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Abstract

We introduce a novel online learning framework that unifies and generalizes pre-established mod-
els, such as delayed and corrupted feedback, to encompass adversarial environments where action
feedback evolves over time. In this setting, the observed loss is arbitrary and may not correlate
with the true loss incurred, with each round updating previous observations adversarially. We pro-
pose regret minimization algorithms for both the full-information and bandit settings, with regret
bounds quantified by the average feedback accuracy relative to the true loss. Our algorithms match
the known regret bounds across many special cases, while also introducing previously unknown
bounds.
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1. Introduction

In many sequential decision problems, the outcomes of actions are not immediately observed, and
rather could only be estimated. Those estimations may be changing constantly (usually becoming
more accurate) until certainty about the outcome is achieved.

This situation is common in financial settings, such as options trading, where the underlying
asset price at the time of exercising can only be estimated at the time of the trade. Another more
modern example is trading on blockchain systems (see, e.g., Bar-On and Mansour, 2023), where
new blocks are created immediately but may be deleted with a low probability after a certain time
(due to "forking”, as in Neudecker and Hartenstein, 2019).

Another application is online advertising, where the value of an ad may evolve over time. For
example, a user’s click indicates some positive value. If the user completes an online form at a later
time, the value increases. The value can then increase again if the user completes a purchase, or
decrease if the user leaves without further action.

While working under these conditions, the theory of online learning with delayed feedback
(Cesa-Bianchi et al., 2016; Thune et al., 2019) is useful for making informed decisions. However,
there is still a big gap between theory and practice - primarily since the estimations of action values
are not considered before the true value becomes known.

Evolving feedback To bridge this gap, we propose a new framework for online decision-making
in which the feedback on actions taken by the agent evolves and changes over time. Notably, the
feedback can change retroactively, overriding previous observations. This applies to and generalizes
various established feedback mechanisms. Those include delayed feedback, where all the informa-
tion about the loss (the action’s result) is revealed at a future time; composite feedback, where
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the loss is revealed monotonically over time; and corrupted feedback, where the true loss is never
revealed.

We investigate online learning environments with K actions over 7' rounds. An oblivious ad-
versary chooses ahead of time not only the true loss ¢; € [0, 1]% for round ¢, but also the feedback
loss E(Tt) € [0,1]%, which represents the new observation regarding the actions taken previously at
any step 7 < ¢, overriding any previous observations.

As usual, at each round ¢ the agent chooses an action a; € [K]. The observations do not affect
the suffered loss, and our objective is still to minimize the expected regret R(7") in comparison to
the best true loss in hindsight:

R(T) £ max E
a€[K]

that - ,a] .

In our model, the observed losses may or may not correlate with the true loss. In the latter
case, the agent gains no information and thus no strategy can guarantee a low regret. Fortunately,
in real-life situations we expect the observations to be good estimates of the true loss and be more
accurate as time progresses. Hence our algorithms’ regret bound is smaller the more accurate the
feedback is, and depends on the accuracy term

A= iimin{l,

t=1 =1

0 — ()

.

1.1. Contributions and outline

Full-information setting We start with presenting an Exponential Weights (Cesa-Bianchi et al.,
1997; Cesa-Bianchi and Lugosi, 2006) variant for the full-information setting in Section 2, where
all the feedback generated by the adversary is revealed to the agent, and show a regret bound better
than O (\/T + A), where O hides logarithmic terms.

Bandit setting We then present a Follow-The-Regularized-Leader (FTRL) (Abernethy et al., 2008;
Orabona, 2019) variant for the bandit setting in Section 3, where only the feedback generated for
actions taken by the agent is revealed, and show a regret bound of 9 (\/ KT + A) . Our novel analy-
sis creatively adapts methods from the delayed setting, where we quantify the information revealed
at each step using the feedback accuracy, instead of a binary revealed/not revealed.

We can consider the delayed setting as a special case, where if the delay of round 7 is d,, then
E(Tt) =/{, foranyt > 7+ d,, and K(Tt) = 0 otherwise. Hence, A = Zthl dy captures the total delay.
Thus, our regret bounds are optimal (up to logarithmic terms) when used in the delayed setting
(Cesa-Bianchi et al., 2016).

Applications We show more special cases in Section 4. A key benefit to our framework is that
it naturally supports any combination of those applications, for example, delayed feedback that is
sometimes corrupted.

