
Under review as a conference paper at ICLR 2023

A PROOF OF THEOREM 1

In this section we provide the detailed proof for Theorem 1, based on Assumptions 1 and 2. Intu-
itively, that means the underlying implicit problem is solved with a converging fixed point method.
This condition is a basic requirement by numerical PDEs, and it generally holds true in many appli-
cations governed by nonlinear and complex PDEs, such as in our three experiments.

Here, we prove that the MetaP is universal, i.e., give a fixed point method satisfying Assumptions
1-2, one can find parameter sets θη whose output approximates Uη,∗ to a desired accuracy, ε > 0,
for all η = 1, · · · , H tasks. For the task-wise parameters, with a slight abuse of notation, we denote
P η ∈ RdhM×(dg+s)M as the collection of the pointwise weight matrices at each discretization point
in χ for the η-th task, and pη ∈ RdhM for the bias in the lifting layer. Then, for the parameters
shared among all tasks, in the iterative layer we denote C = [c(x1), · · · , c(xM)] ∈ RdhM as the
collection of pointwise bias vectors c(xi), W ∈ Rdh×dh for the local linear transformation, and
R = F [κ(·;v)] ∈ Cdh×dh×M ∈ Cdh×dh×M for the Fourier coefficients of the kernel κ. For
simplicity, here we have assumed that the Fourier coefficient is not truncated, and all available
frequencies are used. Then, for the projection layer we seek Q1 ∈ RdQM×dhM , Q2 ∈ RduM×dQM ,
q1 ∈ RdQM and q2 ∈ RduM . For the simplicity of notation, in this section we organize the feature
vector H ∈ RdhM in a way such that the components corresponding to each discretization point are
adjacent, i.e., H = [H(x1), · · · ,H(xM)] and H(xi) ∈ Rdh .

We point out that under this circumstance, we have the (discretized) iterative layer can be written as

J [H(l∆t)] =H(l∆t) + ∆tσ
(
W̃H(l∆t) + Re(F−1

∆x(R · F∆x(H(l∆t)))) +C
)

=H(l∆t) + ∆tσ (VH(l∆t) +C) ,

with

V := Re



M−1∑
n=0

Rn+1 +W
M−1∑
n=0

Rn+1 exp(
2iπ∆xn

M
) . . .

M−1∑
n=0

Rn+1 exp(
2iπ(M−1)∆xn

M
)

M−1∑
n=0

Rn+1 exp(
2iπ∆xn

M
)

M−1∑
n=0

Rn+1 +W . . .
M−1∑
n=0

Rn+1 exp(
2iπ(M−2)∆xn

M
)

...
...

. . .
...

M−1∑
n=0

Rn+1 exp(
2iπ(M−1)∆xn

M
)

M−1∑
n=0

Rn+1 exp(
2iπ(M−2)∆xn

M
) . . .

M−1∑
n=0

Rn+1 +W


.

Here, R ∈ CM×dh×dh with Ri ∈ Cdh×dh being the component associated with each discretization
point xi ∈ χ, V ∈ RdhM×dhM , C ∈ RdhM , W̃ := W ⊕W ⊕ · · · ⊕W is a dhM × dhM block
diagonal matrix formed by W ∈ Rdh×dh , F∆x and F−1

∆x denote the discrete Fourier transform and
its inverse, respectively. By further taking R2 = · · · = RM = W = 0, a dh × dh matrix with all its
elements being zero, it suffices to show the universal approximation property for an iterative layer
as follows:

J (H(l∆t)) := H(l∆t) + ∆tσ
(
ṼH(l∆t) +C

)
where Ṽ := 1[M,M] ⊗ V with V ∈ Rdh×dh and 1[m,n] being an m by n all-ones matrix.

