
Convex Polytope Trees: Appendix

A Proofs

In this section, we show why the splitting function at each internal node results in a convex set
confined within a convex polytope. We start by proving a lemma which is needed to prove the main
theorem.
Lemma 1. For any {ri,�i}

K
i=1, such that ri 2 R+ and �i 2 Rd, the function:

g(x) :=
KX

i=1

ri ln (1 + e�
0
ix) (18)

is convex over its domain Rd.

Proof. Since the sum of convex functions is also convex, it suffice to show each term of g is a convex
function. We demonstrate this by using the following theorem: “A function is convex iff its second
derivative is a positive semi-definite matrix over the domain.” One can omit ri’s in the following
calculations because a positive scalar does not change the convexity.

The fist derivative of each term is:

@ ln (1 + e�
0
ix)

@x
=

e�
0
ix

e�
0
ix + 1

�0
i (19)

and by taking the derivative of the above vector, we will have:

@2 ln (1 + e�
0
ix)

@x2
=

e�
0
ix

(e�
0
ix + 1)2

�i�
0
i (20)

where �i�
0
i is a matrix in Rd

⇥ Rd. Since the scalar e�
0
ix

(e�
0
ix+1)2

is positive for any x, we just need to

show the matrix �i�
0
i is positive semi-definite. To that end, we prove for any v 2 Rd:

v0(�i�
0
i)v � 0.

And, that can be shown by:

v0(�i�
0
i)v = (v0�i) · (�

0
iv) = (�0

iv)
0
· (�0

iv) = k�0
ivk

2
� 0.

Therefore the proof of the lemma is complete.

Theorem 1. For any {ri,�i}
K
i=1, such that ri 2 R+ and �i 2 Rd, let:

Aleft = {x |x 2 Rd, f(x)  qthr}, where:f(x) = 1� e�
PK

i=1 ri ln (1+e�
0
ix) (4)

then Aleft is a convex set, confined by a convex polytope.

Proof. We start by showing Aleft is a convex set. Note that, due to the duality

x 2 Aleft () f(x)  qthr (21)

By the definition of a convex set, we just need to prove the following:

8t 2 [0, 1], 8x1,x2 2 Rd if f(x1), f(x2)  qthr =) f(tx1 + (1� t)x2)  qthr. (22)

Let g(.) and q⇤thr be:

g(x) := � ln (1� f(x)) =
KX

i=1

ri ln (1 + e�
0
ix), q⇤thr := � ln (1� qthr). (23)
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Since � ln (1� a) is monticaly increasing with respect to a, replacing f by g(.) and qthr by q⇤thr in
(22), results in a mathematically equivalent expression. Now, we can prove the new statement using
Jensen’s inequality. To be more specific, based on Lemma 1 (g is convex) and Jensen’s inequality, we
have:

8t 2 [0, 1], 8x1,x2 2 Rd g(tx1 + (1� t)x2)  tg(x1) + (1� t)g(x2). (24)
So if g(x1), g(x2)  q⇤thr:

g(tx1 + (1� t)x2)  tg(x1) + (1� t)g(x2)  tq⇤thr + (1� t)q⇤thr = q⇤thr

proving Aleft is convex.

We are just remained with showing Aleft is confined within a convex polytope. This can be shown by:

f(x)  qthr () g(x)  q⇤thr =) 8i 2 [1 : K], ri ln (1 + e�
0
ix)  q⇤thr

() 8i 2 [1 : K], �0
ix  ln (e

q⇤thr
ri � 1)

which completes the proof.

B Additional details on experimental settings

As mention in the paper, we train CPT in a probabilistic manner and switch to a deterministic tree
at test time. To make the transition smoother, we conduct annealing during training. To be more
specific, we transform the probability function f(x) at each node to f�t(x), where:

f(x) = 1� e�
PK

i=1 ri ln (1+e�
0
ix) and f�t(x) :=

1

1 + ( 1�f(x)
1�p0

)�t

(25)

Larger �t results in a sharper change of probability from 0 to 1, and p0 controls where that change
happens. During training, we gradually increase �t to make the gap between probabilistic and
deterministic tree progressively smaller. We also learn p0 like other parameters of the model using
SGD. Notice, the change of f to f�t keeps the mathematical and geometrical interpretation of CPT
intact. That is because any thresholding of f�t has an equivalent counterpart for f since f and f�t

are strictly monotonic function of each other.

Note, the main goal of our comparison in Table 2 is reporting the highest possible value a method can
achieve regardless of the size. This has significant importance in the decision tree literature, as they
are often undermined since their accuracy is lower than the NN counterparts, and it is important to
push the accuracy limit of these classes of methods because they provide interpretability which is
missing with NNs.

For the comparison, we tried our best to state the best performance reported for each method and
if there were no results on a specific dataset and code was available, we trained their model up
to the depth of 16. For the FTEM method, the reported numbers are based on the author’s best
hyper-parameter tuning. They varied the maximum depth from 2-18 with a step size of 2. These
numbers were only available for MNIST, Connect4, and SensIT. For other classification results, we
trained their model and reported the results. However, their method was not applicable to regression,
so we did not report the results.

For TAO, the code is not available. However, the authors of TAO have written a follow-up paper [50]
comparing old and new decision trees. We use the results in this paper to report the performance
of TAO on MNIST, Connect4, SensIT, and Letter. They did not provide all the details of how they
varied the maximum length, but for some methods, they varied the depth up to 30. And for the results
on HIV and Bace, we relied on the reported numbers in LCN (Lee and Jaakola, 2020), where they
vary the depth of the tree in the interval [2, 12].

For the LCN method on HIV, Bace, and PDBbind, we used their reported results in which they varied
the depth from 2, 3, .., 12. It is worth noting that LCN does not learn the tree structure, and it always
learns a full binary tree.

We did not compare our method with soft trees (soft at test time) that are often not considered
interpretable. For this reason, they have not been previously compared to the deterministic trees in
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the literature. However, it is worth mentioning that CPT results for the soft version considerably
improve if we use it as a soft tree at the test time. For instance on the Bace and HIV datasets, we can
achieve 1-2 percentage increase in AUC if we use the soft version. The only closely related method
is FTEM. During the training period, they are also a probabilistic tree and use the thresholded soft
tree at the test time, which we do compare against in our experiments.

We performed the classification and regression experiments on a laptop with a 2.5 GHz 6-Core Intel
Core i7 CPU and 16 GB of RAM.
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