
Supplemental Material for
AC-GC: Lossy Activation Compression

with Guaranteed Convergence

R. David Evans
Dept. of Electrical and Computer Engineering

University of British Columbia
Vancouver, BC V6T 1Z4

rdevans@ece.ubc.ca

Tor M. Aamodt
Dept. of Electrical and Computer Engineering

University of British Columbia
Vancouver, BC V6T 1Z4

aamodt@ece.ubc.ca

The appendices of this supplemental material are focused on providing detailed proofs
(Appendix A), per-layer derivations for activation errors (Appendix B), algorithm and
implementation details (Appendix C), datasets and hyperparameters (Appendix D), extended
experimental data (Appendix E) and additional experiments (Appendix F) to accompany
the main paper.
A code example and trained models are available for CIFAR10/ResNet50 by accessing
https://github.com/rdevans0/acgc.

Appendix A Proof of Convergence Bounds

This section details the assumptions and proof of Theorem 1 from the main text.

Assumptions for Theorem 1 The uncompressed SGD bound (4) from Karimi et al. [8]
assumes the following for the loss L:

• has a non-empty solution set θ(∗)

• has a gradient which is L-Lipschitz, for some L
• has a gradients satisfying

E[‖∇θf(θ,Xnt
)‖2] ≤ V 2 (12)

for all θ and some V 2

• satisfies the Polyak-Łojasiewic (PL) condition for all θ and some η:

1
2‖∇θL(θ)‖2 ≥ η(L(θ)− L(θ(∗))) (13)

The full form of the progress bound (4) after t iterations of SGD from Karimi et al. [26] is

E[L(θ(t))− L(θ(∗))] ≤ (1− 2ηα)t(L(θ(0))− L(θ(∗))) + L

4ηαV
2 (14)
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which is equivalent to (4) with C1 = 2η and C2 = L/(4η). L and η depend on the model
being trained and dataset, and are thus problem-dependent constants.
In addition to these assumptions for the uncompressed SGD bound, Theorem 1 requires that
the gradient error ∆∇θf(θ,Xnt

) is unbiased, i.e.:

• E[∆∇θf(θ,Xnt
)] = 0 for all ∆X and θ. This is equivalent to E[∇̂θf(θ,Xnt

)] =
E[∇θL(θ)].

Preliminary on Separation of Norms Given two, independent random vectors A =
(an) ∈ RN and B = (bn) ∈ RN , where E[bn] = 0 ∀ n. The expectation of the norm can be
simplified as follows:

E[‖A+B‖2] = E

[
N∑
n

(an + bn)2

]

= E

[
N∑
n

a2
n + 2anbn + b2n

]

= E[‖A‖2] + 2
N∑
n

E[an]E[bn] + E[‖B‖2]

= E[‖A‖2] + E[‖B‖2] (15)

Proof of Theorem 1
Theorem 1. Given f which obeys (4), and a convex function D(∆X) which bounds the
gradient error from above for all X, θ, and ∆X; provided that D(∆X) ≤ e2V 2 the variance
of the compressed gradients satisfies

E[‖∇̂θf(θ,Xnt
)‖2] ≤ (1 + e2)V 2 (16)

Proof. By definition, the gradient error is bounded above by D(∆X) which is bounded by
e2V 2, i.e.

‖∆∇θf(θ,X)‖2 ≤ D(∆X) ≤ e2V 2 (17)

As all quantities are positive, the expected error also cannot exceed the bound,
E[‖∆∇θf(θ,Xnt

)‖2] ≤ e2V 2 (18)
where the expectation is taken with respect to nt, over the distribution of examples.
We can use the the separation of norms (15) and the definition of V 2 to separate out the
variances. This requires that the gradient errors are unbiased, E[∆∇θf(θ,Xnt)] = 0.