* In the optimistic delayed feedback environment (Flaspohler et al., 2021; Hsieh et al., 2022),
where hints on delayed feedback are available to the agent, we match the existing regret bound
in the full-information setting and show the first regret bound in the bandit setting.
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* In the corrupted feedback environment (Resler and Mansour, 2019; Hajiesmaili et al., 2020),
where the true losses are never revealed, we get a standard 5 (\/ KT + C) bound, where C
is the corruption budget.

* In the composite delayed feedback environment (Cesa-Bianchi et al., 2018; Wang et al.,
2021), where the feedback is spread over d partial consecutive observations, we apply our

framework to get the optimal O ( (K+d)T ) regret bound.

For clarity, we defer detailed proofs to the appendix.

1.2. Additional related works

Online learning under adversarial delayed feedback has been studied extensively both under the
full-information (Weinberger and Ordentlich, 2002; Joulani et al., 2013, 2016) and bandit (Bistritz
et al., 2019; Zimmert and Seldin, 2020; Ito et al., 2020; Gyorgy and Joulani, 2021; Jin et al., 2022;
Van Der Hoeven and Cesa-Bianchi, 2022; Li and Guo, 2023) settings. Our analysis in this work is
inspired by a recent work (van der Hoeven et al., 2023) that unifies the analysis of delayed feedback
under many regimes such as linear bandits and Markov decision processes.

Many works study stochastic delayed environments as well (Agarwal and Duchi, 2011; Vernade
et al., 2020; Pike-Burke et al., 2018; Gael et al., 2020; Lancewicki et al., 2021; Tang et al., 2024),
and there are optimal algorithms for both cases simultaneously (’best of both worlds™) (Masoudian
etal., 2022, 2023).

Also generalized by our work is a corrupted adversarial feedback environment, previously stud-
ied for the stochastic case as well (Lykouris et al., 2018; Amir et al., 2020; Ito, 2021; He et al.,
2022).

2. Evolving Exponential Weights

We start by presenting a simple regret minimization algorithm for the full information setting, where
after step t the agent observes all the feedback losses Eg) for all 7 < t. Our proposed algorithm
is a modified version of Exponential Weights (Cesa-Bianchi et al., 1997; Cesa-Bianchi and Lugosi,
2006), summarized in Algorithm 1. The idea is for the agent to continuously update their beliefs on
the true loss, even retroactively, as more feedback is presented.

Specifically, at each step ¢, the agent maintains a probability distribution p over the set of possi-

ble actions as a function of an estimated total loss L € ]Rff :

—nLi

6]

where 7 is some learning rate chosen by the agent. In our case, the agent’s estimation of the total
loss is based on the most recently observed feedback losses:

t—1
L= d,
T=1
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Algorithm 1 Evolving Exponential Weights
Imput: K, T €N;n>0
Li,; < Oforalli € [K];
fort < 1207 do
Ly

Set p; (L) + —<—"" foralli € [K];

jeye
Play a random action a; ~ p (L§) and observe E(Tt) forall 7 < ¢;
Set L¢, | « St 4

end

To quantify the regret, we will use the fotal feedback inaccuracy D of the adversary:

T
D é Z HL? - Lt“oo)
t=1

denoting the true total loss up to step ¢t by L; = Zi;ll £,. Note this term does not depend on the
agent’s actions, but only on the losses generated by the adversary. It captures the magnitude of the
difference between the observed and true losses.

In the case of a delayed setting with delay d; we have that ||L§ — L¢||,, < d;, and thus
D < Zthl d, generalizing the total delay term.

2.1. Analysis

To analyze the regret of Algorithm 1, we will start by separating the regret into an observation drift
term and an auxiliary regret term, as usually done when analyzing delayed settings. We can present
the expected regret, assuming a* is the optimal action, as:

T
Z (et,at - gt,a*)]

t=1

R(T)=E

Il
E

(p(L§) - € = L av)

t=1

I
WE

T
(P(LE) = P(L)) - L+ > (P(Le) - £y — lrge) - )
t=1

-~

observation drift auxiliary regret

t=1

A standard Exponential Weights analysis bounds the auxiliary regret:

Lemma 1 Computing p as in Eq. (1), we have for any action a € [K]:

T

In K
> (L)l = o) S ——+ 1T,
t=1 n

To bound the drift term, we will use the following lemma:



NON-STOCHASTIC BANDITS WITH EVOLVING OBSERVATIONS

Lemma2 Let / € [0,1]5 be some loss vector, and Ly, Ly two different estimations of the total
loss. If the probability p is computed as described in Eq. (1), we get:

(p(L1) = p(L2)) - £ < 2n|L1 — Lo||,

By substituting the results of Lemmas 1 and 2 in Eq. (2), we can now derive the main result for
this section:

