According
to Assumption 1(c), neither 𝑂1 nor 𝑂2 is a root node, so either 𝑂1 or 𝑂2 is a leaf node.
Without loss of generality, let 𝑂1 be a leaf node, then 𝑂1 has no other neighbor besides two
observed parents 𝑂2, 𝑂3. Based on the local Markov property, 𝑂1 ⫫ O\{𝑂2, 𝑂3}, that is,
𝑂1 ∉ OC, which leads to contradiction.

□

Theorem 1. Suppose the underlying linear latent variable model satisfies Assumption 1 and
{𝑂1, 𝑂2} ⊂ O. Then {𝑂1, 𝑂2} ⊂ OC and ({𝑂1, 𝑂2},O\{𝑂1, 𝑂2}) satisfies the tetrad constraint if
and only if {𝑂1, 𝑂2} is a generalized pure pair.

Proof. (i) “If”. Suppose {𝑂1, 𝑂2} is a generalized pure pair, then PaGL (𝑂1) ≠ ∅ and PaGL (𝑂2) ≠ ∅,
based on Lemma 4, {𝑂1, 𝑂2} ⊂ OC. Let PaGL ({𝑂1, 𝑂2}) = {𝐿}, then ∀𝑂 ∈ O\{𝑂1, 𝑂2}, 𝐿 lies in
each trek between 𝑂1 and 𝑂 and is on the 𝑂1 side of every such trek. This also holds for each trek
between 𝑂2 and 𝑂. Therefore, 𝐿 is a choke point between {𝑂1, 𝑂2} and O\{𝑂1, 𝑂2}. Based on
Theorem 5, we reach the conclusion that ({𝑂1, 𝑂2},O\{𝑂1, 𝑂2}) satisfies the tetrad constraint.
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Figure 4: Illustration of proof (ii) of Theorem 1.

(ii) “Only if”. This part is proved by contradiction. Suppose {𝑂1, 𝑂2} is not a generalized pure pair,
there are 4 possible cases w.r.t. PaGL (𝑂1) and PaGL (𝑂2).

1. Suppose ones of PaGL (𝑂1) and PaGL (𝑂2) is an empty set. Without loss of generality,
we suppose PaGL (𝑂1) = ∅ and PaGL (𝑂2) ≠ ∅. Based on Lemma 5, 𝑂1 has an ob-
served neighbor 𝑂3 ∈ O\{𝑂2}. Let 𝐿 ∈ PaGL (𝑂2), then 𝐿 has a generalized pure
child 𝑂4 ∈ O\{𝑂1, 𝑂2, 𝑂3} according to Assumption 1(a). Clearly, there are two non-
intersecting treks 𝑂1 −𝑂3 and 𝑂2 ← 𝐿 → 𝑂4. Therefore, there is no choke point between
{𝑂1, 𝑂2} and {𝑂3, 𝑂4}. An illustrative example is shown in Figure 4(a).

2. Suppose PaGL (𝑂1) = ∅ and PaGL (𝑂2) = ∅. Based on Lemma 5 and 6, ∃{𝑂3, 𝑂4} ∈
O\{𝑂1, 𝑂2} s.t. 𝑂3 ∈ NeiGO (𝑂1) and 𝑂4 ∈ NeiGO (𝑂2). Clearly, there are two non-
intersecting treks𝑂1−𝑂3 and𝑂2−𝑂4. Therefore, there is no choke point between {𝑂1, 𝑂2}
and {𝑂3, 𝑂4}. An illustrative example is shown in Figure 4(b).

3. Suppose PaGL (𝑂1) ≠ ∅, PaGL (𝑂2) ≠ ∅ and |PaGL ({𝑂1, 𝑂2}) | > 1. That is, there exist
𝐿1 ∈ PaGL (𝑂1), 𝐿2 ∈ PaGL (𝑂2) s.t. 𝐿1 ≠ 𝐿2. According to Assumption 1(a), 𝐿1 has a
generalized pure child 𝑂3 ∈ O\{𝑂1, 𝑂2}. Similarly, 𝐿2 has a generalized pure child 𝑂4 ∈
O\{𝑂1, 𝑂2} and 𝑂3 ≠ 𝑂4. Clearly, there are two non-intersecting treks 𝑂1 ← 𝐿1 → 𝑂3
and 𝑂2 ← 𝐿2 → 𝑂4. Therefore, there is no choke point between {𝑂1, 𝑂2} and {𝑂3, 𝑂4}.
An illustrative example is shown in Figure 4(c).

4. Suppose PaGL (𝑂1) ≠ ∅, PaGL (𝑂2) ≠ ∅ and |PaGL ({𝑂1, 𝑂2}) | = 1. Since {𝑂1, 𝑂2} is not a
generalized pure pair, there is NeiGO (𝑂1)\{𝑂2} ≠ ∅ or NeiGO (𝑂2)\{𝑂1} ≠ ∅. Without loss
of generality, we suppose PaGL ({𝑂1, 𝑂2}) = {𝐿1}, 𝑂3 ∈ NeiGO (𝑂2)\{𝑂1}. Then 𝐿1 has a
latent neighbor 𝐿2 according to Assumption 1(b) and 𝐿2 has a generalized pure child 𝑂4 ∈
O\{𝑂1, 𝑂2, 𝑂3} according to Assumption 1(a). Clearly, there are two non-intersecting
treks 𝑂2 − 𝑂3 and 𝑂1 ← 𝐿1 − 𝐿2 → 𝑂4. Therefore, there is no choke point between
{𝑂1, 𝑂2} and {𝑂3, 𝑂4}. An illustrative example is shown in Figure 4(d).

Based on Theorem 5, we reach the conclusion that ({𝑂1, 𝑂2},O\{𝑂1, 𝑂2}) does not satisfy the
tetrad constraint, which leads to contradiction. □
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Figure 5: Illustration of proof (ii) of Lemma 2, where dotted lines mean that the edges may or may
not exist.

B.2 PROOF OF LEMMA 1

Lemma 1. Suppose S ∈ S. Then S is a pure pair if (but not only if) ∃S′ ∈ S s.t. S ∩ S′ ≠ ∅.

Proof. (i) “If”. This can be easily derived from the Definition 3, 4, and 5.

(ii) “Not only if”. If a latent variable 𝐿 has no pure child except 𝑂1 and 𝑂2, then {𝑂1, 𝑂2} is a pure
pair but it does not overlap with any other generalized pure pair. □

B.3 PROOF OF LEMMA 2

Assumption 2. (a) ∀𝐿 ∈ L, 𝐿 has at least one pure child, (b) ∀𝐿 ∈ L, |NeiG (𝐿) | ≥ 4. Furthermore,
if |NeiG (𝐿) | = 4, NeiGL (𝐿) = {𝐿

′}, and ChGO (𝐿) = {𝑂1, 𝑂2, 𝑂3} where {𝑂1, 𝑂2} is a pure pair, then
NeiG (𝑂3) ≠ {𝐿, 𝐿′}.
Lemma 2. Suppose the underlying linear latent variable model satisfies Assumption 1 and 2, S =

{𝑂1, 𝑂2} ∈ S and 1pure (S) = −1. Then S is a pseudo-pure pair if and only if ∃𝑂3 ∈ OC\{𝑂1, 𝑂2}
s.t. ({𝑂1, 𝑂3},O\{𝑂1, 𝑂2, 𝑂3}) satisfies the tetrad constraint.