To be more precise, we will prove the following theorem:

Theorem 1 (Universal approximation). Let Uη,∗ = [uη(x1),u
η(x2), . . . ,u

η(xM)] be the ground-
truth solution of η-th task that satisfies Assumptions 1-2, the activation function σ for all iterative
kernel integration layers be the ReLU function, and the activation function in the projection layer
be the identity function. Then for any ε > 0, there exist sufficiently large layer number L > 0 and
feature dimension number dh > 0, such that one can find a parameter set for the multi-task problem,
θη = [θηP , θI , θQ] with the corresponding MetaP model satisfies∣∣∣∣∣∣QθQ ◦ (JθI)L ◦ Pθη

P
([U0,Gη]T)−Uη,∗

∣∣∣∣∣∣ ≤ ε, ∀Gη ∈ RM .

For the proof of this main theorem, we need the following approximation property of a shallow
neural network, with its detailed proof provided in You et al. (2022c):

14

Under review as a conference paper at ICLR 2023

Lemma 1. Given a continuous function T : R2M 7→ RM , and a non-polynomial and continuous
activation function σ, for any constant ε̂ > 0 there exists a shallow neural network model T̂ :=
Sσ (BX+A) such that

||T (X)− T̂ (X)||l2(RM) ≤ ε̂, ∀X ∈ R2M ,

for sufficiently large feature dimension d̂ > 0. Here, S ∈ RM×d̂M , B ∈ Rd̂M×2M , and A ∈ Rd̂M

are matrices/vectors which are independent of X.

We now proceed to the proof of Theorem 1:

Proof. Since all Uη,∗ satisfies Assumptions 1-2, for any ε > 0, we first pick a sufficiently large
integer L such that the L-th layer iteration result of this fixed point formulation satisfies ||UL −
Uη,∗||l2(RM) ≤ ε

2 for all tasks. By taking ε̂ := mε
2(1+m)L

in Lemma 1, there exists a sufficiently

large feature dimension d̂ and one can find S ∈ RM×d̂M , B ∈ Rd̂M×2M , and A ∈ Rd̂M , such that
R̂(Uη, G̃η) := Sσ(B[Uη, G̃η]T +A) satisfies

||R(Uη, G̃η)−R̂(Uη, G̃η)||l2(RM) = ||R(Uη, G̃η)−Sσ(B[Uη, G̃η]T+A)||l2(RM) ≤ ε̂ =
mε

2(1 +m)L
,

where m is the contraction parameter of R, as defined in Assumption 1. By this construction, we
know that S has independent rows. Denoting d̃ := d̂ + 1 > 0, there exists the right inverse of S,
which we denote as S+ ∈ R(d̃−1)M×M , such that

SS+ = IM , S+S := Ĩ(d̃−1)M ,

where IM is the M by M identity matrix, Ĩ(d̃−1)M is a (d̃ − 1)M by (d̃ − 1)M block matrix

with each of its element being either 1 or 0. Hence, for any vector Z ∈ R(d̃− 1)M , we have
σ(Ĩ(d̃−1)MZ) = Ĩ(d̃−1)Mσ(Z). Moreover, we note that S has a very special structure: from the

((i − 1)(d̃ − 1) + 1)-th to the (i(d̃ − 1))-th column of S, all nonzero elements are on its i-th row.
Correspondingly, we can also choose S+ to have a special structure: from the ((i−1)(d̃−1)+1)-th
to the (i(d̃−1))-th row of S+, all nonzero elements are on its i-th column. Hence, when multiplying
S+ with U, there will be no entanglement between different components of U. That means, S+ can
be seen as a pointwise weight function.

We now construct the MetaP as follows. In this construction, we choose the feature dimension as
dh := d̃M . With the input [U0,Gη] ∈ R2M , for the lift layer we set

P η := 1[M,1] ⊗
[
S+ 0
0 Dη

]
=

[
S+ 0 S+ 0 · · · S+ 0
0 Dη 0 Dη · · · 0 Dη

]T
︸ ︷︷ ︸

repeated for M times

∈ RdhM×2M ,

and pη := 0 ∈ RdhM . Here, Dη := diag[1/F1[b
η](x1), · · · , 1/F1[b

η](xM)]. As such, the initial
layer of feature is then given by

H(0) = P η([U0,Gη]T) = 1[M,1] ⊗ [S+U0, DηGη]T = 1[M,1] ⊗ [S+U0, G̃η]T ∈ RdM .