Theorem 3 The expected regret of Algorithm 1 after T rounds holds:

In K 1 In K T
R(T) < —+n2 (5+205 - Ll ) =% 40 (5 +2D).

ln K
+2D

ahead of time. We can either use a standard doublmg trick (Bistritz et al., 2019; Lancewicki et al.,
2022) to get a parameter-independent algorithm, or use a known upper bound:

Optimally, we would like to set n =

but we do not necessarily know the value of D

Corollary 4 Let D be a known upper bound on the feedback inaccuracy, such that:

T
D>D=Y |Lf — Ll
t=1

In K
T+2D’

the expected regret of Algorithm 1 after T’ rounds holds:

R(T) < \/4an @ +2D).

In the delayed setting where D is the total delay, this bound is known to be optimal (Cesa-
Bianchi et al., 2016). Note that in the worst case, D = Q (7). This implies that if the adversary
provides no feedback until time 7" on any of the losses, the regret is potentially ©(7"), as should be
expected in such a scenario.

Using n =

3. Evolving FTRL

In the bandit setting, the agent only receives feedback losses for actions they played at the times
they were played. So if at time 7 that agent chose action a, it will now receive E%T forallt > T,
and will not receive K(thl for any other action a # a..

We will use a Follow-The-Regularized-Leader (FTRL) (Abernethy et al., 2008; Orabona, 2019)
variant as a strategy, presented in Algorithm 2. Given an estimated total loss L € R, we compute
the probabilities over the set of actions as follows:

p(L) = argmin (p - L + @ (p)), 3)
PEAK_1
where A1 is the K-dimensional simplex and @ is the regularization function. Specifically in our
analysis, we will use a standard negative entropy with log barrier regularization:

A i 1
Py (p) = Z (p - ) Inp; 4)
1€[K]

for some parameters 7,y > 0.
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Loss estimates Similar to what we did in the full-information case, as an estimation for the total
loss at step ¢ we will use the most recent update:

t—1
L= 4,
T=1

where @st_l) 18 an unbiased loss estimate calculated as:

it—1) _ -1y lle=ar]
Cra Cra . <E$>

forall 7 < t and a € [K]. Although these definitions might appear circular at first, we highlight
that to compute L there is a need only for prior values of L7 where 7 < t.
Useful for our analysis is also ¢, the unbiased loss estimate when the feedback is accurate:

- 1[a =a,]

ET,CL = Er,a - N
o (5

Feedback accuracy measure In contrast to the full-information setting, we will quantify the feed-
back accuracy differently, using what we call the feedback inaccuracy coefficients:

1)

measuring the feedback inaccuracy at step ¢ about the losses of step 7. We again emphasize that the

value of )\(Tt) does not depend on the agent’s actions.

Eﬂ('t) - g‘r

O T —fjHZ —o (min{l,

) — ¢,

T

We will also denote by A; ZtT;ll )\971) the total feedback inaccuracy measure at step ¢,

and by dpyax = max {d | 3 (Egt_) 47 Et_d) } the maximal amount of rounds that the feedback can
evolve.

Again taking an example from the delayed setting, we can see that A; < d; and thus the accuracy
measures generalize the delays.

Algorithm 2 Evolving FTRL

Input: Function ®; K, T € N

Ly, < Oforalli € [K];

fort < 1to T do

Set p (Ef) —argmingena, (p . E§ + P (p));
(t)

Play a random action a; ~ p (E?) and observe ¢+, for all 7 < ¢ such that a = a;

Set é% — 6%% forall7 < tanda € [K];

Set E§+1 “30 Sk

end




NON-STOCHASTIC BANDITS WITH EVOLVING OBSERVATIONS

3.1. Analysis

For the analysis of Algorithm 2, we will follow a method similar to (van der Hoeven et al., 2023).
We will separate the regret into different drift terms, bounding each independently. Our novelty
comes from new intermediate loss estimates, parameterized by the feedback accuracy coefficients

/\9). Namely, we will use the following intermediate loss estimates:

t—1

7e — _\@=1) pt-1) (t=1) p(t—1)

Lt ~ ((1 )\Tt ) £Tt + >\Tt th )’
t—1

L, = N AY) (t-1)

L. ; ((1 Al ) 0y + Al eT),

Et = S /., and Ef = Zt + 0y = Zt:lz
T=1 =1

3.1.1. DRIFT TERMS

We can now represent the regret as (again denoting the optimal action by a*):