Proof. (i) “Only if”. Suppose S = {𝑂1, 𝑂2} is a pseudo-pure pair and let PaGL (S) = {𝐿}. According
to Assumption 2(a), 𝐿 has a pure child 𝑂3 ∈ O\{𝑂1, 𝑂2}. Based on Lemma 4, 𝑂3 ∈ OC. Besides,
∀𝑂 ∈ O\{𝑂1, 𝑂2, 𝑂3}, 𝐿 lies in each trek between 𝑂1 and 𝑂 and is on the 𝑂1 side of every such trek.
This also holds for each trek between 𝑂3 and 𝑂. Therefore, 𝐿 is a choke point between {𝑂1, 𝑂3} and
O\{𝑂1, 𝑂2, 𝑂3}. Based on Theorem 5, we reach the conclusion that ({𝑂1, 𝑂3},O\{𝑂1, 𝑂2, 𝑂3})
satisfies the tetrad constraint.
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(ii) “If”. This part is proved by contradiction. Suppose S = {𝑂1, 𝑂2} is a pure pair and let PaGL (S) =
{𝐿1}. Because 1pure (S) = −1, 𝐿1 has no pure child except 𝑂1 and 𝑂2, otherwise we can derive
1pure (S) = 1 based on Lemma 1. There are 5 possible cases w.r.t. PaGL (𝑂3).

1. Suppose PaGL (𝑂3) = ∅. Based on Lemma 5, 𝑂3 has an observed children 𝑂4 ∈
O\{𝑂1, 𝑂2}. Besides, 𝐿1 has a latent neighbor 𝐿2 according to Assumption 1(b) and 𝐿2 has
a generalized pure child 𝑂5 ∈ O\{𝑂1, 𝑂2, 𝑂3, 𝑂4} according to Assumption 1(a). Clearly,
there are two non-intersecting treks 𝑂3 − 𝑂4 and 𝑂1 ← 𝐿1 − 𝐿2 → 𝑂5. Therefore, there
is no choke point between {𝑂1, 𝑂3} and {𝑂4, 𝑂5}. An illustrative example is shown in
Figure 5(a).

2. Suppose PaGL (𝑂3) = {𝐿1}. Since 𝑂3 is not a pure child of 𝐿1, 𝑂3 has an observed neighbor
𝑂4 ∈ O\{𝑂1, 𝑂2}. Besides, 𝐿1 has a latent neighbor 𝐿2 according to Assumption 1(b) and
𝐿2 has a generalized pure child 𝑂5 ∈ O\{𝑂1, 𝑂2, 𝑂3, 𝑂4} according to Assumption 1(a).
Clearly, there are two non-intersecting treks 𝑂3 −𝑂4 and 𝑂1 ← 𝐿1 − 𝐿2 → 𝑂5. Therefore,
there is no choke point between {𝑂1, 𝑂3} and {𝑂4, 𝑂5}. An illustrative example is shown
in Figure 5(b).

3. Suppose PaGL (𝑂3) ≠ {𝐿1} and ∃𝐿2 ∈ PaGL (𝑂3)\{𝐿1} s.t. 𝐿2 ∉ NeiGL (𝐿1). Then 𝐿2 has a
generalized pure child 𝑂4 ∈ O\{𝑂1, 𝑂2, 𝑂3} according to Assumption 1(a). Besides, 𝐿1
has a latent neighbor 𝐿3 ≠ 𝐿2 according to Assumption 1(b) and 𝐿3 has a generalized pure
child 𝑂5 ∈ O\{𝑂1, 𝑂2, 𝑂3, 𝑂4} according to Assumption 1(a). Clearly, there are two non-
intersecting treks 𝑂3 ← 𝐿2 → 𝑂4 and 𝑂1 ← 𝐿1 − 𝐿3 → 𝑂5. Therefore, there is no choke
point between {𝑂1, 𝑂3} and {𝑂4, 𝑂5}. An illustrative example is shown in Figure 5(c).

4. Suppose PaGL (𝑂3) ≠ {𝐿1}, ∀𝐿 ∈ PaGL (𝑂3)\{𝐿1}, 𝐿 ∈ NeiGL (𝐿1) and 𝐿1 ∉ PaGL (𝑂3). Let
𝐿2 ∈ PaGL (𝑂3)\{𝐿1}, then 𝐿2 has a generalized pure child 𝑂4 ∈ O\{𝑂1, 𝑂2, 𝑂3} according
to Assumption 1(a). Furthermore, there are two possible sub-cases w.r.t. NeiGL (𝐿1).

(a) Suppose |NeiGL (𝐿1) | ≥ 2. Then 𝐿1 has a latent neighbor 𝐿3 ≠ 𝐿2. The remaining
proof is the same as Case 3.

(b) Suppose |NeiGL (𝐿1) | = 1. According to Assumption 2(b) that |NeiG (𝐿1) | ≥ 4, ∃𝑂5 ∈
ChGO (𝐿1)\{𝑂1, 𝑂2}. Since 𝐿1 ∉ PaGL (𝑂3) and 𝑂4 is a generalized pure child of 𝐿2,
we have 𝑂5 ≠ 𝑂3 and 𝑂5 ≠ 𝑂4. Clearly, there are two non-intersecting treks 𝑂3 ←
𝐿2 → 𝑂4 and 𝑂1 ← 𝐿1 → 𝑂5. Therefore, there is no choke point between {𝑂1, 𝑂3}
and {𝑂4, 𝑂5}. An illustrative example is shown in Figure 5(d).

According to Assumption 1(b), NeiGL (𝐿1) ≠ ∅, so there is no other possible sub-case.

5. Suppose PaGL (𝑂3) ≠ {𝐿1}, ∀𝐿 ∈ PaGL (𝑂3)\{𝐿1}, 𝐿 ∈ NeiGL (𝐿1) and 𝐿1 ∈ PaGL (𝑂3). Let
𝐿2 ∈ PaGL (𝑂3)\{𝐿1}, then 𝐿2 has a generalized pure child 𝑂4 ∈ O\{𝑂1, 𝑂2, 𝑂3} according
to Assumption 1(a). Furthermore, there are three possible sub-cases w.r.t. NeiGL (𝐿1).

(a) Suppose |NeiGL (𝐿1) | ≥ 2. The remaining proof is the same as Case 4(a).

(b) Suppose |NeiGL (𝐿1) | = 1 and |NeiG (𝐿1) | > 4, let 𝑂5 ∈ ChGO (𝐿1)\{𝑂1, 𝑂2, 𝑂3}. Since
𝑂4 is a generalized pure child of 𝐿2, 𝑂5 ≠ 𝑂4. The remaining proof is the same as
Case 4(b).

(c) Suppose |NeiGL (𝐿1) | = 1 and |NeiG (𝐿1) | = 4, considering the supposition at the be-
ginning of Case 5, we have NeiGL (𝐿1) = {𝐿2},ChGO (𝐿1) = {𝑂1, 𝑂2, 𝑂3}, PaGL (𝑂3) =
{𝐿1, 𝐿2}. According to Assumption 2(b) that NeiG (𝑂3) ≠ {𝐿1, 𝐿2}, there is
NeiGO (𝑂3) ≠ ∅. Let 𝑂5 ∈ NeiGO (𝑂3). Since 𝑂4 is a generalized pure child of 𝐿2,
𝑂5 ≠ 𝑂4. Clearly, there are two non-intersecting treks 𝑂3 −𝑂5 and 𝑂1 ← 𝐿1 − 𝐿2 →
𝑂4. Therefore, there is no choke point between {𝑂1, 𝑂3} and {𝑂4, 𝑂5}. An illustra-
tive example is shown in Figure 5(e).
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Figure 6: Illustrative examples for Proposition 1.