Here, we point out that P η and pη can be seen as pointwise weight and bias functions, respectively.

Next we construct the shared iterative layer J , by setting

V :=

[
Ĩ(d̃−1)MB/M

0

] [
S/∆t 0
0 IM/∆t

]
, Ṽ := 1[M,M]⊗V, and C := 1[M,1]⊗

[
Ĩ(d̃−1)MA/∆t

0

]
.

Note that Ṽ is independent of η, and falls into the formulation of V , by letting R1 = V and
R2 = R2 = · · · = RM = W = 0. For the l + 1-th layer of feature vector, we then arrive
at

H((l + 1)∆t) = H(l∆t) + ∆tσ
(
ṼH(l∆t) +C

)
=H(l∆t) +

(
IM ⊗

[
S+S 0
0 IM

])
σ

((
1[M,1] ⊗

[
B/M
0

])(
1[1,M] ⊗

[
S 0
0 IM

])
H(l∆t) + 1[M,1] ⊗

[
A
0

])
,

15

Under review as a conference paper at ICLR 2023

where H(l∆t) = [ĥl∆t
1 , ĥl∆t

2 , . . . , ĥl∆t
2M−1, ĥ

l∆t
2M]T denotes the (spatially discretized) hidden layer

feature at the l−th iterative layer of the IFNO. Subsequently, we note that the second part of the
feature vector, ĥl∆t

2j ∈ RM , satisfies

ĥ
(l+1)∆t
2j = ĥl∆t

2j = · · · = ĥ0
2j = G̃η, ∀l = 0, · · · , L− 1,∀j = 1, · · · ,M

Hence, the first part of the feature vector, ĥl∆t
2j−1 ∈ R(d̃−1)M , satisfies the following iterative rule:

ĥ
(l+1)∆t
2j−1 = ĥl∆t

2j−1 + S+Sσ(B[Sĥl∆t
2j−1, G̃

η]T +A), ∀l = 0, · · · , L− 1,∀j = 1, · · · ,M,

and
ĥ
(l+1)∆t
1 = ĥ

(l+1)∆t
3 = · · · = ĥ

(l+1)∆t
2M−1 .

Finally, for the projection layer Q, we set the activation function in the projection layer as the
identity function, Q1 := IdhM (the identity matrix of size dhM), Q2 := [S,0] ∈ RM×dhM ,
q1 := 0 ∈ RdhM , and q2 := 0 ∈ RM . Denoting the output Uη := QθQ◦(JθI)L◦Pθη

P
([U0,Gη]T),

we now show that Uη can approximate Uη,∗ with a desired accuracy ε:
||Uη −Uη,∗|| ≤ ||Uη −UL||l2(RM) + ||UL −Uη,∗||l2(RM)

≤ ||SĥL∆t
1 −UL||l2(RM) +

ε

2
(by Assumption 2)

≤ ||Sĥ(L−1)∆t
1 −UL−1||l2(RM) + ||R̂(Sĥ

(L−1)∆t
1 , G̃)−R(UL−1, G̃)||l2(RM) +

ε

2

≤ ||Sĥ(L−1)∆t
1 −UL−1||l2(RM) + ||R̂(Sĥ

(L−1)∆t
1 , G̃b)−R(Sĥ

(L−1)∆t
1 , G̃b)||l2(RM)

+ ||R(Sĥ
(L−1)∆t
1 , G̃b)−R(UL−1, G̃b)||l2(RM) +

ε

2

≤ (1 +m)||Sĥ(L−1)∆t
1 −UL−1||l2(RM) +

mε

2(1 +m)L
+

ε

2
(by Lemma 1 and Assumption 1)

≤ mε

2(1 +m)L
(1 + (1 +m) + (1 +m)2 + · · ·+ (1 +m)L−1) +

ε

2

≤ ε

2
+

ε

2
= ε.

