23
24
25
26
27
28
29
30

32
33

35
36
37
38
39
40
41
42
43
44

Supplementary Materials of GraphLearner: Graph Node
Clustering with Fully Learnable Augmentation

Anonymous Authors

1 DATASETS DESCRIPTION

In this work, we utilize six widely used graph benchmark, i.e.,
CORA, CITESEER, AMAP, UAT, EAT, BAT. Here are the basic in-
formation about these datasets.

e The CORA dataset, comprised of 2708 scientific publications,
is categorized into seven distinct classes. The dataset is intri-
cately connected through a citation network that consists
of 5429 interlinks. Each publication within the dataset is
characterized by a binary word vector, which indicates the
presence or absence of the corresponding word from a dic-
tionary, which itself comprises 1433 unique words.

o CITESEER dataset, another citation network, includes 4732
links and 3327 scientific publications, segmented into six
categories. Each publication in the dataset is represented by
a binary word vector, indicating the presence or absence of
the corresponding word in a dictionary, encompassing 3703
unique words.

o AMAP dataset, a co-purchasing network extracted from
Amazon, represents products as nodes. The features of these
nodes are encoded through bag-of-words reviews. Edges
within this network signify the co-purchasing frequency of
two products.

e UAT dataset, consisting of traffic data collected from the
Bureau of Transportation Statistics from January to October
2016, contains 1190 nodes and 13599 edges.

e BAT dataset, a collection of airport data gathered from the
National Civil Aviation Agency (ANAC) from January to
December 2016, contains 131 nodes and 1038 edges.

e EAT dataset, an assembly of airport data collected from the
European Union’s Statistics Office from January to Novem-
ber 2016, includes 399 nodes and 5995 edges.

2 DETAILS OF THE PROPOSED METHOD

In this section, we introduce the detailed implementation of our
method with PyTorch-style pseudo codes in Algorithm 1.

3 ADDITIONAL EXPERIMENTS

3.1 Additional Comparison Experiments

Due to the limitation of the pages,in this section, we have con-
ducted additional experiments to further the superiority of our
proposed GraphLearner. Specifically, two categories methods are
compared in this section, i.e. deep clustering methods (DCN [10],
DEC [9], AdaGAE [5]), and deep graph clustering methods (DFCN
[6], GDCL [11]). The experiment results are shown in Table.2. We
could observe as follows.

e Deep clustering methods are not comparable with our pro-
posed methods. We conjecture that those methods overlook
the graph structure.

Algorithm 1 PyTorch-style Pseudo Code of Our Method.

# X: Original Attribute
# A: Original Structure
# AG: Attribute Augmentor
# SG: Structure Augmentor
# P: High-confidence Pseudo Labels
# sim: Similarity Function
# simclr: simclr loss
# alpha: trade-off parameter
for epoch in range(epoch_num):
# Attribute Matrix and Adjacency Matrix
Aug_X = AG(X)
Aug_S = SG(A)

# Net Encoding

F1 = F.normalization((X, A),dim=1,p=2)

F2 = F.normalization((Gen_X, Gen_A),dim=1,p=2)
# Clustering and High-confidence Pseudo Label
clu_res, P = clustering((F1+F2/2))

# Cross-view Similarity Matrix
M=F1@F2.T

# Pseudo Label Matrix

Q = (P==P.T).int()

loss_c = simclr (F1, F2)
loss = loss_c

# Structure Refine
Gen_A = Aug_S * M
Gen_A = Aug_S * Q

loss_a = -(MSE(X, Aug_X) + MSE(A, Aug_S)
loss = loss_c + alpha * loss_a
# optimization
loss.backward()
optimizer.step()
clu_res = clustering((F1+F2/2))
return clu_res
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Figure 1: GPU memory costs on six datasets with five meth-
ods.

e GraphLearner could achieve better performance than deep
graph clustering methods. The reason is that contrastive
learning enhances the supervision information capture ca-
pability of our method.
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Table 1: The hyper-parameter of the GraphLearner on six datasets.

Anonymous Authors

Hyper-parameter | CORA CITESEER AMAP BAT EAT UAT
Learning Rate le-5 le-4 le-5 le-2  le-3  1le-2
0.5 0.8 0.8 0.5 0.5 0.6
0.5 0.5 0.5 0.5 0.5 0.5

Table 2: Additional comparison experiments on four benchmark datasets. The clustering performance is evaluated by four

metrics with mean value and standard deviation.