E[‖∇̂θf(θ,Xnt)‖2] = E[‖∇θf(θ,Xnt) + ∆∇θf(θ,Xnt)‖2]
= E[‖∇θf(θ,Xnt

)‖2] + E[‖∆∇θf(θ,Xnt
)‖2]

≤
(
V 2)+

(
e2V 2)

≤ (1 + e2)V 2 (19)

Under compression, we use the compressed gradient as an estimate of the true gradient, in a
similar way to uncompressed SGD. One could define the compressed variance V̂ 2 for this
problem in a similar manner to (12) as

E[‖∇̂θf(θ,Xnt
)‖2] ≤ V̂ 2 (20)

and then write a similar convergence bound for this problem as
E[L(θ(t))− L(θ(∗))] ≤ (1− C1α)t(L(θ(0))− L(θ(∗))) + C2αV̂

2 (21)

where, according to Theorem 1, V̂ 2 = (1 + e2)V 2 and thus compressed SGD converges
similarly to uncompressed SGD, with a higher gradient variance.
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Appendix B Derivations for Network Layers

In this appendix, we derive the bounding functions and error bounds for Table 1. The
guiding principle of these derivations is to choose bounding functions that have efficient,
closed-form solutions. We accomplish this primarily by finding a quadratic (in ∆X) D using
the Cauchy-Schwarz inequality.
From this point forward, all gradient values are of f(θ,X), hence we omit the arguments
and write ∇Xf or ∂f/∂xnchw for the gradients or derivatives with respect to X = (xnchw).
We maximize compression by maximizing the number of bits removed from the compressed
activation. The derivative of B(∆X) (8) is

∂B(∆X)
∂∆xnchw

= 1
∆xnchw

(22)

B.1 Fully Connected

For weights θ = (θkc) ∈ RK×C , an input activationX = (xnc) ∈ RN×C , and output activation
gradient ∇Y f = (∂f/∂ynk) ∈ RN×K . The equations describing the fully connected layer
forward and backward pass are:

Shape Forward Backward
(N,C) xnc : from prev. layer ∂f

∂xnc
=
∑K
k θkc

∂f
∂ynk

(23)

(K,C) θkc : parameter ∂f
∂θkc

=
∑N
n xnc

∂f
∂ynk

(24)

(N,K) ynk =
∑C
c θkcxnc

∂f
∂ynk

: from next layer

The activation gradient (23) is independent of X, and thus not affected by activation error.
However, the the weight gradient error (24) is affected by activation error. We can calculate
the gradient error directly with substitution of xnc → xnc + ∆xnc into (24), and bound the
error using the Cauchy-Schwarz inequality:

‖∆∇θf‖2 =
K,C∑
k,c

(
N∑
n

(xnc + ∆xnc)
∂f

∂ynk
−

N∑
n

(xnc)
∂f

∂ynk

)2

(25)

=
K,C∑
k,c

(
N∑
n

∆xnc
∂f

∂ynk

)2

(26)

≤

N,K∑
n,k

(
∂f

∂ynk

)2
(N,C∑

n,c

∆x2
nc

)
(27)

As this is a low order, quadratic bound for ‖∆∇θf‖2, we select it for D. In vector form, the
bound and its derivatives are

D(∆X) := ‖∇Y f‖2‖∆X‖2 (28)
∂D(∆X)
∂∆xnc

= 2‖∇Y f‖2∆xnc (29)

The final step is to solve for the maximum activation error ∆X(∗). Substituting D ((28) and
(29)) into the system from the method of Lagrange multipliers (30) and solving for ∆X(∗):
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∂B(∆X)
∂∆xnc

= λ
∂D(∆X)
∂∆xnc

; D(∆X) = e2V 2 (30)

1
∆xnchw

= 2λ‖∇Y f‖2∆xnc (31)

∆x2
nc = 1

2λ‖∇Y f‖2
(32)

Applying the constraint to find λ:

D(∆X(∗)) = e2V 2 (33)

‖∇Y f‖2
N,C∑
n,c

(∆x(∗)
nc )2 = e2V 2 (34)

‖∇Y f‖2
N,C∑
n,c

(
1

2λ‖∇Y f‖2

)
= e2V 2 (35)

