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A Appendices

A.1 Proof of Lemma 1
Proof 1 One can set derivative of Equation (3) with respect to Z to zero and get the optimal Z as:

2|1z — AE|Z +ntr (zTLz)]

By 0 = Z E+nLZ =0 (15)

Note that det(I + nL) > 0, thus matrix {1 + nL}~! exists. Then the corresponding closed-form
solution can be written as:

Z=((1+nI-nA)'AE (16)

Since %ﬂ < 1 forVn > 0, and matrix A has absolute eigenvalues bounded by 1, thus, all its positive

powers have bounded operator norm, then the inverse matrix can be decomposed as follows with
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Note that ﬁ + (1—;"@)2 +-+ (J{j:n;)lh + - -+ = 1 and we can change the coefficient € (0,00) to
fit fusion weights a1, o, - - -, ae. When the layer K is large enough, the propagation mechanism of

LightGCN in Equation (3) approximately corresponds to the objective Equation (4).

“The corresponding author. Code: https://github.com/yifeiacc/LogDet4Rec/
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A.2 Proof of Lemma 2

Proof 2 First, let us take the gradient of tr (ZTLZ) with respect to the input matrix E and denote
Z = AE where A = Zi{:l oAk,
aﬁsmooth - otr (ZTLZ)
oE OE
tr ((AE)TL(AE))
- OE
=2ALAE
=2QE.

(18)

Treat the weight matrix as a function of the training step t, i.e., E = E(t), then we can derive the

gradient of E(t) with respect to t by d]g—it) = 2QE. As both Q are fixed, we can solve the equation
analytically,

E(t) = exp(2Q¢) - E(0). (19)
As we have the non-ascending eigenvalues of Q as /\(1Q > )\(QQ > > /\3, we can define an auxiliary
function f (t' A\Q )\Q> = exp ()\?t) / exp ()\?t) — P3N It is obvious that f (t' A\Q )\Q>

» N N » N N
is monotonically decreasing for all i > j. As E(t) is a transformation of its initial state E(0) up to
exp(Qt), we can conclude that:

E E
o) o) gy and i > g,
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Let the spectrum be following the descending order. Then we have lim;_, o f (t; )\?, )\?) =0,Vi >
JIAE AT

Notice the above expression analyses the decay of spectrum for matrix exp(2Qt). Thus, assume E(0)
is a full-rank matrix. Then

rank(exp(2Qt) - E(0)) < min [ rank(exp(2Qt), rank(E(0))]
due to the well-known inequality stating that rank(XY) < min (rank(X), rank(Y)).

A.3 Proof of Corollary 2

Imagine that 3, = diag([1, 0.1]). Let AX;, = diag(]0, —0.1]) then log det (3, + Xy/) = log A +
log A2 = log 14+1og 0 = —00 50 Logdet = 00. In contrast, for L, pr we have (A1 —1)2+(A2—1)? =
0.81. If 10 user feature vectors f(u) = diag([1,0.31]) are in relation with 10 item feature vectors
f(i) = diag([1,0.0]), it is easy to see that 10 - 0.31% ~ 1 which means the alignment loss is better
off with the dimensional collapse for L4, s; as 1 > 0.81. For the LogDet penalty however we have
1 < 0.

A.4 Proof of Lemma 3
We have the following:
Proof 3

Dy, (X, I) = tr(X) —logdet(X) — d = (N —logA; —1). (20)
i=1
Now, x — logx > 1 with equality at x = 1. Also, x — logxz > logz + 1 — log 4 with equality at
x = 2. Letting A\1 > Ao -+ > Ag > 0, we have:
D,y (X, 1) > (log Ay +1 —log4) — (log A\g + 1)
= Cond(X) < 4exp Dy, (X,I)

Thus, LogDet yields an upper bound on the condition number.
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A.5 Detailed Settings

For the general settings, we create the user and item embeddings with the Xavier initialization
of dimension 64; we use Adam to optimize all the models with the learning rate 0.001; the 5
regularization coefficient 10~* and the batch size 2048 are used, which are common in many
papers [15, 43, 42]. In SimGCL and SGL, we empirically set the temperature 7 = (.2 as this value
is often reported the best choice in papers on CL [43, 40]. An exception is that we let 7 = 0.15
for XSimGCL on Yelp2018, which brings a slightly better performance. Note that although the
paper of SGL [43] uses Yelp2018 and Alibaba-iFashion as well, we cannot reproduce their results
on Alibaba-iFashion with their given hyperparameters under the same experimental setting. So we
re-search the hyperparameters of SGL and choose to present our results on this dataset in Table 3.

A.6 Dataset Statistics

Table 6: Dataset statistics.