According to Assumption 1(b) and Assumption 2(b), NeiGL (𝐿1) ≠ ∅ and |NeiG (𝐿1) | ≥ 4,
there is no other possible sub-case.

Based on Theorem 5, we reach the conclusion that ∀𝑂3 ∈ OC\{𝑂1, 𝑂2}, ({𝑂1, 𝑂3},O\{𝑂1,
𝑂2, 𝑂3}) does not satisfy the tetrad constraint, which leads to contradiction.

□

B.4 PROOF OF COROLLARY 1

Corollary 1. Suppose S is a pseudo-pure pair. Then Ref (S) is a pure child of PaGL (S).

Proof. This corollary is proved by contradiction. Suppose Ref (S) is not a pure child of PaGL (S), let
S = {𝑂1, 𝑂2},Ref (S) = 𝑂3 and PaGL (S) = {𝐿1}. According to Assumption 2(a), 𝐿1 has a pure
child 𝑂4 ∈ O\{𝑂1, 𝑂2, 𝑂3}. Then there are three possible cases w.r.t. PaGL (𝑂3).

1. Suppose PaGL (𝑂3) = ∅. Based on Lemma 2 and Lemma 5, 𝑂3 has an observed neighbor
𝑂5 ∈ O\{𝑂1, 𝑂2, 𝑂4}. Clearly, there are two non-intersecting treks 𝑂1 ← 𝐿1 → 𝑂4 and
𝑂3 −𝑂5. Therefore, there is no choke point between {𝑂1, 𝑂3} and {𝑂4, 𝑂5}.

2. Suppose PaGL (𝑂3) ≠ ∅ and PaGL (𝑂3) ≠ {𝐿1}. Let 𝐿2 ∈ PaGL (𝑂3)\{𝐿1}. Then 𝐿2 has a
generalized pure child 𝑂5 ∈ O\{𝑂1, 𝑂2, 𝑂3, 𝑂4}. Clearly, there are two non-intersecting
treks 𝑂1 ← 𝐿1 → 𝑂4 and 𝑂3 ← 𝐿2 → 𝑂5. Therefore, there is no choke point between
{𝑂1, 𝑂3} and {𝑂4, 𝑂5}.

3. Suppose PaGL (𝑂3) = {𝐿1}. Since 𝑂3 is not a pure child of 𝐿1, it has an observed neighbor
𝑂5 ∈ O\{𝑂1, 𝑂2, 𝑂3, 𝑂4}. Clearly, there are two non-intersecting treks 𝑂1 ← 𝐿1 → 𝑂4
and 𝑂3 −𝑂5. Therefore, there is no choke point between {𝑂1, 𝑂3} and {𝑂4, 𝑂5}.

Based on Theorem 5, we reach the conclusion that ({𝑂1, 𝑂3},O\{𝑂1, 𝑂2, 𝑂3}) does not satisfy the
tetrad constraint, which leads to contradiction. □

B.5 PROOF OF PROPOSITION 1

Proposition 1. Let {S1,S2} ⊂ S.

21



Published as a conference paper at ICLR 2024

1. SupposeS1 andS2 are two pure pairs. Then PaGL (S1) = PaGL (S2) if and only if (1)S1∩S2 ≠

∅, or (2) ∃S3 ∈ S s.t. S1 ∩ S3 ≠ ∅ and S2 ∩ S3 ≠ ∅.
2. Suppose S1 is a pure pair and S2 is a pseudo-pure pair. Then PaGL (S1) = PaGL (S2) if and

only if (1) Ref (S2) ∈ S1, or (2) ∃S3 ∈ S s.t. Ref (S2) ∈ S3 and S1 ∩ S3 ≠ ∅.
3. Suppose S1 and S2 are two pseudo-pure pairs. Then PaGL (S1) = PaGL (S2) if and only if (1)

Ref (S1) = Ref (S2), or (2) ∃S3 ∈ S s.t. Ref (S1) ∈ S3 and Ref (S2) ∈ S3.

Proof. (i) “If”.

1. Suppose S1 and S2 are two pure pairs. (1) Suppose S1 ∩ S2 ≠ ∅. Then PaGL (S1) =

PaGL (S1 ∩ S2) = PaGL (S2). (2) Suppose ∃S3 ∈ S s.t. S1 ∩ S3 ≠ ∅ and S2 ∩ S3 ≠ ∅. Then
PaGL (S1) = PaGL (S3) = PaGL (S2).

2. Suppose S1 is a pure pair and S2 is a pseudo-pure pair. (1) Suppose Ref (S2) ∈ S1. Then
based on Corollary 1, PaGL (S1) = PaGL (Ref (S2)) = PaGL (S2). (2) Suppose ∃S3 ∈ S s.t.
Ref (S2) ∈ S3 and S1 ∩ S3 ≠ ∅. Then based on Corollary 1, PaGL (S1) = PaGL (S3) =
PaGL (Ref (S2)) = PaGL (S2).

3. Suppose S1 and S2 are two pseudo-pure pairs. (1) Suppose Ref (S1) = Ref (S2). Then
based on Corollary 1, PaGL (S1) = PaGL (Ref (S1)) = PaGL (Ref (S2)) = PaGL (S2). (2) Suppose
∃S3 ∈ S s.t. Ref (S1) ∈ S3 and Ref (S2) ∈ S3. Then based on Corollary 1, PaGL (S1) =
PaGL (Ref (S1)) = PaGL (S3) = PaGL (Ref (S2)) = PaGL (S2).

(ii) “Only if”.

1. Suppose S1 and S2 are two pure pairs and PaGL (S1) = PaGL (S2) = {𝐿}. Then ∀𝑂 ∈ S1∪S2,
𝑂 is a pure child of 𝐿. It is obviously possible that S1 ∩ S2 ≠ ∅; otherwise, ∀𝑂1 ∈ S1 and
∀𝑂2 ∈ S2, S3 = {𝑂1, 𝑂2} is also a pure pair, that is, S3 ∈ S.

2. Suppose S1 is a pure pair, S2 is a pseudo-pure pair, and PaGL (S1) = PaGL (S2) = {𝐿}. Then
based on Corollary 1, ∀𝑂 ∈ S1∪{Ref (S2)}, 𝑂 is a pure child of 𝐿. It is obviously possible
that Ref (S2) ∈ S1; otherwise, ∀𝑂 ∈ S1, S3 = {𝑂,Ref (S2)} is also a pure pair, that is,
S3 ∈ S.

3. Suppose S1 and S2 are two pure pairs and PaGL (S1) = PaGL (S2) = {𝐿}. Then based on
Corollary 1, both Ref (S1) and Ref (S2) are pure children of 𝐿. It is obviously possible that
Ref (S1) = Ref (S2); otherwise S3 = {Ref (S1),Ref (S2)} is also a pure pair, that is, S3 ∈ S.

□

B.6 PROOF OF THEOREM 2

Theorem 2. Suppose the underlying linear latent variable model satisfies Assumption 1 and 2.
Then latent variables can be fully identified.

Proof. Theorem 1 ensures no latent omission under Assumption 1 while Proposition 1 ensures no
latent commission under Assumption 1 and 2. Therefore, latent variables can be fully identified. □

B.7 PROOF OF LEMMA 3

We begin with Darmois-Skitovitch Theorem (Kagan, 1989) which is essential for our proof.
Theorem 6. (Darmois-Skitovitch Theorem) Suppose two random variables 𝑉1 and 𝑉2 can be repre-
sented as linear combinations of independent random variables {𝑒𝑖}𝑖 ,

𝑉1 =
∑︁
𝑖

𝛼𝑖𝑒𝑖 , 𝑉2 =
∑︁
𝑖

𝛽𝑖𝑒𝑖 . (6)
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Figure 7: Illustrative of proof of Lemma 3.