λ = NC

2e2V 2 (36)

resulting in the solution (
∆x(∗)

nc

)2
= e2V 2

NC‖∇Y f‖2
(37)

B.2 Simple Convolution

We first begin with a simplified convolution derivation, which will lead to the advanced
case. By simple, we do not consider bias, stride, or padding, and assume that error only
affects a single convolution layer. We define the input activation X to have dimensions
N × C × H ×W (batch size, channels, height, width) with a filter size of R × S and K
output channels. For this derivation, we assume the output dimensions are N ×K ×H ×W .
The equations describing such a layer, in scalar form are:

Shape Forward Backward
(N,C,H,W ) xnchw : from prev. layer ∂f

∂xnchw
=
∑K,R,S
k,r,s θkcrs

∂f
∂yn,k,h−r,w−s

(K,C,R, S) θkcrs : parameter ∂f
∂θkcrs

=
∑N,H,W
n,h,w xn,c,h+r,w+s

∂f
∂ynkhw

(38)
(N,K,H,W ) ynkhw =

∑C,R,S
c,r,s θkcrsxn,c,h+r,w+s

∂f
∂ynkhw

: from next layer

Using a similar method as that used to derive the fully connected layer bounding function
(28), we can use (38) and the Cauchy-Schwarz inequality to arrive at a suitable D(∆X):

‖∆∇θf‖2 =
K,C,R,S∑
k,c,r,s

N,H,W∑
n,h,w

(xn,c,h+r,w+s + ∆xn,c,h+r,w+s)
∂f

∂ynkhw

− (xn,c,h+r,w+s)
∂f

∂ynkhw

2

(39)

=
K,C,R,S∑
k,c,r,s

N,H,W∑
n,h,w

∆xn,c,h+r,w+s
∂f

∂ynkhw

2

(40)
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≤
R,S∑
r,s

N,C,H,W∑
n,c,h,w

∆x2
n,c,h+r,w+s

N,K,H,W∑
n,k,h,w

(
∂f

∂ynkhw

)2
 (41)

Each error ∆xnchw will be used at most RS times, so we can use
∑R,S
r,s (...) ≤ RS(...) resulting

in:

D(∆X) = RS‖∇Y f‖2‖∆X‖2 (42)

Following this, the optimal error can be found in a similar manner to the linear layer in (37).
Combining (42) with (8), and (7), results in the final solution for a convolution layer:

(
∆x(∗)

nchw

)2
= e2V 2

RSNCHW‖∇Y f‖2
(43)

B.3 Advanced Convolution

Single Layer: We now add horizontal stride and vertical stride T to the simple convolution.
The input and output activation dimensions will become important, so we define the input
and output dimensions to be N × C ×Hi ×Wi and N ×K ×Ho ×Wo, respectively. The
weight gradient calculation with stride is:

∂f

∂θkcrs
=
N,Ho,Wo∑
n,ho,wo

xn,c,Tho+r,Two+s
∂f

∂ynkhowo

(44)

We calculate the gradient error bound in a similar manner to (41), by using the Cauchy-
Schwarz inequality. As well, we use the substitutions hi := Tho + r and wi := Two + s for
brevity, which represent the index into the input image height and width. This results in the
gradient error bound:

‖∆∇θf‖2 ≤
R,S∑
r,s

N,C,Ho,Wo∑
n,c,ho,wo

∆x2
nchiwi

N,K,Ho,Wo∑
n,k,h,w

(
∂f

∂ynkhowo

)2
 (45)

To further simplify, we define a usage number uhw which satisfies:

N,C,Hi,Wi∑
n,c,h,w

uhw∆x2
nchw =

R,S∑
r,s

N,C,Ho,Wo∑
n,c,h,w

∆x2
n,c,Th+r,Tw+s (46)