Deep Clustering Deep Graph Clustering
Dataset Metric DCN DEC AdaGAE DFCN GDCL GraphLearner
ICML 2017 ICML 2016 TPAMI 2021 | AAAT 2021 IJCAI 2021 Ours
ACC 49.38+0.91 46.50%0.26 50.06+1.58 36.33+0.49 70.83+0.47 74.91£1.78
CORA NMI 25.65%0.65  23.54+0.34 32.19+1.34 19.36+0.87  56.60+0.36 58.16+0.83
ARI 21.63+0.58 15.13+£0.42 28.25+0.98 04.67+2.10 48.05+0.72 53.82+2.25
F1 43.71+1.05 39.23+£0.17 53.53+1.24 26.16%0.50 52.88+0.97 73.33£1.86
ACC 48.25+0.08 47.22+0.08 67.70+0.54 76.82+0.23 43.75+0.78 77.24+0.87
AMAP NMI 38.76+0.30 37.35£0.05 55.96+0.87 66.23%+1.21 37.32+0.28 67.12+£0.92
ARI 20.80+0.47  18.59+0.04 46.20+0.45 58.28+0.74  21.57£0.51 58.14+0.82
F1 47.87+0.20 46.71+0.12 62.95+0.74 71.25+0.31 38.37+£0.29 52.77+2.61
ACC | 47.79£3.95  42.09+2.21 43.51+0.48 55.73+£0.06  45.42+0.54 75.50£0.87
BAT NMI 18.03+7.73 14.10+£1.99 15.84+0.78 48.77+0.51 31.70+0.42 50.58+0.90
ARI 13.75+6.05 07.99+1.21 07.80+0.41 37.76+0.23 19.33+0.57 47.45+1.53
F1 47.87£0.20  46.71+0.12 62.95+0.74 71.25£0.31  38.37+0.29 75.40+0.88
ACC 46.82+1.14 45.61+1.84 52.10+0.87 33.61+£0.09 48.70%0.06 55.31+£2.42
UAT NMI 17.18+1.60 16.63£2.39 26.02+0.71 26.49+0.41 25.10+0.01 24.40%1.69
ARI 13.59+2.02 13.14+1.97 24.47+0.13 11.87+0.23 21.76%0.01 22.14%1.67
F1 47.87%0.20 46.71+0.12 62.95+0.74 71.25%£0.31 38.37+£0.29 52.77+£2.61
ACC 57.08+0.13 55.89+0.20 54.01+£1.11 69.50+0.20 66.39£0.65 70.12+0.36
CITESEER NMI 27.64+0.08 28.34+0.30 27.79+0.47 43.90+0.20 39.52+0.38 43.56%0.35
ARI 29.31+0.14 28.12+0.36 24.19+0.85 45.50+0.30 41.07£0.96 44.85£0.69
F1 53.80+0.11 52.62+0.17 51.11+0.64 64.30+0.20 61.12+0.70 65.01+£0.39
ACC 38.85+2.32 36.47+1.60 32.83+1.24 49.37+0.19 33.46+0.18 57.22%0.73
EAT NMI 06.92+2.80 04.96+1.74 04.36+1.87 32.90+0.41 13.22+0.33 33.47+0.34
ARI 05.11£2.65 03.60+1.87 02.47+0.54 23.25%£0.18 04.31+£0.29 26.21+£0.81
F1 38.75%2.25 34.84+1.28 32.39+0.47 42.95+0.04 25.02+0.21 57.53%£0.67

3.2 Memory Cost

In this subsection, we conduct experiments to test GPU memory
costs of our proposed GraphLearner. We compare with five methods
(i.e., DAEGC [7], SDCN [1], AGE [2], MVGRL [4], SCAGC [8] )
on six datasets. From the results in Fig. 1, we observe that the
memory costs of our GraphLearner are also comparable with other
algorithms.

3.3 Effectiveness of the Similarity and
Pseudo-label Matrix Refinement strategies

In this subsection, we implement experiments to verify the effective-
ness of our refinement strategies, i.e., similarity matrix optimization
and pseudo-label matrix optimization. Here, we adopt the model
without any optimization strategy as the baseline. For simplicity,
we denote “NP+NS”, “NP”, “NS”, and “P+S” as the baseline, baseline

with similarity matrix optimization, baseline with pseudo-label ma-
trix optimization, and ours, respectively. From the results in Fig. 2,
we observe that the performance of the GraphLearner will decrease
when any one of the aforementioned components is dropped. Over-
all, extensive experiments could demonstrate the effectiveness of
our optimization strategies.

3.4 Sensitivity Analysis of Hyper-parameter
Threshold ¢

To investigate the influence of the hyper-parameter threshold ,
we conduct the experiments on four datasets as shown in Fig.3.
From the results, we observe that the model obtains promising
performance with the 7 increasing. The reason is that the pseudo
labels are more reliable with a high threshold.
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ACC NMI ARI F1 AcCC NMI ARI F1
=P+S mNP =NS = NP+NS EP+S mNP mNS = NP+NS
CORA EAT

AcCC NMI ARI F1
AcCC NMI ARI F1
HP+S = u +
EP+S mNP mNS = NP+NS PHS ENP BNS 7 NPENS
AMAP UAT
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Figure 2: Ablation studies over the effectiveness of the proposed similarity matrix and pseudo labels matrix refinement strategy

on six benchmark datasets.“NP+NS”, “S”, “P”, and “P+S” denotes the baseline, baseline with similarity matrix optimization,

baseline with pseudo-label matrix optimization, and ours, respectively.

Figure 3: Sensitivity analysis of the hyper-parameter r.

3.5 Changing the selection of k in KMeans

In this subsection, we discuss the selection of k in Kmeans [3].
Specifically, we conduct the experiments on the CORA dataset with
our proposed GraphLearner. CORA consists of 7 classes. We change
the class of CORA from 3 to 8. From the Table.3, we could observe
that with the variable of the k, the clustering performance is com-
parable on CORA dataset. The experimental results demonstrate
that the selection of k is not an important influencing factor in
our GraphLearner. It will be a interesting problem to explore the

unknown number of the clusters. We will explore this problem in

the future.

Table 3: Changing the selection of k in KMeans.

NMI ARI

(<IN I NS, OO

41.90£2.69 33.07£2.89
47.06+1.91 37.85%£1.98
52.05+1.49 43.63+1.60
55.00+£1.27  50.06+2.35
58.16+0.83  53.82+2.25
56.32+0.74 52.44+0.45
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