Then, if 𝑉1 and 𝑉2 are independent, all variables 𝑒 𝑗 for which 𝛼 𝑗 𝛽 𝑗 ≠ 0 are Gaussian. In other
words, if there exists a non-Gaussian 𝑒 𝑗 for which 𝛼 𝑗 𝛽 𝑗 ≠ 0, 𝑉1 and 𝑉2 are dependent.

Assumption 3. (a) ∀S𝑖 = {𝑂𝑖1 , 𝑂𝑖2 } ∈ S s.t. ∀S 𝑗 ∈ S\{S𝑖},S𝑖 ∩ S 𝑗 = ∅, 𝜖𝑂𝑖1
and 𝜖𝑂𝑖2

are both

non-Gaussian. (b) ∀S ∈ S with PaGL (S) = {𝐿}, if S is a pseudo-pure pair, then ∃𝑉1 ∈ ChG (𝐿)\S
s.t. 𝐿 ⫫ PaG (𝑉1)\{𝐿}. Furthermore, if PaG (𝐿) = ∅, then ∃𝑉2 ∈ ChG (𝐿)\S s.t. 𝐿 ⫫ PaG (𝑉2)\{𝐿}
and 𝑉1 ⫫ 𝑉2 |𝐿.

B.8 PROOF OF LEMMA 3

Lemma 3. Suppose the underlying linear latent variable model satisfies Assumption 1 and 3, S =

{𝑂1, 𝑂2} and 1pure (S) = −1. Then S is a pseudo-pure pair if and only if ∃(𝑂3, 𝑂4) ⊂ O\{𝑂1, 𝑂2}
which is an ordered pair s.t. 𝑂1 + 𝛼𝑂2 + 𝛽𝑂3 ⫫ 𝑂1 where 𝛼, 𝛽 satisfy

Var(𝑂1) + 𝛼Cov(𝑂1, 𝑂2) + 𝛽Cov(𝑂1, 𝑂3) = 0, (7)
Cov(𝑂1, 𝑂4) + 𝛼Cov(𝑂2, 𝑂4) + 𝛽Cov(𝑂3, 𝑂4) = 0, (8)

or 𝑂2 + 𝛼𝑂1 + 𝛽𝑂3 ⫫ 𝑂2 where 𝛼, 𝛽 satisfy

Var(𝑂2) + 𝛼Cov(𝑂2, 𝑂1) + 𝛽Cov(𝑂2, 𝑂3) = 0 (9)
Cov(𝑂2, 𝑂4) + 𝛼Cov(𝑂1, 𝑂4) + 𝛽Cov(𝑂3, 𝑂4) = 0. (10)

Proof. (i) “If”. This part is proved by contradiction. Suppose S = {𝑂1, 𝑂2} is a pure pair. Then
𝑂1 contains 𝜖𝑂1 while ∀𝑂 ∉ O\{𝑂1}, 𝑂 does not contain 𝜖𝑂1 . Therefore, ∀𝛼, 𝛽, 𝑂1 + 𝛼𝑂2 + 𝛽𝑂3
contains 𝜖𝑂1 . Because 𝜖𝑂1 is non-Gaussian based on Assumption 3(a), 𝑂1 + 𝛼𝑂2 + 𝛽𝑂3 ⫫∕ 𝑂1.
Similarly, ∀𝛼, 𝛽, 𝑂2 + 𝛼𝑂1 + 𝛽𝑂3 ⫫∕ 𝑂2, which leads to contradiction.
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(ii) “Only if”. Suppose S is a pseudo-pure pair and 𝑂1 ∈ PaG (𝑂2) without loss of generality. Let
PaGL ({𝑂1, 𝑂2}) = {𝐿1}, then 𝑂1, 𝑂2 can be represented as

𝑂1 = 𝑐11𝐿1 + 𝜖𝑂1 , (11)
𝑂2 = 𝑐12𝐿1 + 𝑑12𝑂1 + 𝜖𝑂2 = (𝑐11𝑑12 + 𝑐12)𝐿1 + 𝑑12𝜖𝑂1 + 𝜖𝑂2 . (12)

There are two possible cases w.r.t 𝐿1.

1. Suppose 𝐿1 is not a root node. According to Assumption 3(b), ∃𝑉1 ∈ ChG (𝐿1)\{𝑂1, 𝑂2}
s.t. 𝐿1 ⫫ PaG (𝑉1)\{𝐿1}. If 𝑉1 ∈ O, we let 𝑂3 = 𝑉1; otherwise we let 𝐿2 = 𝑉1 and 𝑂3 be a
pure child or a type-I pseudo-pure child of 𝐿2. Therefore, 𝑂3 can be represented as

𝑂3 = 𝑐13𝐿1 + 𝜖 ′𝑂3
or 𝑂3 = 𝑐23𝐿2 + 𝜖𝑂3 = 𝑏12𝑐23𝐿1 + 𝑐23𝜖

′
𝐿2
+ 𝜖𝑂3 , (13)

where {𝜖 ′
𝑂3
, 𝜖 ′

𝐿2
} ⫫ 𝐿1. Let 𝐿3 ∈ PaGL (𝐿1) and 𝑂4 be a pure child or a type-I pseudo-pure

child of 𝐿3 which can be represented as

𝑂4 = 𝑐34𝐿3 + 𝜖𝑂4 . (14)

Since 𝐿1 ⫫ PaG (𝑉1)\{𝐿1} and 𝐿3 ∈ PaGL (𝐿1), we have 𝐿3 ⫫ PaG (𝑉1)\{𝐿1}, indicating
that {𝜖 ′

𝑂3
, 𝜖 ′

𝐿2
} ⫫ 𝐿3.

2. Suppose 𝐿1 is a root node. According to Assumption 3(b), ∃{𝑉1, 𝑉2} ⊂ ChG (𝐿)\S s.t.
𝐿 ⫫ PaG (𝑉1)\{𝐿}, 𝐿 ⫫ PaG (𝑉2)\{𝐿} and 𝑉1 ⫫ 𝑉2 |𝐿. If 𝑉1 ∈ O, we let 𝑂3 = 𝑉1;
otherwise we let 𝐿2 = 𝑉1 and 𝑂3 be a pure child or a type-I pseudo-pure child of 𝐿2. If
𝑉2 ∈ O, we let 𝑉2 = 𝑂4; otherwise we let 𝑉2 = 𝐿3 and 𝑂4 be a pure child or a type-I
pseudo-pure child of 𝐿3. Therefore, 𝑂3, 𝑂4 can be represented as

𝑂3 = 𝑐13𝐿1 + 𝜖 ′𝑂3
or 𝑂3 = 𝑐23𝐿2 + 𝜖𝑂3 = 𝑏12𝑐23𝐿1 + 𝑐23𝜖

′
𝐿2
+ 𝜖𝑂3 , (15)

𝑂4 = 𝑐14𝐿1 + 𝜖 ′𝑂4
or 𝑂4 = 𝑐34𝐿3 + 𝜖𝑂4 = 𝑏13𝑐34𝐿1 + 𝑐34𝜖

′
𝐿3
+ 𝜖𝑂4 , (16)

where {𝜖 ′
𝑂3
, 𝜖 ′

𝐿2
, 𝜖 ′

𝑂4
, 𝜖 ′

𝐿3
} ⫫ 𝐿1 and {𝜖 ′

𝑂3
, 𝜖 ′

𝐿2
} ⫫ {𝜖 ′

𝑂4
, 𝜖 ′

𝐿3
}.