The usage number may seem arbitrary, however, it has the definition as the number of times
an activation in the hw position is reused during convolution. Another definition of uhw is
the ratio of multiplications for an activation to an equivalent 1× 1 convolution with T = 1.
We illustrate examples of uhw in Figure S1. The usage can be calculated using the index,
activation dimensions, filter dimensions, stride, and padding and under all circumstances
uhw ≤ RS. For all convolutions in this work, we simply use uhw ≈ RS/T 2. This avoids
having multiple compression rates within the same activation channel (requires per-activation
bitwidth tracking) and avoids the need to determine compression rates on a per-activation
basis (computationally expensive). Convolutions with T 6= 1 comprise a small portion of
network layers, thus the impact from this approximation is small.
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Figure S1: Examples for the usage number uhw with a 3× 3 filter size and various strides T .
Overlapping areas are used in more than one filter product. Padding is ignored.

Substituting (46) into (45) results in:

D(∆X) = ‖∇Y f‖2
N,C,Hi,Wi∑
n,c,h,w

uhw∆x2
nchw (47)

with a constrained optimization solution of:(
∆x(∗)

nchw

)2
= e2V 2

NCHiWiuhw‖∇Y f‖2
(48)

Multiple Layers: Residual networks and their derivatives have skip connections where an
activation is used by more than one layer. We can ignore layers that do not depend on the
activation error ∆X, which avoids many cases where this occurs. However, skip connections
often involve an activation being used in multiple convolutions; this is why we solve the
problem directly where an activation X is used in L convolution layers (Figure S2).

Conv

Forward

ConvConv Conv

C D

Backward

Figure S2: Activation reuse with L convolution layers. Blue: Parameters, Yellow: Layers,
Red: Compressed activations, C: Compression, D: Decompression.

In this case, the activation X is used in L convolutions with L weight tensors
{θ(0), ... θ(l), ... θ(L−1)} to produce L activation tensors {Y (0), ... Y (l), ... Y (L−1)}. The
issue is that the compressed activation is used by all L convolutions which propagates error
to their weights. Hence, we need to consider all layers when determining an error bound for
the constrained optimization problem.
If we consider the problem of bounding the gradient error of all layers, θ =
{θ(0), ... θ(l), ... θ(L−1)}, we can split the sums of squares into individual layers:

‖∆∇θf‖2 =
L∑
l

‖∆∇θ(l)f‖2 (49)

We can create inequalities in a similar manner to the previous problems, particularly the
inequality from (45) and the inclusion of a usage number for each layer l, u(l)

hw. Using these

6



we can find:

D(∆X) =
L∑
l

‖∇Y (l)f‖2
N,C,Hi,Wi∑
n,c,h,w

u
(l)
hw∆x2

nchw (50)

with a constrained optimization solution of:(
∆x(∗)

nchw

)2
= e2V 2

NCHW
∑L
l u

(l)
hw‖∇Y (l)f‖2

(51)

The interpretation of (51) is that the error tolerance decreases for each additional layer. This
is intuitive, as the activation is being used by more weights, which results in a larger overall
gradient error.

B.4 Batch Normalization

Batch Normalization (BN) presents a host of problems when attempting to bound the
error in a compression sensitive context. The equations for BN are quite different from
convolution, which makes achieving a closed-form solution for error difficult. BN activation
errors propagate to both the parameter and activation gradients and then to other layers in
the network. This makes bounding the error difficult.
The equations that describe a batch normalization layer are described below. These are
transcribed from Ioffe & Szegedy [6]. We define M := NHW for brevity.

Shape Forward Description
(N,C,H,W ) xnchw : from prev. layer Input activation
(C, ) γc : parameter Learned scaling
(C, ) βc : parameter Learned bias
(C, ) µc = M−1∑

n,h,w xnchw Input mean
(C, ) σ2

c = M−1∑
n,h,w(xnchw − µc)2 Input variance

(C, ) sc = (σ2
c + 10−5)−1/2 Inverse Std. Dev.

