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A Bifurcation Diagrams as Tangent Fields

Let each component of the vector function Fθ in the model (1) implicitly define a surface embedded
in RN+1. Let’s assume that the intersection of these N surfaces exists and is not null or degenerate,
then the steady states of (1) must be a set of one dimensional space curves in z ∈ RN+1 defined by

Fθ(z) = 0 (A.1)

Figure A.1: Two implicit surfaces fθ(z) = 0 and gθ(z) = 0 in R3 intersecting to form a space curve
which is tangent to field Tθ(z) and perpendicular to gradients ∂zfθ and ∂zgθ

An expression for the field Tθ(z) tangent to the set of curves would allow us to take derivatives and
integrals along the bifurcation curve. This is exactly what we need to do to evaluate our cost function
8. Fortunately the tangent field can be constructed by ensuring it is perpendicular to the gradient ∂z
of each component of Fθ as illustrated by an example two component system in Figure A.1. The
tangent field Tθ(z) can be constructed perpendicular to all gradient vectors using the properties of
the determinant [35]

Tθ(z) :=

∣∣∣∣ ẑ
∂zFθ

∣∣∣∣ Tθ : RN+1 → RN+1 (A.2)

=

N+1∑
i=1

ẑi(−1)i+1

∣∣∣∣ ∂Fθ
∂(z \ zi)

∣∣∣∣ (A.3)

where ẑ is a collection of unit basis vectors in the RN+1 space and ∂zFθ is anN×(N+1) rectangular
Jacobian matrix of partial derivatives and z \ zi denotes the N dimensional vector z with component
zi removed. This construction ensures perpendicularity to any gradients of Fθ

Tθ(z) · ∂zfθ =

∣∣∣∣ ∂zfθ∂zFθ

∣∣∣∣ = 0 ∀fθ ∈ Fθ (A.4)

since the determinant of any matrix with two identical rows or columns is zero. Note that the tangent
field Tθ(z) is actually defined for all values of z where adjacent field lines trace out other level sets
where Fθ(z) 6= 0. Furthermore deformations with respect to θ are always orthogonal to the tangent

Tθ(z) ·
dTθ
dθ

= 0 (A.5)

Figure A.2 shows how the bifurcation curve defined by Fθ(z) = 0 picks out one of many level sets
or traces in tangent field Tθ(z) for the saddle and pitchfork. The tangent field Tθ(z) can always be
analytically evaluated by taking the determinant in (A.2). We will proceed with calculations on Tθ(z)
in the whole space z and pick out a single trace by solving Fθ(z) = 0 later. For our two models

Tθ(z) = û− ( 3θ2u
2 + θ1 ) p̂

saddle−node model

Tθ(z) = uû− ( 3θ2u
2 + p ) p̂

pitchfork model

(A.6)
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Figure A.2: Left/Right : Determinant
∣∣∂Fθ
∂u

∣∣ and tangent field Tθ(z) for the saddle-node/pitchfork
models for some set values of θ revealing that

∣∣∂Fθ
∂u

∣∣ = 0 defines bifurcations

Figure A.2 reveals that
∣∣∂Fθ
∂u

∣∣ = 0 is also a level set and that the intersection with level set Fθ(z) = 0
defines the bifurcations at specific parameter θ. In this particular setting we can see that the tangent
field Tθ(z) only folds when

∣∣∂Fθ
∂u

∣∣ = 0. Plotting the value of the determinant along Fθ(z) = 0 from
Figure A.2 would give rise to Figures 1. The directional derivative of the determinant

∣∣∂Fθ
∂u

∣∣ along
the tangent field Tθ(z) is defined as

d

ds

∣∣∣∣∂Fθ∂u

∣∣∣∣ := T̂θ(z) ·
∂

∂z

∣∣∣∣∂Fθ∂u

∣∣∣∣ (A.7)

where T̂θ(z) is the unit tangent field.