R(T)=E [ZT: (Ctar — ft,a*)]
t=1
S E[p(E) 6 ]
t=1
S e[ (E) (1)) + LB () -] o
t=1 t=1
Note that
E[l|e=a;]]|ao,...,ar—1] =Prja=a:|ag,...,ar—1] = pa, (Ei) ,

and thus our loss estimate is indeed unbiased relative to the feedback losses:

B[l =g a2 g e(tl)pw(zﬁ)
' ", (fi) " pa (Eg) T
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= /-, and hence, continuing Eq. (5):

—

In the same way E [ET

tzT;E[(p(Ef)p(zf)).gthixa[(p(m)p(Lt)) 0]
Sl(e(m)-p (1)) o] +3oe (o (2) o (1)) ]

+E

~
—_

S0 (i) b
t=1

cheating regret

3.1.2. BOUNDS

As we can see from the above equation, we have a cheating regret and four drift terms Hy, Ho, Hs, Hy.
We bound the cheating regret in the following lemma:

Lemma S Computing p as in Eq. (3) and using regularization ®,, , as in Eq. (4) for some 1,y > 0,

we get:
T
S0 (1) -
t=1

For the drift terms, we use the following:

KInT InK
+

Ui

<1+

Lemma 6 Computing p as in Eq. (3) and using regularization ®,, , as in Eq. (4) for some 1,y > 0
such that % > 128 (1 + dwax), we have for the drift terms in Eq. (6):

o
T
Hy, Hz < 87 (KT+Z>\t> :

t=1

T
Hy <240 A,
t=1

H4 S 877K T.
Substituting the results of Lemmas 5 and 6 in Eq. (6), we get our main result:

Theorem 7 By using regularization function ®,, . as in Eq. (4) for some n,v > 0 such that

% > 128 (1 + dmax), the expected regret of Algorithm 2 after T rounds holds:

T
KInT InK
R(T) <1+ 2 +n+n<24KT+4OZ>\t>.
gl n —



NON-STOCHASTIC BANDITS WITH EVOLVING OBSERVATIONS

Same as in the full-information case, we can either use a doubling trick or use a known bound
on the feedback accuracy as follows.

Corollary 8 Let A > Z;le At be a known upper bound on the total inaccuracy. Choosing
1 and vy = nK, the expected regret of Algorithm 2 using regularization ®,, ~ as in Eq.

= vV KT+A
(4) holds for any T'" > 256K d

4 .
R(T)=0 (\/KT + A) .

Since in the delayed setting the total delay Zthl dy > Zthl A¢, we again capture the optimal
asymptotic bound (up to logarithmic terms).

3.2. Skipping technique

Note that in cases where the maximal delay d,, . is very large or unbounded, we cannot use Corol-
lary 8 directly.

To accommodate this issue, we will use a skipping wrapper similar to the one used in delayed
settings with unbounded delays (Thune et al., 2019; Zimmert and Seldin, 2020), presented in Algo-
rithm 3. The idea is to wrap our regret minimization algorithm to receive new observations only up
to a certain delay.

Algorithm 3 Skipping wrapper
Input: Algorithm A; T € N; dpax > 0
fort <+ 1to T do
Receive an action distribution p7! from algorithm A;
Play a random action a; ~ pg“;
Feed back to A all observed E(Ttg such that 7 > ¢ — dynax, and all observed E(:fdm‘“) such that
T <t — dmax; ’ ’

end

Lemma 9 Denote the regret of some algorithm A compared to a loss sequence {1, ... 0r with

maximal delay dp.x as R;l“max ({Et}l gth)- When using Algorithm 3 with A, the expected regret

holds: )
R(T) < R} <{g£t+dmax)}l<t<T> n 2; Hgt _ e+

We thus obtain a small regret bound when the estimation accuracy improves with time and
becomes very accurate for large delays.

o0

1
_ vV KT+A
and v = nK, let A > Ethl At be a known upper bound on the total inaccuracy of the feedback

0, — oY

1
Corollary 10 Denote dp.x = L% (%) |, Using Algorithm 2 wrapped in Algorithm 3 withn =

recieved from the wrapper. Assuming
holds for any T':

‘ < eforanyt > T + dmax, the expected regret
oo

R(T) =0 <\/KT +A+ 5T> .

9
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4. Applications

Our framework generalizes many established online learning environments, some of which we
present here.

4.1. Optimistic delayed feedback

Previously investigated in (Flaspohler et al., 2021; Hsieh et al., 2022) for the full-information setting
is the optimistic delayed framework. In this model, the feedback is delayed by d steps, but the agent
has access to hints about it after choosing the action.