(N,C,H,W ) anchw = sc(xnchw − µc) Normalized activation
(N,C,H,W ) ynchw = γc(anchw + βc) Normalized and scaled output

Shape Backward
(N,C,H,W ) ∂f

∂xnchw
= scγc( ∂f

∂ynchw
−M−1(anchw ∂f

∂γc
+ ∂f

∂βc
)) (52)

(C, ) ∂f
∂γc

=
∑N,H,W
n,h,w

∂f
∂ynchw

anchw (53)

(C, ) ∂f
∂βc

=
∑N,H,W
n,h,w

∂f
∂ynchw

(54)

(N,C,H,W ) ∂f
∂anchw

= γc
∂f

∂ynchw
(55)

(N,C,H,W ) ∂f
∂ynchw

: from next layer

A diagram of activation error propagation in the backward pass is shown in Figure S3 for an
example network that consists of Conv 1 → Conv 2 → Batch Normalization. In the
backward pass, orders are reversed, and the gradients from the batch normalization layer are
passed to the convolution layers. The equations of the BN layer result in activation errors
causing errors in the parameter gradient ∇γf and the outgoing activation gradient ∇Xf .
Simply constraining the parameter gradient ∇γf in a similar manner to convolution layers
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will not work, as ∇Xf is usually used in subsequent computations in the backward pass (e.g.,
Conv 1 and Conv 2, Figure S3). This means that errors from BN layers will propagate to
all subsequent layers through the activation gradients (red, Figure S3).

Batch Normalization    

bwd_parambwd_act Conv 2

Bound error here

Conv 1

Figure S3: Error propagation in the backward pass resulting from Batch Normalization (BN)
activation error. Paths affected from the injected activation error ∆X are shown in red. As
the errors propagate to the activation gradient ∇Xf , they can further propagate to any layer
preceeding the batch normalization layer. By bounding the outgoing gradient error ∆∇Xf
we aim to also bound any subsequent errors.

One way to address this would be to take into account the errors of all weights and parameters
affected by each BN layer, for example bounding all of ∆∇γf , ∆∇θ(2)f and ∆∇θ(1)f in
Figure S3. Bounding all gradients in this manner requires calculating interactions between
layers, which would be computationally expensive. Instead, we treat batch normalization as
a sub-problem, i.e., minimizing the loss with respect to X instead of γ and θ. By bounding
the error of the activation gradient ∆∇Xf we hypothesize that the subsequent errors are
also bounded. Unfortunately, the affected computation graph is large and complex, which
makes a rigorous proof difficult. Hence, we do not prove convergence bounds for networks
with batch normalization.
Consequently, we bound the input activation error as:

‖∆∇Xf‖2 ≤ e2V 2 (56)

As the equations handling back-propagation in BN layers are complex, a similarly complex
derivation is required to arrive at a computationally efficient bound on the activation error.
To begin, we find ∆∂f

∂xnchw
, i.e., the compression error of the derivative w.r.t. xnchw (an element

of ∆∇Xf). We define ânchw = anchw + sc∆xnchw, which can be derived by substituting the
activation with error xnchw + ∆xnchw into the definition of anchw.

∆∂f
∂xnchw

= scγc

(
∂f

∂ynchw
−M−1

(
ânchw

(
∂f

∂γc
+ ∆∂f

∂γc

)
+ ∂f

∂βc

))
− scγc

(
∂f

∂ynchw
−M−1

(
anchw

∂f

∂γc
+ ∂f

∂βc

))
(57)

= −scγc
M

(ânchw
∆∂f
∂γc

+ sc∆xnchw ∂f
∂γc

) (58)

with (
∆∂f
∂xnchw

)2
= s2

cγ
2
c

M2

(
ânchw

∆∂f
∂γc

+ sc∆xnchw
∂f

∂γc

)2
(59)

We use the inequality (a+ b)2 ≤ 2(a2 + b2) to simplify the square:(
∆∂f
∂xnchw

)2
≤ 2s2

cγ
2
c

M2

(
â2
nchw

(
∆∂f
∂γc

)2
+ s2

c∆x2
nchw

(
∂f

∂γc

)2
)

(60)