B Bifurcation Measure Properties

Consider a vector v(s) ∈ RN parametrised by s ∈ R that is tangent to an equilibrium manifold
defined by Fθ(u) = 0. The conditions for a non-degenerate static bifurcation at s∗ along such a
tangent can be expressed in terms of an eigenvalue λ(s) of the state-space Jacobian crossing zero
with a finite slope. A bifurcation exists at s∗ if

∂Fθ
∂u

v(s) = λ(s) v(s) ∃λ : λ(s)|s=s∗ = 0
dλ

ds

∣∣∣∣
s=s∗

6= 0 (B.1)

These conditions are necessary and sufficient for a non-degenerate static local breakdown of stability.
For now we do not consider dynamic bifurcations involving limit cycles or imaginary parts of
eigenvalues and restrict λ ∈ R. Cases where both λ(s)|s=s∗ = 0 and dλ

ds

∣∣
s=s∗

= 0 require
investigation into higher order derivatives dnλ

dsn . These are the cases we refer to as degenerate and are
not considered here.

Instead of considering conditions on each eigenvalue individually it is possible to use the determinant
of the state-space Jacobian to detect whether the conditions (B.1) are satisfied. The determinant can
be expressed as the product of eigenvalues∣∣∣∣∂Fθ∂u

∣∣∣∣ =

N∏
n=1

λn(s) (B.2)
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Applying the product rule when differentiating yields

d

ds

∣∣∣∣∂Fθ∂u

∣∣∣∣ =

N∑
n=1

dλn
ds

∏
n′ 6=n

λn′(s) (B.3)

=

∣∣∣∣∂Fθ∂u

∣∣∣∣ N∑
n=1

dλn
ds

λn(s)−1 (B.4)

Substituting this expression into measure (5)

ϕθ(s) =

1 +

∣∣∣∣∣
N∑
n=1

dλn
ds

λn(s)−1

∣∣∣∣∣
−1−1 (B.5)

Which implies the following

∃λ :

{
λ(s) = 0 dλ

ds 6= 0

λ(s) 6= 0 dλ
ds → ±∞

=⇒ ϕθ(s) = 1 (B.6)

If there exists an eigenvalue that satisfies conditions (B.1) then the measure is equal to one. The
measure also approaches one in cases where the rate of change of an eigenvalue with respect to
a manifold s location diverges while not crossing zero. This gives rise to finite gradients in the
eigenvalue term in regimes far away from any bifurcation.

C Leibniz Rule for Space Curves

Suppose there exists a one dimensional space curve C(θ) embedded in z ∈ RN+1 whose geometry
changes depending on input parameters θ ∈ RM . This curve could be open or closed and changes in θ
could change the curve topology as well. Let the function γθ : R→ RN+1 be a parametrisation of the
position vector along the curve within a fixed domain s ∈ S . Note that the choice of parametrisation
is arbitrary and our results should not depend on this choice. Furthermore, if we parametrise the
curve C(θ) with respect to a fixed domain S the dependence on θ is picked up by the parametrisation
γθ(s). We can write a line integral of any scalar function Lθ : RN+1 → R on the curve as

L(θ) :=

∫
C(θ)

Lθ(z) dz =

∫
S
Lθ(z)

∣∣∣∣dγθds
∣∣∣∣ ds z=γθ(s) (C.1)

where
∣∣∣dγθds ∣∣∣ is the magnitude of tangent vectors to the space curve and we remind ourselves that the

integrand is evaluated at z = γθ(s). We would like to track how this integral changes with respect to
θ. The total derivative with respect to θ can be propagated into the integrand [34] as long as we keep
track of implicit dependencies

dL

dθ
=

∫
S

∣∣∣∣dγθds
∣∣∣∣ (∂L∂θ +

∂L

∂z
· dz
dθ

)
+ Lθ(z)

d

dθ

∣∣∣∣dγθds
∣∣∣∣ ds z=γθ(s) (C.2)