Clearly, if 𝐿1 is a non-root node, there are two possible cases w.r.t. {𝑂3, 𝑂4}; otherwise, there are
four possible cases w.r.t. {𝑂3, 𝑂4}. We show all six possible cases in Figure 7. In each case, we can
rewrite 𝑂1, 𝑂2, 𝑂3, 𝑂4 as

𝑂1 = 𝜆1𝐿 + 𝜖𝑂1 , (17)
𝑂2 = 𝜆2𝐿 + 𝜔2𝜖𝑂1 + 𝜖𝑂2 , (18)

𝑂3 = 𝜆3𝐿 + 𝜖 ′′𝑂3
, (19)

𝑂4 = 𝜆4𝐿
′ + 𝜖 ′′𝑂4

, (20)

where 𝜖𝑂1 , 𝜖𝑂2 , 𝜖
′′
𝑂3
, 𝜖 ′′

𝑂4
are independent of each other, each of them is independent of 𝐿 and 𝐿′, and

Cov(𝐿, 𝐿′) ≠ 0. We substitute Equation (17)∼(20) into Equation (7) and (8),

𝜆1 (𝜆1 + 𝛼𝜆2 + 𝛽𝜆3)Var(𝐿) + (1 + 𝛼𝜔2)Var(𝜖𝑂1 ) = 0, (21)
𝜆4 (𝜆1 + 𝛼𝜆2 + 𝛽𝜆3)Cov(𝐿, 𝐿′) = 0, (22)

which yield that
𝜆1 + 𝛼𝜆2 + 𝛽𝜆3 = 0 and 1 + 𝛼𝜔2 = 0. (23)

Therefore, we can reach the conclusion that

𝑂1 + 𝛼𝑂2 + 𝛽𝑂3 = (𝜆1 + 𝛼𝜆2 + 𝛽𝜆3)𝐿 + (1 + 𝛼𝜔2)𝜖𝑂1 + 𝛼𝜖𝑂2 + 𝛽𝜖 ′′𝑂3
= 𝛼𝜖𝑂2 + 𝛽𝜖 ′′𝑂3

⫫ 𝑂1. (24)

□
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B.9 PROOF OF COROLLARY 2

Corollary 2. Suppose S = {𝑂1, 𝑂2} ∈ S and ∃(𝑂3, 𝑂4) ⊂ O\{𝑂1, 𝑂2} which is an ordered pair
s.t. 𝑂1 + 𝛼𝑂2 + 𝛽𝑂3 ⫫ 𝑂1 where 𝛼, 𝛽 satisfy Equation (2) and (3). Then S̃ = {�̃�1, �̃�2} is a pure
pair with latent parent PaGL (S) where �̃�1 = 𝑂1 and �̃�2 = 𝑂2 + 1

𝛼
𝑂1.

Proof. Based on Lemma 3, S = {𝑂1, 𝑂2} is a pseudo-pure pair. Suppose 𝑂2 ∈ PaG (𝑂1), then
𝑂1 contains 𝜖𝑂1 while ∀𝑂 ∉ O\{𝑂1}, 𝑂 does not contain 𝜖𝑂1 , so ∀𝛼, 𝛽, 𝑂1 + 𝛼𝑂2 + 𝛽𝑂3 contains
𝜖𝑂1 . As 𝜖𝑂1 is non-Gaussian based on Assumption 3(a), 𝑂1 + 𝛼𝑂2 + 𝛽𝑂3 ⫫∕ 𝑂1, which leads to
contradiction. Therefore, we can conclude 𝑂1 ∈ PaG (𝑂2). Let PaGL (S) = {𝐿}, then 𝑂1, 𝑂2 can be
represented as

𝑂1 = 𝑐11𝐿 + 𝜖𝑂1 , (25)
𝑂2 = 𝑐12𝐿 + 𝑑12𝑂1 + 𝜖𝑂2 = (𝑐11𝑑12 + 𝑐12)𝐿 + 𝑑12𝜖𝑂1 + 𝜖𝑂2 . (26)

We can easily obtain 𝛼 = − 1
𝑑12

, because if 𝛼 ≠ − 1
𝑑12

, both 𝑂1 and 𝑂1 + 𝛼𝑂2 + 𝛽𝑂3 contain non-
Gaussian 𝜖𝑂1 , i.e., 𝑂1 + 𝛼𝑂2 + 𝛽𝑂3 ⫫∕ 𝑂1. Therefore, we can represent �̃�1, �̃�2 as

�̃�1 = 𝑐11𝐿 + 𝜖𝑂1 , �̃�2 = 𝑐12𝐿 + 𝜖𝑂2 . (27)

Clearly, {�̃�1, �̃�2} is a pure pair with latent parent 𝐿. □

B.10 PROOF OF PROPOSITION 2

Proposition 2. Let {S1,S2} ⊂ S where S1 = {𝑂1, 𝑂2} and S2 = {𝑂3, 𝑂4}. Then

1. Suppose S1 and S2 are two pure pairs. PaGL (S1) = PaGL (S2) if and only if (1) S1 ∩ S2 ≠ ∅,
or (2) ∃S3 ∈ S s.t. S1 ∩ S3 ≠ ∅ and S2 ∩ S3 ≠ ∅.

2. Suppose S1 is a pure pair and S2 is a pseudo-pure pair. Then PaGL (S1) = PaGL (S2) if and
only if ({𝑂2, �̃�3}, {𝑂1, �̃�4}) satisfies the tetrad constraint.

3. Suppose S1 and S2 are two pseudo-pure pairs. Then PaGL (S1) = PaGL (S2) if and only if
({�̃�2, �̃�3}, {�̃�1, �̃�4}) satisfies the tetrad constraint.

Proof. (i) “If”.

1. Suppose S1 and S2 are two pure pairs. The proof is the same as that of the first sub-
proposition of Proposition 1.

2. Suppose S1 is a pure pair and S2 is a pseudo-pure pair. Clearly, S1 ∩ S2 = ∅. Based on
Corollary 2, {�̃�3, �̃�4} is a pure pair with latent parent PaGL (S2). This part can be proved
by contradiction. Suppose PaGL (S1) ≠ PaGL (S2), let PaGL (S1) = {𝐿1} and PaGL (S2) = {𝐿2}.
Then there are two non-intersecting treks 𝑂1 ← 𝐿1 → 𝑂2 and �̃�3 ← 𝐿2 → �̃�4, so there
is no choke point between {𝑂2, �̃�3} and {𝑂1, �̃�4}. Therefore, ({𝑂2, �̃�3}, {𝑂1, �̃�4}) does
not satisfy the tetrad constraint, which leads to contradiction.

3. Suppose S1 and S2 are two pseudo-pure pairs. The remaining proof is similar to that of the
second sub-proposition above.

(ii) “Only if”.

1. Suppose S1 and S2 are two pure pairs. The proof is the same as that of the first sub-
proposition of Proposition 1.

2. Suppose S1 is a pure pair and S2 is a pseudo-pure pair. Clearly, S1 ∩ S2 = ∅. Based
on Corollary 2, {�̃�3, �̃�4} is a pure pair with latent parent PaGL (S2). Suppose PaGL (S1) =
PaGL (S2), let PaGL (S1) = {𝐿}. Since 𝑂1, 𝑂2, �̃�3, �̃�4 are all pure children of 𝐿, 𝐿 is a choke
point between {𝑂2, �̃�3} and {𝑂1, �̃�4}. Therefore, ({𝑂2, �̃�3}, {𝑂1, �̃�4}) satisfies the tetrad
constraint.
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𝑌 𝑍

Figure 8: Illustration of Meek’s rule 1

3. Suppose S1 and S2 are two pseudo-pure pairs. The remaining proof is similar to that of the
second sub-proposition above.