We make one approximation in the solution of batch normalization. Although this approxi-
mation is not necessary to obtain a solution, it greatly simplifies the result which helps reduce
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the overhead for computation at runtime. We assume a2
nchw � s2

c∆x2
nchw, which allows

for â2
nchw ≈ s2

c∆x2
nchw. Empirically we find this to be valid, as with moderate compression

∆xnchw is large, while anchw is normalized and hence insignificant by comparison. As we are
using inequalities, the inequality can still hold true provided that the approximation is close
to correct. This allows us to write:

(
∆∂f
∂xnchw

)2
/

2s4
cγ

2
c

M2 ∆x2
nchw

((
∆∂f
∂γc

)2
+
(
∂f

∂γc

)2
)

(61)

(62)

The term
(

∆∂f
∂γc

)2
+
(
∂f
∂γc

)2
is an expression for the compressed derivative w.r.t γc, and

depends on ∆X. As the goal is to keep the the expression quadratic in ∆X, we avoid
introducing an third order term by bounding this term with some g2

c satisfying (gc) ≤ (∇̂γf)2.
It is of note that this bounds the compressed parameter gradients in a similar manner to
convolution layers, however, the goal is to arrive at a compute-friendly solution for ∆∇Xf .
In practice, g2

c can be defined for any method given the maximum compression error.
Finally, we can express the activation gradient error as:

‖∆∇Xf‖2 /
N,C,H,W∑
n,c,h,w

2s4
cγ

2
c

M2 g2
c∆x2

nchw (63)

(64)
and thus use the gradient error bound

D(∆X) =
N,C,H,W∑
n,c,h,w

2s4
cγ

2
c

M2 g2
c∆x2

nchw (65)

which when used with the method of Lagrange multipliers (7), results in the activation error
bound (

∆x(∗)
nchw

)2
= 2e2V 2NHW

Cγ2
c s

4
cg

2 (66)

The parameter gradient bound gc can be derived with knowledge about the maximum
activation error, incoming gradient ∇Y f , standard deviation sc, and value of γ. We substitute
activation error into the equation for the parameter gradient (53) and continue from there:

(
∆∂f
∂γc

)2
=

sc N,H,W∑
n,h,w

∆xnchw
∂f

∂ynchw

2

(67)

≤

sc N,H,W∑
n,h,w

maxnhw|∆X| maxnhw|∇Y f |

2

(68)

= s2
c(NHW )2maxnhw(∆X)2 maxnhw(∇Y f)2 (69)

where maxnhw describes a maximum over the batch, height, and width dimensions of the
tensor, and |...| denotes the element-wise absolute value.
To tighten the inequality, we make the observation that in nearly all cases of BN the incoming
gradient ∇Y f is sparse. Many BN layers are followed by a ReLU activation, which introduces
sparsity in the gradient. If we define κc (≤ NHW ) as the number of non-zero values in the
c-th channel of ∇Y , then a tighter bound can be arrived at by reducing the number of sum
terms:
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(
∆∂f
∂γc

)2
≤ s2

cκ
2
cmaxnhw(∆X)2 maxnhw(∇Y f)2 (70)

We cannot use ∆X above to solve (66) to obtain ∆X, thus we need a bound which does
not depend on ∆X. If, at maximum compression, any activation becomes zero, then
maxnhw(∆X2) ≤ maxnhw(X)2. Further, if we are using the signed fixpoint compression,
and always remain above 2 bits, it can be derived that:

maxnhw(∆X)2 ≤ maxnhw(X/2)2 (71)

which holds true for all networks we have examined (generally bitwidths range from 4-10
bits). This results in our choice of gc:

gc := s2
cκ

2
cmaxnhw(X/2)2 maxnhw(∇Y f)2 +

(
∂f

∂γc

)2

B.5 Layer Normalization

Layer normalization is similar to batch normalization, however statistics are taken over the
channel index, rather than the batch index. The equations that describe a layer normalization
layer are below. We use a 2D activation tensor, with only batch (N) and channel (C) indices
for this layer. These are transcribed from Ba et al. [3].