Here we applied the total derivative rule in the first term due to the implicit dependence of z on θ
through z = γθ(s). Applying the chain rule to the second term

d

dθ

∣∣∣∣dγθds
∣∣∣∣ =

∣∣∣∣dγθds
∣∣∣∣−1 dγθds · ddθ

(
dγθ
ds

)
(C.3)

By choosing an s that has no implicit θ dependence we can commute derivatives

d

dθ

(
dγθ
ds

)
=

d

ds

(
dγθ
dθ

)
⇒ d

dθ

∣∣∣∣dγθds
∣∣∣∣ =

∣∣∣∣dγθds
∣∣∣∣−1 dγθds · dds

(
dγθ
dθ

)
(C.4)

To proceed we note that the unit tangent vector can be written as an evaluation of a tangent field T̂θ(z)
defined in the whole domain z ∈ RN+1 along the parametric curve z = γθ(s). The unit tangent field
may disagree with the tangent given by dγθ

ds up to a sign

T̂θ(z)
∣∣∣
z=γθ(s)

= ±
∣∣∣∣dγθds

∣∣∣∣−1 dγθds (C.5)
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this leads to

d

dθ

∣∣∣∣dγθds
∣∣∣∣ =

∣∣∣∣dγθds
∣∣∣∣ (T̂θ(z) · ∂∂z

(
dΓθ
dθ

)
· T̂θ(z)

)
z=γθ(s)

(C.6)

It is possible to find the normal deformation of the implicit space curves due to changes in θ. This
can be done by taking the total derivative of the implicit equation defining the level set

dFθ(z)

dθ
=
∂F

∂θ
+
∂F

∂z
· dz
dθ

(C.7)

We can rearrange for dz
dθ using the Moore-Penrose inverse of the rectangular Jacobian matrix ∂F

∂z
which appeared in equation (A.2). Since the level set is defined by Fθ(z) = 0 the total derivative
along the level set dFθ(z) = 0 and we arrive at an expression for the deformation field [28]

dz

dθ
= −∂F

∂z

>
(
∂F

∂z

∂F

∂z

>
)−1

∂F

∂θ
(C.8)

The tangential component of the deformation field is not uniquely determined because there is
no unique way of parametrising a surface. This is the subject of many computer graphics papers
[28, 36, 37]. We are however not interested in the continuous propagation of a mesh - as is the subject
of those papers. In fact we are looking for a deformation field that is orthogonal to the tangent vector
T̂θ(z) · dzdθ = 0 for the space curve, and therefore letting the tangential component of the deformation
equal zero is a valid choice and we can it instead of the parametrised deformation

dγθ
dθ
→ dz

dθ
(C.9)

To summarise we now have the gradient of our line integral only in terms of the implicit function
defining the integration region.

dL

dθ
=

∫
Fθ(z)=0

∂L

∂θ
+
∂L

∂z
· ϕθ(z) + Lθ(z) T̂θ(z) ·

∂ϕ

∂z
· T̂θ(z) dz

(C.10)

where T̂θ(z) :=
Tθ(z)

|Tθ(z)|
Tθ(z) :=

∣∣∣∣ ẑ
∂zFθ

∣∣∣∣ ϕθ(z) := −∂F
∂z

>
(
∂F

∂z

∂F

∂z

>
)−1

∂F

∂θ

(C.11)

We have settled on choosing normal deformations which we will call ϕθ(z). The above result can be
seen a the generalised Leibniz rule [34] for the case of line integration regions. The last integrand
term can be seen as the divergence the vector field ϕθ(z) projected onto the one dimensional space
curve.
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D Application of Bifurcation Inference to a Complex Model

To demonstrate the wider reaching applicability of our method we optimise the double exclusive
reporter [3], a synthetic gene circuit in E. coli that was designed to exhibit a cusp bifurcation. The
circuit behaviour is observed by measuring a fluorescent protein whose expression is controlled
by transcription factors (regulatory proteins) LacI (L) and TetR (T ), whose expression is in turn
controlled by externally controllable input signals c6 and c12. To apply the method, we consider
one of the input signals be the control condition c6 = p, with the other packed together with
the remaining 20 parameters into vector θ. Once the optima θ∗ have been obtained, we perform
dimensionality reduction using GigaSOM.jl [38] so that the results can be visualised in a two
dimensional embedding (Figure D.1A).