□

B.11 PROOF OF THEOREM 3

Theorem 3. Suppose the underlying linear latent variable model satisfies Assumption 1 and 3.
Then latent variables can be fully identified.

Proof. Theorem 1 ensures no latent omission under Assumption 1 while Proposition 2 ensures no
latent commission under Assumption 1 and 3. Therefore, latent variables can be fully identified. □

B.12 PROOF OF PROPOSITION 3

Proposition 3. No variable in OD is a parent of any variable in L ∪OU.

Proof. We prove this proposition in Case I (where Assumption 1 and 2 hold) and Case II (where
Assumption 1 and 3 hold) respectively.

1. In Case I, 𝑂1 ∈ OD if and only if (1) ∃𝑂2 ∈ O s.t. {𝑂1, 𝑂2} ∈ S, or (2) ∃S ∈ S s.t.
𝑂1 = Ref (S). Based on Corollary 1, the latter means that 𝑂1 is a pure child of some latent
variable. Therefore, we can easily reach the conclusion that no variable in OD is a parent
of any variable in L ∪OU.

2. In Case II, 𝑂1 ∈ OD if and only if ∃𝑂2 ∈ O s.t. {𝑂1, 𝑂2} ∈ S, so no variable in OD is a
parent of any variable in L ∪OU.

□

B.13 PROOF OF THEOREM 4

Theorem 4. Suppose the underlying linear latent variable model satisfies Assumption 1 and 2 or
Assumption 1 and 3, in the limit of infinite data, Ĝ satisfies that (1) Ĝ has the same skeleton and
v-structures as G; (2) ∀{𝑂𝑖 , 𝑂 𝑗 } ⊂ O s.t. 𝑂𝑖 ∈ PaG (𝑂 𝑗 ) and PaGL (𝑂𝑖) ≠ PaGL (𝑂 𝑗 ), 𝑂𝑖 ∈ PaĜ (𝑂 𝑗 ).

Proof. Based on Theorem 2 and Theorem 3, latent variables can be fully identified. After pre-
processing, each latent variable has multiple indicators of which each can be represented as its
linear function plus an independent noise.

(1) This is derived by the soundness of PC algorithm.

(2) Without loss of generality, suppose 𝑂𝑖 ∈ PaG (𝑂 𝑗 ), there are two possible cases w.r.t. PaGL (𝑂 𝑗 ).

1. Suppose ∃𝐿 ∈ PaGL (𝑂 𝑗 ) s.t. 𝐿 ∉ PaGL (𝑂𝑖). Then there exists a v-structure 𝑂𝑖 → 𝑂 𝑗 ← 𝐿

in G, which can be discovered by line 2 of Algorithm 4.
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2. Suppose ∀𝐿 ∈ PaGL (𝑂 𝑗 ), 𝐿 ∈ PaGL (𝑂𝑖). Since PaGL (𝑂𝑖) ≠ PaGL (𝑂 𝑗 ), ∃𝐿′ ∈ PaGL (𝑂𝑖) s.t.
𝐿′ ∉ PaGL (𝑂 𝑗 ). After line 3 of Algorithm 4, there is 𝐿′ → 𝑂𝑖 −𝑂 𝑗 and 𝐿′ is not adjacent to
𝑂 𝑗 in Ĝ. Based on Meek’s rule 1 shown as Figure 8, 𝑂𝑖 −𝑂 𝑗 can be oriented as 𝑂𝑖 → 𝑂 𝑗 .

□

C MORE THEORETICAL RESULTS

C.1 NON-LINEARITY

All theoretical results in Section 3.1 and 3.2 are derived by the Tetrad Representation Theo-
rem (Spirtes et al., 2000), which is a special form of the Trek Separation Theorem (Sullivant et al.,
2010). Furthermore, Spirtes (2013) has extended the Trek Separation Theorem to partially nonlinear
cases. An exact formulation of the Extended Trek Separation Theorem entails many concepts not
previously introduced, here we only need to know

1. If there is a choke point 𝐶 between {𝐼1, 𝐼2} and {𝐽1, 𝐽2}, 𝐶 is on the {𝐼1, 𝐼2} side, and
for each directed path 𝜋 from 𝐶 to {𝐼1, 𝐼2}, any vertex 𝑉 on 𝜋 is a linear function of its
parents along 𝜋 plus an arbitrary function of the parents not along 𝜋, then ({𝐼1, 𝐼2}, {𝐽1, 𝐽2})
satisfies the tetrad constraint.

2. If there is no choke point between {𝐼1, 𝐼2} and {𝐽1, 𝐽2}, under faithfulness assumption,
({𝐼1, 𝐼2}, {𝐽1, 𝐽2}) does not satisfy the tetrad constraint.

Based on these two propositions, we can conclude that all theoretical results in Section 3.1 and 3.2
are still valid as long as all causal relations involving generalized pure children (see Definition 9) are
linear. More specifically, any causal relation between 𝑉1 and 𝑉2 can be nonlinear as long as neither
𝑉1 nor 𝑉2 is a generalized pure child of some latent variable. Any tetrad constraint in this case holds
if and only if it holds in the linear case. Furthermore, if only causal relations between observed
variables that are not pseudo-pure children (see Definition 8) of some latent variable are nonlinear
while others are all linear, all theoretical results in Section 3.3 also hold, because our proofs do not
rely on linearity of these causal relations.

C.2 WEAKENING ASSUMPTION 1(B)

Assumption 1(b) requires that ∀𝐿 ∈ L,NeiGL (𝐿) ≠ ∅. It is used only in the proof of Theorem 1 and
Lemma 2. In fact, even if ∃𝐿 ∈ L s.t. NeiGL (𝐿) = ∅, Theorem 1 still holds if for every such 𝐿,
|ChGO (𝐿) | ≥ 4; and Lemma 2 still holds if for every such 𝐿, |ChGO (𝐿) | ≥ 5. Taking Lemma 2 as an
example, we prove that it still holds if ∀𝐿 ∈ L s.t. NeiGL (𝐿) = ∅, |ChGO (𝐿) | ≥ 5.

Proof. In the proof of Lemma 2 given in Appendix B.3, Assumption 1(b) is only used to prove
that ∀𝑂 ∈ OC\{𝑂1, 𝑂2}, ({𝑂1, 𝑂},O\{𝑂1, 𝑂2, 𝑂}) does not satisfy the tetrad constraint if S =

{𝑂1, 𝑂2} is a pure pair and 1pure (S) = −1. We only need to prove this part. Let PaGL (S) = {𝐿1}, 𝐿1
has no pure child except 𝑂1 and 𝑂2 since 1pure (S) = −1. Given an 𝑂3 ∈ OC\{𝑂1, 𝑂2}, there are
three possible cases w.r.t. PaGL (𝑂3).

1. Suppose PaGL (𝑂3) = ∅. Based on Lemma 5, 𝑂3 has an observed children 𝑂4 ∈
O\{𝑂1, 𝑂2}. If NeiGL (𝐿1) ≠ ∅, the proof is the same as the original one; otherwise, there
is |ChGO (𝐿1) | ≥ 5 according to our new assumption, so ∃𝑂5 ∈ ChGO (𝐿1)\{𝑂1, 𝑂2, 𝑂3, 𝑂4}.
Clearly, there are two non-intersecting treks 𝑂3 − 𝑂4 and 𝑂1 ← 𝐿1 → 𝑂5. Therefore,
there is no choke point between {𝑂1, 𝑂3} and {𝑂4, 𝑂5}.