Shape Forward Description
(N,C) xnc : from prev. layer Input activation
(C, ) γc : parameter Learned scaling
(C, ) βc : parameter Learned bias
(C, ) µn = C−1∑

c xnc Input mean
(C, ) σ2

n = C−1∑
c(xnc − µc)2 Input variance

(C, ) sn = (σ2
n + 10−5)−1/2 Inverse Std. Dev.

(N,C) anc = sn(xnc − µn) Normalized activation
(N,C) ync = γc(anc + βc) Normalized and scaled output

Shape Backward
(N,C) ∂f

∂anc
= γc

∂f
∂ync

(72)

(N,C) ∂f
∂ync

: from next layer

We leave the remainder of the gradients to derive in this section. The goal is to arrive at
an expression for the error on the outgoing activation gradient, ‖∆∇Xf‖2 .The following
partial derivatives can be derived from the above equations and the chain rule. δab is the
Kronecker delta for a and b.
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∂µr
∂xnc

= δnr
1
C

(73)

∂yrk
∂xnc

= γk
∂ark
∂xnc

(74)

∂σ2
r

∂xnc
= δnr

2
C

(
xrc − µr −

1
C

C∑
k

xrk − µr

)
(75)

∂sr
∂xnc

= δnr
−1
C
s2
r

(
arc −

1
C

C∑
k

ark

)
(76)

By definition, the sum of the normalized values must be zero,
∑C
k ark := 0. We can thus

simplify the derivative of the inverse standard deviation:

∂sr
∂xnc

= δnr
−1
C
s2
rarc (77)

By application of the chain rule, we can derive the simplified expression for the gradient
with respect to xnc.

Beginning with the normalized activation’s derivatives:
∂ark
∂xnc

= ∂sr
∂xnc

(xrk − µr) + sr

(
δrnδck −

∂µr
∂xnc

)
(78)

=
(
δnr
−1
C
s2
rarkδkc

)(
ark
sr

)
+ srδrnδck − sr

(
δnr

1
C

)
(79)

= −δnrδkcsr
C

a2
rk + srδnrδck −

δnrsr
C

(80)

And continuing to the gradient of xnc:

∂f

∂xnc
=
N,C∑
r,k

∂f

∂yrk

∂yrk
∂xnc

(81)

=
N,C∑
r,k

γkδnr

(
−sr
C

a2
rkδkc + srδck −

sr
C

)
(82)

= γcsn −
sn
C
γca

2
nk −

sn
C

C∑
k

γk (83)

Note that as only the activation is compressed, not the values of γc or sn, their values will
not change. Errors will only occur on the compressed version of ank. If the compressed value
is ânc, then the X gradient error is:

(
∆∂f
∂xnc

)2
= s2

nγ
2
c

C

(
â2
nc − a2

nc

)
(84)

expanding the squared error:
â2
nc − a2

nc = s2
n∆x2

nc + 2anc∆xnc + a2
nc − a2

nc (85)
= s2

n∆x2
nc + 2anc∆xnc (86)

and assuming that the activation error is large relative to the normalized activation:
≈ s2

n∆x2
nc (87)
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results in the final expression for the gradient error:

‖∆∇Xf‖ ≈
∑
n,c

s4
nγ

2
c∆x2

nc

C
(88)

This becomes the choice of D(∆X) for a layer normalization layer. Proceeding with solution
by the method of lagrange multipliers results in an activation error bound of:

(
∆x(∗)

nc

)2
= Ce2V 2

s4
nγ

2
c

(89)
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Appendix C Algorithm and AutoX Implementations

In this appendix we detail the AC-GC training algorithm, as well as the implementation for
the AutoX methods.

C.1 Training with AC-GC

Algorithm 1 describes the method for training with an AC-GC bounded compression method.
In the forward pass, norms are calculated every recalc_iters iterations. The quantities vary
depending on the layer, and include ‖X‖2, s2 and γ2. On the last_use_of the activation
X, the last 10 norms calculated are sampled, and either the mean or max of them is used to
produce summary statistics for each quantity. Finally, compression is applied using error
bounds calculated using Table 1. In the backward pass, the activation is decompressed,
producing an activation with error X̂ which is used to compute the lossy gradients ∇̂Xf
and ∇̂θf . These are then used in the next layer, and to update the network parameters (not
shown).