B DATA GENERATION AND TRAINING DETAILS

In the following we briefly describe the empirical process of generating datasets,
and the settings employed in running of each algorithm. For a fair comparison,
for each algorithm, we tune the hyperparameters, including the learning rate from
{0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001}, the decay rate from {0.5, 0.7, 0.9}, the weight
decay parameter from {0.01, 0.001, 0.0001, 0.00001, 0.000001}, and the inner loop learning rate
for MAML and ANIL from {0.01, 0.001, 0.0001, 0.00001, 0.000001}, to minimize the error on a
separate validation dataset. In all experiments we decrease the learning rate with a ratio of learning
rate decay rate every 100 epochs. The code and the processed datasets will be publicly released at
github for readers to reproduce the experimental results.

B.1 EXAMPLE 1: SYNTHETIC DATA SETS

B.1.1 DATA GENERATION

In the synthetic data example, we consider the modeling problem of a hyperelastic, anisotropic,
fiber-reinforced material, and seek to find its displacement field u : [0, 1]2 → R2 under different
boundary loadings. In this problem, the specimen is assumed to be subject to a uniaxial tension
Ty(x) on the top edge (see Figure 4(a)). To generate training and test samples, the Holzapfel-Gasser-
Odgen (HGO) model (Holzapfel et al., 2000) was employed to describe the constitutive behavior of
the material in this example, with its strain energy density function given as:

η =
E

4(1 + ν)
(I1 − 2)− E

2(1 + ν)
ln(J)

+
k1
2k2

(
exp (k2⟨S(α)⟩2) + exp (k2⟨S(−α)⟩2)− 2

)
+

E

6(1− 2ν)

(
J2 − 1

2
− ln J

)
.

16

Under review as a conference paper at ICLR 2023

Figure 4: Problem setup of example 1: the synthetic data sets. (a) A unit square specimen subject to
uniaxial tension with Neumann-type boundary condition. (b) & (c) Visualization of an instances of
the loading field Ty(x), and the corresponding ground-truth solutions uη(x) from the in-distribution
and out-of-distribution tasks, showing the solution diversity across different tasks, due to the change
of underlying hidden material parameter set.

17

Under review as a conference paper at ICLR 2023

Here, ⟨·⟩ denotes the Macaulay bracket, and the fiber strain of the two fiber groups is defined as:

S(α) =
I4(α)− 1 + |I4(α)− 1|

2
.

where k1 and k2 are fiber modulus and the exponential coefficient, respectively, c10 is the moduli for
the non-fibrous ground matrix, E is the Young’s modulus, and ν is the Poisson ratio. Moreover, I1 =
tr(C) is the is the first invariant of the right Cauchy-Green tensor C = FTF, F is the deformation
gradient, and J is related with F such that J = detF. For the fiber group with angle direction α from
the reference direction, I4(α) = nT (α)Cn(α) is the fourth invariant of the right Cauchy-Green
tensor C, where n(α) = [cos(α), sin(α)]T . To generate samples for different specimens,different
specimens (tasks) correspond to different material parameter sets, {k1, k2, E, ν, α}. For the training
tasks, the validation task, and the in-distribution (ID) test task, their physical parameters are sampled
from: k1, k2 ∼ U [0.1, 1], E ∼ U [0.55, 1.5], ν ∼ U [0.01, 0.49], and α ∼ U [π/10, π/2]. For the two
out-of-distribution (OOD) test tasks, we sample their parameters following k1, k2 ∼ U [1, 1.9], E ∼
U [1.5, 2]∪U [0.5, 0.55], ν ∼ U [0.01, 0.49]4, and α ∼ U [π/2, 3π/4]∪[0, π/10]. To generate the high-
fidelity (ground-truth) dataset, we sampled 500 different vertical traction conditions Ty(x) on the top
edge from a random field, following the algorithm in Lang & Potthoff (2011); Yin et al. (2022b). In
particular, Ty(x) is taken as the restriction of a 2D random field, ϕ(x) = F−1(γ1/2F(Γ))(x), on the
top edge. Here, Γ(x) is a Gaussian white noise random field on R2, γ = (w2

1 +w2
2)

− 5
4 represents a

correlation function, and w1, w2 are the wave numbers on x and y directions, respectively. Then, for
each sampled traction loading, we solved the displacement field on the entire domain by minimizing
potential energy using the finite element method implemented in FEniCS (Alnæs et al., 2015). In
particular, the displacement filed was approximated by continuous piecewise linear finite elements
with triangular mesh, and the grid size was taken as 0.025. Then, the finite element solution was
interpolated onto χ, a structured 41 × 41 grid which will be employed as the discretization in our
neural operators.