Specifically, at time ¢ the agent receives a hint l € [0, 1] that estimates £;, before observing
4y at time ¢t + d. Applying it to our framework, we can define E&t) = {, for any 7 <t < 7+d, and
K(Tt) = {, otherwise.

Using Corollaries 4 and 8, we then obtain a full-information regret bound similar to (Flaspohler
et al., 2021), and a newly established regret bound for the bandit setting.

Corollary 11 Using Algorithm 1 with optimistic delayed feedback in the full-information setting
guarantees an expected regret of:

> (b-1)

t
T=t—d+1

_ T
Ol 2
t=1

In the bandit setting, using Algorithm 2 guarantees an expected regret of:

)

[e.o]

T t
O Z Z min{l, b — L,

t=1 r=t—d+1

4.2. Corrupted feedback

In the corrupted feedback setting (Resler and~Mansour, 2019; Hajiesmaili et al., 2020), true losses
are never revealed, only some corrupted loss ¢; € [0, 1] that is observed immediately. In terms of

the evolving feedback framework, this is equivalent to having Est) — 0, for any 7 < t.
To measure the amount of corruption, we denote the corruption budget by

cAszHe _7
SR
t=1

Since the true loss is never revealed and the maximal delay is infinite, we need only the result
of the skipping technique (Lemma 9) to obtain a regret bound.

Corollary 12 Using Algorithm 3 with dyax = 0 and any multi-armed bandit 9] (\/ K T) regret

minimization algorithm, we obtain an
O (\/KT + c)
expected regret in a corrupted environment.

10
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4.3. Composite delayed feedback

The composite delayed feedback setting is the case where each loss is spread into d positive par-
tial losses Zgl), e ,ng) that sum to ¢;, observed consecutively by the agent. Applying it to our

framework, we have that
min{t+1,7+d}

W=y e,

s=7+1

Previous works (Cesa-Bianchi et al., 2018; Wang et al., 2021) discuss the case where the obser-
vations are anonymous. Namely, the agent observes only the sum of partial losses revealed in the
current step. This fact does not generalize directly into our evolving feedback framework.

Hence, we will look at the non-anonymous scenario, where each observation can be attributed
to a time and action. However, we can remove the limitation that the partial losses must be pos-
itive and can accommodate in our framework negative partial losses. The only restriction is that
S Zﬁs) € [0,1]¥ forany 1 <5 < d.

We can thus obtain regret bounds using Corollaries 4 and 8.

Corollary 13 In a composite feedback environment, allowing negative partial losses, using Algo-
rithm 1 in the full-information setting guarantees an expected regret of:

5(Mu+@T)

In the bandit setting, using Algorithm 2 guarantees an expected regret of:
6Q«K+@ﬂ.

5. Discussion

This work introduces a framework for online learning under adversarial feedback that evolves over
time. Our setting generalizes and unifies previously studied models like delayed, corrupted, and
composite feedback.

We proposed regret minimization algorithms for both the full information (Algorithm 1) and the
bandit (Algorithm 2) settings, achieving asymptotically optimal regret bounds (up to logarithmic
terms) that depend on the average accuracy of the observed feedback compared to the true losses,
using a novel analysis.

In addition to providing a unified model for many problems, our framework is beneficial for real-
world scenarios such as finance and online advertising. By incorporating all available information
on the value of actions, our approach achieves regret bounds that were previously not feasible.

Our work introduces a few follow-up research questions. Mainly, are our regret bounds optimal
in terms of the instance-dependent average feedback accuracy? Currently, we can show optimality
only in cases where the difference between the agent’s estimations and the true loss is large, like
in the delayed setting. It is an open question if our bounds could be improved for cases where the
difference is small.

Another natural question to ask is whether we can expand our model to accommodate loss
estimations for future rounds as well as past ones, and how the optimal regret bounds will behave
in this scenario.