2. Suppose PaGL (𝑂3) = {𝐿1}. Since 𝑂3 is not a pure child of 𝐿1, ∃𝑂4 ∈ NeiGO (𝑂3) where
𝑂4 ∉ {𝑂1, 𝑂2}. If NeiGL (𝐿1) ≠ ∅, the proof is the same as the original one; otherwise, there
is |ChGO (𝐿1) | ≥ 5 according to our new assumption, so ∃𝑂5 ∈ ChGO (𝐿1)\{𝑂1, 𝑂2, 𝑂3, 𝑂4}.
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Clearly, there are two non-intersecting treks 𝑂3 − 𝑂4 and 𝑂1 ← 𝐿1 → 𝑂5. Therefore,
there is no choke point between {𝑂1, 𝑂3} and {𝑂4, 𝑂5}.

3. Suppose PaGL (𝑂3) ≠ ∅ and PaGL (𝑂3) ≠ {𝐿1}, that is, ∃𝐿2 ∈ PaGL (𝑂3)\{𝐿1}. Then 𝐿2 has a
generalized pure child 𝑂4 ∈ O\{𝑂1, 𝑂2, 𝑂3} according to Assumption 1(a). If NeiGL (𝐿1) ≠
∅, the proof is the same as the original one; otherwise, there is |ChGO (𝐿1) | ≥ 5 according
to our new assumption, so ∃𝑂5 ∈ ChGO (𝐿1)\{𝑂1, 𝑂2, 𝑂3, 𝑂4}. Clearly, there are two non-
intersecting treks 𝑂3 ← 𝐿2 → 𝑂4 and 𝑂1 ← 𝐿1 → 𝑂5. Therefore, there is no choke point
between {𝑂1, 𝑂3} and {𝑂4, 𝑂5}.

Based on Theorem 5, we reach the conclusion that ∀𝑂 ∈ OC\{𝑂1, 𝑂2}, ({𝑂1, 𝑂},O\{𝑂1, 𝑂2, 𝑂})
does not satisfy the tetrad constraint. □

D DETAILS OF ALGORITHMS

The detailed versions of Algorithm 1, 2, and 3 are shown as Algorithm 5, 6, and 7. Besides, we also
provide two illustrative examples to show how each step proceeds.

𝐿3

𝑂9 𝑂10 𝑂11 𝑂12𝑂8

𝐿1

𝑂1 𝑂2 𝑂3

𝐿2

𝑂4 𝑂5 𝑂6

𝑂13 𝑂14

𝑂7

(a) G1

𝐿3

𝑂2 𝑂3

𝐿1 𝐿2

𝑂7 𝑂8

𝑂11 𝑂10

𝑂4𝑂1 𝑂5 𝑂6 𝑂9

𝑂12

(b) G2

Taking the causal model with structure G1 as an example of Case I, we show the procedures of
recovering the whole causal graph as follows.

1. Line 1 of Algorithm 1: find all candidate variables. Here OC = O.

2. Line 2 of Algorithm 1: find all generalized pure pairs. Here S =

{{𝑂1, 𝑂2}, {𝑂1, 𝑂3}, {𝑂2, 𝑂3}, {𝑂4, 𝑂5}, {𝑂6, 𝑂7}, {𝑂8, 𝑂9}, {𝑂11, 𝑂12}}.
3. Line 3 of Algorithm 1: identify as many pure pairs as possible. Since {𝑂1, 𝑂2} ∩
{𝑂1, 𝑂3} ≠ ∅ and {𝑂1, 𝑂2} ∩ {𝑂2, 𝑂3} ≠ ∅, 1pure ({𝑂1, 𝑂2}) = 1pure ({𝑂1, 𝑂3}) =

1pure ({𝑂2, 𝑂3}) = 1, for any other generalized pure pair 1pure (·) is -1.

4. Line 1 of Algorithm 2: discriminate pure pairs against pseudo-pure ones. Since
({𝑂6, 𝑂4},O\{𝑂4, 𝑂6, 𝑂7}) satisfies the tetrad constraint, 1pure ({𝑂6, 𝑂7}) = 0 and
Ref ({𝑂6, 𝑂7}) = 𝑂4. Similarly, we have 1pure ({𝑂8, 𝑂9}) = 0,1pure ({𝑂11, 𝑂12}) = 0
and Ref ({𝑂8, 𝑂9}) = 𝑂10,Ref ({𝑂11, 𝑂12}) = 𝑂10. Besides, 1pure ({𝑂4, 𝑂5}) = 1

5. Line 2 of Algorithm 2: check whether any two generalized pure pairs share a common
latent parent. Clearly, PaGL ({𝑂1, 𝑂2}) = PaGL ({𝑂1, 𝑂3}) = PaGL ({𝑂2, 𝑂3}) = {𝐿1},
PaGL ({𝑂4, 𝑂5}) = PaGL (𝑂4) = PaGL ({𝑂6, 𝑂7}) = {𝐿2}, and PaGL ({𝑂8, 𝑂9}) = PaGL (𝑂10) =
PaGL ({𝑂11, 𝑂12}) = {𝐿3}.

6. Pre-processing in Section 4.1: L = {𝐿1, 𝐿2, 𝐿3}, OD = {𝑂𝑖}12
𝑖=1, OU = {𝑂13, 𝑂14}.

The measured indicators of 𝐿1, 𝐿2 and 𝐿3 can be respectively {𝑂1, 𝑂2}, {𝑂4, 𝑂5} and
{𝑂8, 𝑂10}. Furthermore, we also create two auxiliary measured indicators for each vari-
able in OU.

7. Run Algorithm 4 to reveal causal relations between any two variables.

Taking the causal model with structure G2 as an example of Case II, we show the procedures of
recovering the whole causal graph as follows.

1. Line 1 of Algorithm 1: find all candidate variables OC. Here OC = O.
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2. Line 2 of Algorithm 1: find all generalized pure pairs S. Here S =

{{𝑂1, 𝑂2}, {𝑂3, 𝑂4}, {𝑂5, 𝑂6}, {𝑂7, 𝑂8}, {𝑂7, 𝑂9}, {𝑂8, 𝑂9}}.
3. Line 3 of Algorithm 1: identify as many pure pairs as possible. Since {𝑂7, 𝑂8} ∩
{𝑂7, 𝑂9} ≠ ∅ and {𝑂7, 𝑂8} ∩ {𝑂8, 𝑂9} ≠ ∅, 1pure ({𝑂7, 𝑂8}) = 1pure ({𝑂7, 𝑂9}) =

1pure ({𝑂8, 𝑂9}) = 1, for any other generalized pure pair 1pure (·) is -1.
4. Line 1 of Algorithm 3: discriminate pure pairs against pseudo-pure ones and convert each

pseudo-pure ones into a pure one. Since (𝑂1, 𝑂2) can make 𝑂3 + 𝛼𝑂4 + 𝛽𝑂1 ⫫ 𝑂3
hold and (𝑂7, 𝑂1) can make 𝑂5 + 𝛼𝑂6 + 𝛽𝑂7 ⫫ 𝑂5 hold, we have 1pure ({𝑂3, 𝑂4}) = 0
and 1pure ({𝑂5, 𝑂6}) = 0. Besides, we also have 1pure ({𝑂1, 𝑂2}) = 1. Then we convert
{𝑂3, 𝑂4} into {�̃�3, �̃�4} and {𝑂5, 𝑂6} into {�̃�5, �̃�6}

5. Line 2 of Algorithm 3: check whether two generalized pure pairs share a com-
mon latent parent. We have PaGL ({𝑂1, 𝑂2}) = PaGL ({𝑂3, 𝑂4}) = {𝐿1} since
({𝑂1, �̃�3}, {𝑂2, �̃�4}) satisfies the tetrad constraint, PaGL ({𝑂5, 𝑂6}) = {𝐿2}, and
PaGL ({𝑂7, 𝑂8}) = PaGL ({𝑂7, 𝑂9}) = PaGL ({𝑂8, 𝑂9}) = {𝐿3}.