To visualize the domain characteristics for tasks, the distribution of each parameter for training,
validation and test tasks are demonstrated in Figure 5, and the corresponding solution fields are
plotted in Figure 4(c), showing the diversity across different tasks due to the change of underlying
hidden material parameter set, {k1, k2, E, ν, α}. From Figures 5 and 4(c), one can see that OOD
Task1 corresponds a stiffer material (with large Young’s modulus E) and hence smaller deformation
subject to the same loading Ty(x). On the other hand, OOD Task2 corresponds a softer material
(with small Young’s modulus E) and larger deformation. Therefore, the material response of OOD
Task1 specimen is more likely to lie in a linear region, which is easier to learn and explains the
relatively small test error on this task. On the other hand, the material response of OOD Task2 is
more nonlinear and hence complex due to larger deformation, as shown in Figure 4(c), and results
in the relatively larger test error in Figure 2.

B.1.2 ALGORITHM SETTINGS

Base model: As the base model for all algorithms, we construct an architecture for IFNO (You
et al., 2022c) as follows. First, the input loading field instance g(x) ∈ A is lifted to a higher
dimensional representation via lift layer P[g](x), which is parameterized as a 1-layer feed for-
ward linear layer with width (3,32). Then for the iterative layer in equation 1, we implement
F−1[F [κ(·;v)] · F [h(·, l∆t)]](x) with 2D fast Fourier transform (FFT) with input channel and
output channel widths both set as 32 and the truncated Fourier modes set as 8. The local lin-
ear transformation parameter, W , is parameterized as a 1-layer feed forward network with width
(32,32). In the projection layer, a 2-layer feed forward network with width (32,128,2) is employed.
To accelerate the training procedure, we apply the shallow-to-deep training technique to initialize
the optimization problem. In particular, we start from the NN model with depth L = 1, train until
the loss function reaches a plateau, then use the resultant parameters to initialize the parameters for
the next depth, with L = 2, L = 4, and L = 8. In the synthetic experiments, we set the layer depth
as L = 8.

MetaP: We split the total 60 training tasks to two groups: 59 tasks for the purpose of training and 1
task for the purpose of validation. During the meta-train phase, we train for the task-wise parameters

4Here we sample both ID and OOD tasks from the same range of ν, due to the fact that [0.01, 0.49] is the
range of Poisson ratio for common materials (Bischofs & Schwarz, 2005).

18

Under review as a conference paper at ICLR 2023

Figure 5: Distribution of physical parameters of different tasks, and the resultant magnitude of
material response, ||uη(x)||L2(Ω), on an exemplar loading instance shown in Figure 4(b).

19

Under review as a conference paper at ICLR 2023

θηP and the common parameters θI and θQ on all 59 tasks, with the context set of 500 samples on
each task. After meta-train phase, we load θI and θQ and the averaged θηP among all 59 tasks as
initialization, then tune the hyperparameters based on the validation task. In particular, the 500
samples on the validation task is split into two parts: 300 samples are reserved for the purpose of
training (as the context set) and the rest 200 samples are used for evaluation (as the target set). Then
we train for the lift layer on the validation task, and tune the learning rate, the decay rate, and the
weight decay parameter for different context set sizes (N test), to minimize the loss on the target set.
Based on the chosen hyperparameters, we perform the test on the test task by training for the lift
layer on different numbers of samples on its context set, then evaluate and report the performance
based on its target set. We repeat the procedure on the test task with selected hyperparemeters with
different 5 random seeds, and calculate means and standard errors for the resultant test errors on
target set.