11
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Appendix A. Deferred proofs from Section 2

Lemma 14 Computing p as in Eq. (1), we have for any action a € [K]:

T
In K
Z (p(Lt) - £ — Et,a) < T + gT-

t=1
Proof For any ¢, we have:

—nLt41,; —nLt j o=t j

2je[K) © T Djer) @ e

2jerr) €M 2jerr) €M
= > p(Lyj)e "

JE[K]

2
n
< p(Ley) (1 = by + jf?,j)
JjelK]

e
<1—n(p(Lt)-4) + o

where we used the fact thate™ <1 — z + % for z > 0.
For any a € [K], we thus have:

_ —nLr
e "Mt - > ek € 1T
K - K
T ZJG[K} e_nLt+1J

—nL:
o1 ek €

2

<f[1(1—n<p<Lt>-et>+’;)-

Taking logs of both sides and using the fact that In (1 + z) < x, we get the desired result. [ |

Lemma 15 Let ¢ € [0,1)5 be some loss vector, and L1, Lo two different estimations of the total
loss. If the probability p is computed as described in Eq. (1), we get:

(p(L1) = p(L2)) - £ < 2n|L1 — Lo, -

Proof We start by noting that:

(p(L1) = p(L2)) - £ = Y (pi(L1) = pi(L2)) i = Y pi(La) (1 - pé(L2)> b (D)

i€[K] i€[K]
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To bound this term, we will use the fact that:

pi(LQ) B e—nLgi ZjE[K] e*ﬁLlj

p,L(Ll) T el Z]E[K] e~ "L2;
—nLo;—n(L1;—La2;)

(L1;—L2;) Zje[K] ©

>jei) € M

e(L1i—=Lai)—nmax; (L1j—La2;)

:en

AV

e(ming (L1 j—La2j)—max; (L1;—L2;))

v

e~ 2nllL1—Lal

(A\VANY

1- 277 HLl - LQHoo
Substituting in Eq. (7), we get:

(p(L1) —p(L2)) - £

<> 2pi(La)n Ly = Lol o &
1€[K]

=2 [|L1 = Lol Y pilLa)ts
1€[K]

<2n||Ly — Lo

as required. |

Appendix B. Deferred proofs from Section 3

B.1. Cheating regret bound

Lemma 16 Computing p as in Eq. (3), for any fixed probability ¢ € Ag_1 and regularization
function ®:

T

So(E) b+ (p(B7) <Xa- b+ (o).

t=1 t=1

Proof We use a standard be-the-leader analysis and prove using induction on 7". The base case
T = 1 follows directly from Eq. (3), so we assume for any ¢ € Ag_1:

T-1 T-1

b () i (o (E) < S0t

t=1 t=1
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Specifically, we can assign ¢ = p (Ei}) Hence:

S (1) 0 (o (55)) = o (52) 0 o (55)) 0 () -
< S () i o (0 (5)) 0 (E5)
= (L7) L+ (o (7))

as required, where the last equality is from Eq. (3). |

Lemma 17 Computing p as in Eq. (3) and using regularization ®,, , as in Eq. (4) for some 1,y >
0, we get:

TN s 1 1
E [;p@;) .Et—&,a*] < 1+K;1T+DUK.

Proof Denote by ¢* the action probability that chooses a* with probability 1, and let

1\, 1 /-
q:<1_T>q +TP(LT>~

We get:
T ) . A A
S (p(F) ) =3 (0 (B2) - 7)
—ET: (p(fi‘) —q) }+§:(q—q*) 0
=1 =1
T T
=2 () ~a) fre 72 (0 (5) ) 4
SZT:(P@z’f) —q) ly + 1
=1
<@, (q) — Pyy (p (E‘{)) +1,



BAR-ON MANSOUR

where we used Lemma 16 in the last step. Thus, using Eq. (4):

i(p(ff).ét—&ﬂ*) <1+ ). <?7i_i>ln%_ 3

t=1 i€[K]

7 ielK] i k]! i (LT)
D (ET) Di (ZT) 1
=14+— Z In ; — + In —
Vi -pade (L) w7 w5
KInT 1 1
<1+ === Ny L“{) In——
1€[K] Di (LT>

Using Jensen’s inequality, we can complete the proof:

KInT . In K

B.2. Drift bounds preliminaries

We start with defining the dual norms on 2 € R¥ induced by a strictly-convex twice-differentiable
regularization function ® and a point p € R¥:

lzllop = \/xT (V20 (p)~'e  and  |lz]§, = /2T (V22 (p)) =,

where V2® denotes the Hessian matrix of ®.
For ®,, , as defined in Eq. (4) we get:

2
nyp; * N+ Vi
P2 and e, = S0 TR @)

zll®,.,p =
P n+vp; el mp?