Dataset #User  #Item #Feedback Density

Yelp2018 31,668 38,048 1,561,406  0.13%
Amazon-Kindle 138,333 98,572 1,909,965 0.014%
Alibaba-iFashion 300,000 81,614 1,607,813  0.007%

A.7 Effective Rank

Definition 2 (Effective Rank.) Consider matrix X € R™*™ whose singular value decomposition is
givenby X =U VT where X isa diagonal matrix with singular values o1 > 09 > --- > 09 > 0
with Q = min{m,n}. The distribution of singular values is defined as the ¢,-norm normalized

formp;, =0o;/ Egzl |ok|. The effective rank of the matrix X, denoted as erank (X), is defined as
erank(X) = exp (H (p1,p2, -+ ,pq)), where H (p1,p2, -+ ,pq) is the Shannon entropy given by

H (p1.p2,-- .pQ) = —Z;;Qﬂ Pk log pi.

A.8 Comparison of Runtimes with the Riemannian Metric

The main advantage of Dy, , over the Riemannian metric Dg (such as AIRM [10] and LERM [10])
is its computational speed. To compute Dy, ,, only determinants need to be computed, which can
be efficiently achieved with Cholesky factorization (for 3;,37) at a cost of %d‘rﬂ flops [12]. On
the other hand, computing the Riemannian metric requires generalized eigenvalues, which takes
around 4d? flops for positive definite matrices. Therefore, in general, D, , is much faster to compute
(see Table 7b). This speed advantage becomes even more pronounced when computing gradients.
Moreover, backpropagation through the matrix determinant is generally stable whereas generalized
eigenvalue decomposition suffers undetermined gradients if two eigenvalues are non-simple (equal
values). As shown in Table 7a, computing 9D, can be over 100 times faster than D¢r. This
difference can be crucial when using gradient-based algorithms, such as neural networks, that rely on
the computation of similarity measure gradients.

Table 7: Runtime computed over 1000 trials (millisecs/trial).

(a) Average times to compute gradients. (b) Average times to compute function values.
4 OxDa(X,I)  OxDgy, (X,1) d Da(X.1) Dy, (X,1)
5 0.79815+0.0934 0.036+0.009 5 0.025 +o0.012 0.030+0.007
10 2.38341+0.2004 0.058+0.021 10 0.036 +0.005 0.040+0.009
20 7.49365+0.5954 0.110+0.013 20 0.085 -+ 0.006 0.061+0.009
40 24.8942+1.1264 0.270+0.047 40 0.270 + 0332 0.123+0.012
80 99.4825+5.1813 0.921+0.028 80 1.234 + 0055 0.393+0.050
200 698.813+39.602 8.767+2.137 200 8.198 +o0.129 2.22340.169
500 6377.22+379.11 94.83+1.195 500 77.311 0568  22.18+1223
1000  40443.0+2827:2 622.2437.70 1000  492.743 + 1551 119.7+1.416
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A.9 Performance Comparison w.r.t. to Different Distance Types

Table 8: Main comparison on different distances. & denotes the Matrix Norm and & denotes the
Bregman Matrix Divergence. KL Matrix Div. is Bergman Div. associated with ¢(X) = >, X;log A;.

Geometries D(Sx,T) Yelp2018 iFashion
Recall@20 NDCG@20 Recall@20 NDCG@20
Euclidean Norm & 1Zx —I||2 0.0563 0.0459 0.0890 0.0404
Nuclear Norm & [|Zx — 1|« 0.0632 0.0516 0.0998 0.0458
Frobenius Norm & ||Zx —I||r 0.0709 0.0592 0.1112 0.0580
KL Matrix Div. & tr (X x log Xx) 0.0724 0.0602 0.1110 0.0597
Logdet Div. & —logdet (Zx) 0.0732 0.0618 0.1270 0.0617

In this section, we adopt other types of distances as in Equation (11) and compare them with proposed
method. There are two different categories (1) the matrix norm, i.e., Euclidean Norm, Nuclear Norm,
and Forbenius Norm, and (2) the Bregman divergence, i.e., von Neumann divergence (also known
as Matrix Kullback-Leibler divergence) and Logdet divergence. The Forbenius norm can belong to
both matrix norm and Bregman Matrix divergence. We show their formulas and experimental result
in Table 8. We notice that the proposed method (Logdet Div.) achieves the best results.

Table 9: Result for Recall@5, Recall@ 10, and Recall@20.

Dataset Model Recall@5 Recall@10 Recall@20

GCF,oget 0.0275 0.0445 0.0732
Yelp2018  DirectAU 0.0255 0.0426 0.0720
LightGCN  0.0211 0.0336 0.0590
GCF,oget 0.0301 0.0483 0.0617
iFashion  DirectAU 0.0292 0.0493 0.0601
LightGCN  0.0284 0.0391 0.0484

A.10 Broader impact and limitations

Our method enjoys impact and limitations similar to those in graph collaborative filtering. Typical
GCF models cannot guarantee they can utilize the feature space efficiently. The mode collapse can lead
to frequent item bias resulting in a model which is biased in its recommendations. Thus, by improving
recommendation of rare items we also offer a generic approach to limiting the recommendation bias
which is important in many domains of life. Our method requires no special resources and just a
fraction of additional computations beyond what GCF uses. Of course, our model is limited by the
GCF model itself and it is applicable only to pipelines that suffer the mode collapse.
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