MAML&ANIL: For MAML and ANIL, we use the same architecture as the base model, and also
split the training tasks for the purpose of training and validation as in MetaP. During the meta-
train phase, for each task we randomly split the available 500 samples to two sets: 250 samples
in the support set used for inner loop updates, and the rest in the target set for outer loop updates.
During the inner loop update, we train for the task-wise parameter with one epoch, following the
standard settings of MAML and ANIL (Finn et al., 2017; Raghu et al., 2019). Then, the model
hyperparameters, including the learning rate, weight decay, decay rate, and inner loop learning rate,
are tuned. In the meta-test phase, we load the initial parameter and train for all parameters (in
MAML) or the last-layer parameters (in ANIL) until the optimization algorithm converges. Similar
as in MetaP, we first tune the hyperparameters on the validation task, then evaluate the performance
on the test task.

B.2 EXAMPLE 2: MECHNICAL MNIST

B.2.1 DATA SETTINGS

Mechanical MNIST is a benchmark dataset of heterogeneous material undergoing large deformation,
modeld by the Neo-Hookean material with a varying modulus converted from the MNIST bitmap
images (Lejeune, 2020). In this example, we randomly select 102 specimens corresponding to the
hand-written number “1”. On each specimen, we have 32 loading/response data pairs on a structured
27 by 27 grid, under the uniaxial extension, shear, equibiaxial extension, and confined compression
load scenarios, respectively. All 102 specimens are splitted into three groups: 100 specimens for the
purpose of training in the meta-train stage, 1 specimen for validation, and 1 specimen for test. On
the validation and test tasks, we reserve a target set consisting of 20 data pairs for the purpose of
evaluation, then use the rest as the context set.

B.2.2 ALGORITHM SETTINGS

Base model: As the base model for all algorithms, we construct two IFNO architectures, for the
prediction of ux and uy , the displacement fields in the x- and y-directions, respectively. On each
architecture, the input loading field instance g(x) ∈ A is mapped to a higher dimensional repre-
sentation via a lifting layer P[g](x) parameterized as a 1-layer feed forward linear layer with width
(4,64). Then for the iterative layer in equation 1, we set the number of truncated Fourier mode as 13,
and parameterize the local linear transformation parameter, W , as a 1-layer feed forward network
with width (64,64). In the projection layer, a 2-layer feed forward network with width (64,128,1) is
employed. In this example we also apply the shallow-to-deep technique to accelerate the training,
and set the layer depth as L = 8.

MetaP: During the meta-train phase, we train for the task-wise parameters θηP and the common
parameters θI and θQ on all 100 training tasks, with the context set of 32 samples on each task. After
the meta-train phase, we load θI and θQ and the averaged θηP among all 100 tasks as initialization,
then train for θP on the validation task. In particular, the 32 samples on the validation task is split
into two parts: 12 samples are reserved for the purpose of training (as the context set) and the rest
20 samples are used for the purpose of evaluation (as the target set). Then we train for the lift layer
on the validation task, and tune the learning rate, the decay rate, and the weight decay parameter
for different context set sizes (N test), to minimize the loss on the target set. Based on the chosen
hyperparameters, we perform the meta-test phase on the test task by training for the lift layer on

20

Under review as a conference paper at ICLR 2023

Figure 6: Visualization of the processed dataset in example 3: learning the biological tissue re-
sponses. Subject to the same loading instance, different columns show the corresponding ground-
truth solutions uη(x) from different tasks, showing the solution diversity across different tasks due
to the change of underlying hidden material parameter field.

different numbers of samples on its context set, then evaluate and report the performance based on
its target set.

MAML&ANIL: For MAML and ANIL, we use the same architecture as the base model, and also
split the training tasks for the purpose of training and validation as in MetaP. During the meta-train
phase, for each task we randomly split the available 32 samples to two sets: 16 samples in the
support set used for inner loop updates, and the rest in the target set for outer loop updates. During
the inner loop update, we also follow the standard settings of MAML and ANIL (Finn et al., 2017;
Raghu et al., 2019), and tune the hyperparameters following the same procedure as elaborated above
for Example 1.