1€[K]
For clarity, we will also denote the Dikin ellipsoid of radius % as:
A K * 1
Da ) 2 {o € R¥ [lo ~ sl < 5 }-

We will use the following facts (for proofs see Lemma 16, Lemma 1 and Lemma 9 in (van der
Hoeven et al., 2023) respectively):
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Fact1 Let x,p,q € RE. Using regularization ®, ., as in Eq. (4) for some 1,y > 0, we get that if
q € Ds, ., (p), then:

EH‘T;H‘I)n,'Wq S ||'1"||q>17,'77p S 2||$||‘bn,'y:(I'

Fact2 Let L, L' € Rf and q € RX. Computing p as in Eq. (3) and using regularization @, ., as
in Eq. (4) for some ),y > 0, we get that if p (L) ,p (L) € D, ., (q), then:

(L) = p(D)l[g,,  <BIIL = L, 4-

Fact3 LetL,L' € Rff . Computing p as in Eq. (3) and using regularization ®,, , as in Eq. (4) for

some 1,y > 0, we get that if | L' — L||<I>n7,p(L) < L, then:

p (L) € Ds,,, (p(L)).

B.3. Drift bounds

Lemma 18 Computing p as in Eq. (3) and using regularization ®,, , as in Eq. (4) for some
n,v > 0 such that % > 32dmax, we have for all 0 < d < dpax:

\f
0 (720) <e (0(58)
Proof We will prove by induction on d. The base case d = 0 is trivially true. We will thus assume

the claim is true for any d’ < d. Using Fact 3, we only need to show that:

t+d—1

2.

T=t

Ptd=1) _ ji=D) ’

1
®,,.p(L5) ~ 16

From our assumption, we can use Fact 1 and get:

t+d—1 trd—1
f+a=1) _ ggt_l)‘ <9 Hl;(Tt+d—1) _ tﬁg_t—l)‘ L
Tz::t (I)’W’p(l‘g) TZ:; ‘I>,,,7,p(L?,)
Hence, from Eq. (8):
2 (Te (t+d—1) _ (tl—l))z -
é(terfl) _ g(tfl)‘ 2 _ np; <LT) (ET,Z e’r,z 1 [Z aT]
por(B5) S o (E2) i (25)
c_m
N+ VPa, (L$>
<7
and thus we get that
t+d—1 .
1) — ?SH" <247 < /T < —
TZZ; H ®q.p(L§) VY < max/7 < 32
as required. -
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Lemma 19 Computing p as in Eq. (3) and using regularization ®,, ., as in Eq. (4) for some 1,y > 0
such that == > 128 (1 4 dpayx), we have for the drift terms in Eq. (6):

Nal
T
Hi, Hy < 81 (KT+Z%> ,

t=1
T

Hy <241y N,
t=1

Hy < 8nKT.
Proof

H,, H;. We will prove the bound for Hs, and the proof for H; is identical. First, note that:

BB =3 (1 A6 (- E0) 420D (5, — D)),

Denote t' = max {1,¢ — dax }. For any 7 < ' we have that éT = @9_1) and /\(Tt_l) = 0, and thus:

-1
L-rl, <3 |e-i) ) "
H ! ‘pnw,P(Lﬁ) 41 T @y, W:P (D’?W’p(l’?)

N ET I _1)‘ e\

mww>ZJ’@w@> -
Using Fact 1 and Lemma 18 we can move to the norm induced by p (Ei) :
L —L§ _
H t ®y.p(L§)
t—1
Tt tr )
p(Lg) ; el e 0 (L

We can now use Eq. (8) to see that

e - P (Li) 21[i = ay
T -~ - ~ ~
Caop(15) S 0+ i (L?> p; <L5>

< LA
N+ VPa. <L$)

<,

and the same is true for (t 1)‘ . Also
@y «,,p(L‘;)
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as well. Hence:

- ~ 1
L, — LY < Tdmaxv/7 < —.
) P g, p(e) = VT = g
Similarly:
t—1
L, —I° < é—é&t—l)‘ ~
H e, . .p(T5) Tz:; T ®y.0(L¢)
t—1
_ gT_gg—l)‘ -
— q’n,%p(L(t:)
t—1
<2 ‘ —é(H)’ ~
;/ T e (i)
< 2dmax Y
1
< —.
— 16

Thus, we can use Holder’s inequality to get:
(b (L) = (E)) -1
<[lp (Z) =2 (Z:)

14 Te
@y .p(L5) H th)"W’p(Lt)

<8 z — Z ’ A 14 Te
>~ t t n,v,p(Lﬁ) H t”cbn,'yyp(l’t)
<8I A (-0, 1la, . o(2)

=1 @, ~,p(L¢

t—1
=83 Al (ET -~ ZT) 1eellg, , p(zs) -

T=t' ‘I)n,vvp(if)

where the second inequality is due to Fact 2 and last inequality is since A = 0 for any 7 < t'.