The embedding reveals four optimal parameter regions. We find that, as with the two-state model
in the main text (11), there are two qualitatively distinct regimes: mutual activation (region 1) and
inhibition (regions 2-4). The mutual inhibition region can be further subdivided into three regions that
are geometrically equivalent, but kinetically distinct: region 3 has swapped kinetic roles for regulatory
proteins LacI and TetR compared to region 2, and region 4 has additional damped oscillations in
the dynamics across the whole range of input c6 (Figure D.1B). The two dimensional embedding of
sampled optima θ∗ enables navigation the space of qualitative behaviours of the double exclusive
reporter and organisation in terms of geometric and kinetic equivalence.

A B

Figure D.1: Bifurcation inference for the double exclusive reporter. A. Optimal parameter estimates
θ∗ for the targets D = {1, 2} (indicated by yellow lines in panel B) reveal four regions with two
geometrically different regimes: mutual activation (region 1) and mutual inhibition (regions 2-4). B.
Example bifurcation diagrams indicate that region 2 has swapped kinetics between L and T to region
3. Region 4 has models with non-zero imaginary parts to eigenvalues indicating damped oscillations
(shown in light green).

These results were obtained with a modification of the bifurcation measure (5) to improve convergence
rates. In parameter regimes where bifurcations are not present, according to conditions (B.6),
maximising the measure ϕθ(s) can lead to a divergence in directional derivative dλ

ds → ±∞ rather
than a creation of a bifurcation. To discourage this from happening we can flatten out the gradients in
that regime by applying the tanh non-linearity to the determinant. This leads to

ϕθ(s) :=

(
1 +

∣∣∣∣∣ tanh
∣∣∂Fθ
∂u

∣∣
d
ds tanh

∣∣∂Fθ
∂u

∣∣
∣∣∣∣∣
)−1

(D.1)
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E Extension for Hopf Bifurcations

In order to detect bifurcations involving limit cycles, the measure must be extended to detect changes
in the real part <e[λ(s)] for any eigenvalue of the Jacobian. These conditions can no longer be
compactly written in terms of the determinant. Instead, the measure can be defined as the sum of
eigenvalue terms

ϕθ(s) :=
∑

λ(s)∈ ∂Fθ∂u

(∣∣∣∣ dds log<e[λ(s)]

∣∣∣∣−1 + 1

)−1
(E.1)

The directional derivative of the logarithm diverges under two conditions: when eigenvalues vanish
λ(s) = 0 and when the directional derivative d

ds<e[λ(s)] diverges. These properties are sufficient
for detecting the onset of damped oscillations and emergence of limit cycles via Hopf bifurcation as
shown in Figure E.1. Eigenvalues with negative real part which gain a finite imaginary part give rise
to damped oscillations. At this onset we observe a discontinuity in the derivative d

ds<e[λ(s)] which
is detected by equation (E.1). Once damped oscillations exist, flipping the stability of the stable fixed
point gives rise to a limit cycle, which can be detected by inspecting <e[λ(s)].

Figure E.1: Bifurcation measure ϕθ(s) and eigenvalues λ(s) along the arclength s for two different
bifurcation curves demonstrating how the measure detects non-zero imaginary parts =m[λ] (onset
of damped oscillations marked by circle) and sign changes in real parts <e[λ] (Hopf bifurcations
marked by stars)

In principle it is possible to construct measures to detect a variety of bifurcations as long as the
conditions can be expressed in terms of derivatives with respect to fixed-point manifold direction s.
Measures can be used sequentially or in parallel to encourage optimisers to run through a sequence
of bifurcations or place specific bifurcation types next to each other.
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