B.3 EXAMPLE 3: EXPERIMENTAL MEASUREMENTS ON BIOLOGICAL TISSUES

B.3.1 DATA GENERATION

We now briefly provide the data generation procedure for the tricuspid valve anterior leaflet (TVAL)
response modeling example. In this problem, the constitutive equations and material microstructure
are both unknown, and the dataset has unavoidable measurement noise. To generate the data, we
firstly followed the established biaxial testing procedure, including acquisition of a healthy porcine
heart and retrieval of the TVAL Ross et al. (2019); Laurence et al. (2019). Then, we sectioned the
leaflet tissue and applied a speckling pattern to the tissue surface using an airbrush and black paint
Zhang & Arola (2004); Lionello & Cristofolini (2014); Palanca et al. (2016). The painted specimen
was then mounted to a biaxial testing device (BioTester, CellScale, Waterloo, ON, Canada). To
generate samples for each specimen, we performed 7 protocols of displacement-controlled testing
to target various biaxial stresses: P11 : P22 = {1 : 1, 1 : 0.66, 1 : 0.33, 0.66 : 1, 0.33 : 1, 0.05 :
1, 1 : 0.1}. Here, P11 and P22 denote the first Piola-Kirchhoff stresses in the x- and y-directions,
respectively. Each stress ratio was performed for three loading/unloading cycles. Throughout the
test, images of the specimen were captured by a CCD camera, and the load cell readings and actuator
displacements were recorded at 5 Hz. After testing, the acquired images were analyzed using the
digital image correlation (DIC) module of the BioTester’s software. The pixel coordinate locations
of the DIC-tracked grid were then exported and extrapolated to a 21 by 21 uniform grid.

In this example, we have the DIC measurements on 14 specimens, with 500 data pairs of loadings
and material responses from the 7 protocols on each specimen. These specimens are divided into
three groups: 12 for the purpose of meta-train, 1 for validation, and 1 for test. To demonstrate the

21

Under review as a conference paper at ICLR 2023

diversity of these specimens due to the material heterogeneity in biological tissues, in Figure 6 we
plot the processed displacement field of two exemplar training specimens and the validation and test
specimens.

B.3.2 ALGORITHM SETTINGS

Base model: As the base model, we first construct the lifting layer as a 1-layer feed forward linear
layer with width (4,16). Then for the iterative layer in we keep 8 truncated Fourier modes and pa-
rameterize the local linear transformation parameter, W , a 1-layer feed forward network with width
(16,16). In the projection layer, a 2-layer feed forward network with width (16,64,1) is employed.
We construct two 4-layer IFNO architectures, for the prediction of ux and uy , the displacement
fields in the x- and y-directions, respectively.

MetaP: During the meta-train phase, we train for the task-wise parameters θηP and the common
parameters θI and θQ on all 12 tasks, with the context set of 500 samples on each task. After meta-
train phase, we load θI and θQ and the averaged θηP among all 12 tasks as initialization, then tune the
hyperparameters based on the validation task. In particular, the 500 samples on the validation task is
splited into two parts: 300 samples are reserved for the purpose of training (as the context set) and
the rest 200 samples are used for evaluation (as the target set). Based on the chosen hyperparameters,
we perform the test on the test task by training for the lift layer on different numbers of samples on
its context set, then evaluate and report the performance based on its target set.

MAML&ANIL: For MAML and ANIL, we use the same architecture as base model, and also split
the training tasks for the purpose of training and validation as in MetaP. During the meta-train phase,
for each task we randomly split the available 500 samples to two sets: 250 samples in the support
set used for inner loop updates, and the rest in the target set for outer loop updates. During the inner
loop update, we train for the task-wise parameter with one epoch, following the standard settings of
MAML and ANIL (Finn et al., 2017; Raghu et al., 2019).

22

	Proof of Theorem 1
	blueData Generation and Training Details
	blueExample 1: Synthetic Data Sets
	blueData Generation
	blueAlgorithm Settings

	blueExample 2: Mechnical MNIST
	blueData Settings
	blueAlgorithm Settings

	blueExample 3: Experimental Measurements on Biological Tissues
	blueData Generation
	blueAlgorithm Settings