Since our estimators are unbiased, E [(ET — l@) <€T/ — E})] = 0 for any 7 # 7/, and thus

t—1 2 t—1 5 T 9
E || A (6 -0, =3 () E [l - ]
2oene=r) - 20| BorPE)

- (AH))QE il

7:2/ ERY ~ 112
= 7—215’ ()\ ) E L b @n’w,p(if)]
t—1 (1) 2 E é 2 :|
< 2; (AT ) H ‘bm’Y’p(/L\i) ’
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where in the last step we used Fact 3 and Lemma 18 to move to the norms induced by p (Ei)

Using Eq. (8):

mp; (Li) 2

E [ ol } —E i = a
Tl (Zs) Lic[K) 1+ Pi (fi) Py (Ai>
ey E)
ic[w] 1 D <L$> 7
< nkK. &)

Combining the last equations and using Jensen’s inequality, we thus have:

E

S A (6 )

=t/

t—1 9
<20 > (A < VR < V(K + ).
T=1

‘}n»%p(zi)

Using Eq. (8) again, we have for any T, ¢:

2 Te
Wr”inmp(zg) = W@z <Y i (Ef) =1,
( ) i€[K]

ielk) M+ pi ( Lg

so in total, we get

=378 (p (1) - (1)) ] <30 (74 30

t=1

as desired.

Hs. For Ho, observe that the same as before, we have:

< L§ - L

~ = 1
Ly — L =
H e, (T T 16

and ‘

@n,w,p(i‘f) 16
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And thus we can use Holder’s inequality as before:

(o) -»(2))

§8’Z§—ft‘

n"mP( ?) I t||¢"'*p< Lg)
t—1

<3 — D) HN D _ ‘ sy S A [l —ET‘ _

\fz ( @y, ’wp(Lze) f; ch,'wp(L‘te)
<8 — AU=D) |71 + 87

IZ( ) ®,0(L2) TAt
—8 (1—>\ ) o= 48\

“;, -
<16 (1— )HN D g, IR

\/>7_Zt:, ‘bnmp(L?) !
where again we denote ' = max {1,t — diax}. The second inequality is due to Fact 2 and

HEtHé p(5) < n, and the last inequality is due to Fact 3 and Lemma 18 to move to the norms
M7 t
induced by p (Ei) .
Using Eq. (8):

nyp? (Ei) (g(Tf;l) e 2 i a]

2
s ) (40
n.yp(LS) ie[K] M+ VPi (Li) p? (Li

1) _ g

—E | M (Z(t—l) _ Eﬂ-)z
o (I) N

(=1 _ i ’
gng]jq SN

2
= |60 — |,
and so by Jensen’s inequality:
E{ J=1) _gT) R ] <\ (=1 — A(Tt—l)
! ®nqop(L5)] T ! 2 1A
Overall we get
T
=38 (o (B) -»(5)) o] <203
t=1 t=1
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H,. Note that:

o~ . 1
s _ e < +HL % < (14 2dyan) VA< —,
) ¢ ‘I’n,w»P(L?) ! ‘I)nmp - ‘I’n,vvp(L?) ( * )ﬁ 16
Ss we can again use Fact 2:
2((8) -5 (@) 8] <52 [ 1, i)
! ! ‘bn,w:p(Lf) ‘Dn,%p(L?)
A 112
[
q’n,’va(Lg)
< 8K
where the last step is due to Eq. (9). We can now complete the proof with:
T
Hi=Y E [(p (Lt) —p (L;;)) : et} < 8nKT.
t=1
|
B.4. Skipping bound
Lemma 20 Denote the regret of some algorithm A compared to a loss sequence {1, ..., L with

maximal delay dy.x as R;ﬂnax <{£t}1§t§T>‘ When using Algorithm 3 with A, the expected regret

holds: .
A (t+dmax) o (t+dmax)
ay <, ({0, ) o3 -

o0

Proof We have:

r T
R(T) = E|S ¢, —t.,
()52% tZtt t]

\ \
—

M’ﬂ

= max E

mas B |3 (507 — 1) (b — ) o () - gm)]

w
Il
—

E

E(t+dmax) _ (t+dmax)

< max E tay
I

a€[K]

00
t

+ Z H 0, — (t+dmax)
- ({1 ) 2

where the last step is since algorithm .4 cannot distinguish between being wrapped in Algorithm 3

and K(t+dma") being the true losses with maximal delay dyax. |
t 1<t<T

Il
—

Y
o0
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