6. Pre-processing in Section 4.1: L = {𝐿1, 𝐿2, 𝐿3}, OD = {𝑂𝑖}9𝑖=1, OU = {𝑂10, 𝑂11, 𝑂12}.
The measured indicators of 𝐿1, 𝐿2 and 𝐿3 can be respectively {𝑂1, 𝑂2}, {�̃�5, �̃�6} and
{𝑂7, 𝑂8}. Furthermore, we also create two auxiliary measured indicators for each variable
in OU.

7. Run Algorithm 4 to reveal causal relations between any two variables.
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Algorithm 5: Partially identifying latent variables under Assumption 1 (a detailed version).
Input: Observed variable O.
Output: Candidate variables OC, generalized pure pairs S, purity indicator function 1pure (·).

1 // Find all candidate variables.
2 OC := ∅;
3 for 𝑂1 ∈ O do
4 flag := 1.
5 for {𝑂2, 𝑂3} ⊂ O\{𝑂1} do
6 if ∀𝑂4 ∈ O\{𝑂1, 𝑂2, 𝑂3} s.t. 𝑂1 ⫫ 𝑂4 given some subset of {𝑂2, 𝑂3} then
7 flag := 0;
8 break
9 end

10 end
11 if flag = 1 then
12 OC := OC ∪ {𝑂1};
13 end
14 end
15 // Find all generalized pure pairs.
16 S = ∅;
17 for {𝑂1, 𝑂2} ⊂ OC do
18 if ∀{𝑂3, 𝑂4} ⊂ O\{𝑂1, 𝑂2},Cov(𝑂1, 𝑂4)Cov(𝑂2, 𝑂3) = Cov(𝑂1, 𝑂3)Cov(𝑂2, 𝑂4) then
19 S := S ∪ {{𝑂1, 𝑂2}}
20 end
21 end
22 // Identify as many pure pairs as possible;
23 for S ∈ S do
24 1pure (S) := −1;
25 end
26 for S ∈ S do
27 if ∃S′ ∈ S\{S} s.t. S ∩ S′ ≠ ∅ then
28 1pure (S) := 1
29 end
30 end
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Algorithm 6: Fully identifying latent variables in Case I (a detailed version).

Input: Observed variables O, candidate variables OC, generalized pure pairs S, purity indicator
function 1pure (·)

Output: Updated purity indicator function 1pure (·), sibling indicator function 1sib (·, ·).
1 // Discriminate pure pairs against pseudo-pure pairs.
2 for S = {𝑂1, 𝑂2} ⊂ S s.t. 1pure (S) = −1 do
3 for 𝑂3 ∈ OC\{𝑂1, 𝑂2} do
4 if ∀{𝑂4, 𝑂5} ⊂O\{𝑂1, 𝑂2, 𝑂3},Cov(𝑂1, 𝑂5)Cov(𝑂3, 𝑂4)=Cov(𝑂1, 𝑂4)Cov(𝑂3, 𝑂5)

then
5 1pure (S) := 0;
6 Ref (S) := 𝑂3;
7 else
8 1pure (S) := 1;
9 end

10 end
11 end
12 // Check whether two generalized pure pairs share a common latent parent.
13 for {S1,S2} ⊂ S do
14 1sib (S1,S2) := 0;
15 end
16 for {S1,S2} ⊂ S do
17 if 1pure (S1) = 1 and 1pure (S2) = 1 then
18 if S1 ∩ S2 ≠ ∅ or ∃S3 ∈ S\{S1,S2} s.t. S1 ∩ S3 ≠ ∅ and S2 ∩ S3 ≠ ∅ then
19 1sib (S1,S2) := 1;
20 end
21 else if 1pure (S1) = 0 and 1pure (S2) = 1 then
22 if Ref (S1) ∈ S2 or ∃S3 ∈ S\{S1,S2} s.t. Ref (S1) ∈ S3 and S2 ∩ S3 ≠ ∅ then
23 1sib (S1,S2) := 1;
24 end
25 else if 1pure (S1) = 1 and 1pure (S2) = 0 then
26 if Ref (S2) ∈ S1 or ∃S3 ∈ S\{S1,S2} s.t. Ref (S2) ∈ S3 and S1 ∩ S3 ≠ ∅ then
27 1sib (S1,S2) := 1;
28 end
29 else
30 if Ref (S1) ∈ Ref (S2) or ∃S3 ∈ S\{S1,S2} s.t. Ref (S1) ∈ S3 and Ref (S2) ∈ S3 then
31 1sib (S1,S2) := 1;
32 end
33 end
34 end
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Algorithm 7: Fully identifying latent variables in Case II (a detailed version).
Input: Observed variables O, generalized pure pairs S, purity indicator function 1pure (·)
Output: Updated purity indicator function 1pure (·), sibling indicator function 1sib (·, ·).

1 // Discriminate pure pairs against pseudo-pure pairs.
2 for S = {𝑂1, 𝑂2} ⊂ S s.t. 1pure (S) = −1 do
3 for (𝑂3, 𝑂4) ⊂ O\{𝑂1, 𝑂2} do
4 if 𝑂1 + 𝛼𝑂2 + 𝛽𝑂3 ⫫ 𝑂1 where 𝛼, 𝛽 satisfy Equation (2) and (3) then
5 1pure (S) =: 0, �̃�1 := 𝑂1, �̃�2 := 𝑂2 + 1

𝛼
𝑂1;

6 else if 𝑂2 + 𝛼𝑂1 + 𝛽𝑂3 ⫫ 𝑂2 where 𝛼, 𝛽 satisfy Equation (4) and (5) then
7 1pure (S) =: 0, �̃�1 := 𝑂1 + 1

𝛼
𝑂2, �̃�2 := 𝑂2;

8 else
9 1pure (S) =: 1;

10 end
11 end
12 end
13 // Check whether two generalized pure pairs share a common latent parent.
14 for {S1,S2} ⊂ S do
15 1sib (S1,S2) := 0;
16 end
17 for {S1,S2} ⊂ S do
18 if 1pure (S1) = 1 and 1pure (S2) = 1 then
19 if S1 ∩ S2 ≠ ∅ or ∃S3 ∈ S\{S1,S2} s.t. S1 ∩ S3 ≠ ∅ and S2 ∩ S3 ≠ ∅ then
20 1sib (S1,S2) := 1;
21 end
22 else if 1pure (S1) = 0 and 1pure (S2) = 1 then
23 if Cov(�̃�1, 𝑂4)Cov(�̃�2, 𝑂3) = Cov(�̃�1, 𝑂3)Cov(�̃�2, 𝑂4) then
24 1sib (S1,S2) := 1;
25 end
26 else if 1pure (S1) = 1 and 1pure (S2) = 0 then
27 if Cov(𝑂1, �̃�4)Cov(𝑂2, �̃�3) = Cov(𝑂1, �̃�3)Cov(𝑂2, �̃�4) then
28 1sib (S1,S2) := 1;
29 end
30 else
31 if Cov(�̃�1, �̃�4)Cov(�̃�2, �̃�3) = Cov(�̃�1, �̃�3)Cov(�̃�2, �̃�4) then
32 1sib (S1,S2) := 1;
33 end
34 end
35 end
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