C.2 AutoQuantZ Implementation

For AutoQuant we use scaled fixpoint compression from [5], Fixpoint activation compression
has been presented in a variety of ways [4, 7]. We use per-channel scaling which appears to
have the best accuracy [5]. The conversion for signed values is:

fc := maxnhw|X| (90)
qnchw := int(2b−1xnchw/fc, b) (91)

where qnchw is the fixpoint activation with b bits, fc is the maximum of |xnchw| for the
channel c, and int(..., b) converts the value to a signed integer of b bits. This prevents clipping
of activations, as the scaled value never exceeds the fixpoint range.
The bitwidth for such signed integer compression can be calculated using

b ≥ − log2 ∆xnchw − log2 fc

For an unsigned activation, we can remove one bit (the sign bit) and obtain the same error.
Zero Value Compression is a relatively simple compression mechanism where sparse values
are replaced with a bitmask representing non-zero values, and non-zero values compressed
separately [11]. During activation decompression, the entire activation is decompressed at
once, allowing for the entire activation to be compressed without indices to determine the
locations of the compressed indices. We re-implement ZVC in our code.

C.3 AutoCuSZ Implementation

We adapt the CuSZ implementation from [13]. As the implementation uses an error bound
directly during compression, there is little modification required to input the error bounds
from Table 1. We re-implement this work in AutoCuSZ, and opt for 1D compression to avoid
compressing across multiple GPU cache lines. The compression is configured with a radius
of 4096, and 8-bit encoding, which we empirically find gives highest compression rates.

C.4 AutoJPEGZ Implementation

To create AutoJPEGZ we begin with the implementation of JPEG activation compression
from [5]. This implementation uses two Discrete Quantization Tables (DQTs) for early and
late training conditions. The DQT describes the amount of loss in the encoded frequency
coefficients. JPEG-ACT tuned the 64 DQT coefficients using CIFAR10/ResNet50 and found
that flatter DQTs provide better accuracies and activation compression ratios for activations.
JPEG does not have a bounded error for a given DQT, thus we attempt to approximately
bound the error using an empirical accuracy-compression relationship. We first parameterize
a flat 8× 8 DQT as follows:
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Algorithm 1 Pseudocode for training a DNN using AC-GC and a generic compression
method. Differences between BatchNormalization and Convolution are omitted for clarity.
Inputs:

Input activation: X
Compression method with compress() and decompress() functions
Sequence of network layers:
Recalculation interval: recalc_iters
summary method: summarize ∈ {mean, max}

1: # Lossless Forward Pass
2: for layer in layers do
3: Y = layer.fwd(X) . Normal forward pass

4: if t % recalc_iters = 0 then . Early stats saving
5: append_norms_for_layer(layer, X)

6: if last_use_of(X) then . Compression and cleanup
7: sample = get_last_10_norms(layer)
8: stats = summarize(sample)
9: ∆X = error_bound(layer, stats)

10: layer.compressed_X = compress(X,∆X)
11: delete X

12: X = Y

13: # ... Loss and initial gradient ∇Y f calculated
14: # ... Final activation Y retrieved

15: # Lossy Backward Pass
16: for layer in reversed(layers) do

17: if first_use_of(X̂) then . Decompression
18: X̂ = decompress(layer.compressed_X)
19: delete layer.compressed_X

20: ∇̂Xf = layer.bwd_act(X̂, Y , ∇Y f) . Backward pass
21: ∇̂θf = layer.bwd_param(X̂, Y , ∇Y f)

22: if t % recalc_iters == 0 then . Late stats saving
23: append_norms_for_layer(layer, ∇̂Xf, ∇Y f, ∇̂θf)

24: if last_use_of(Y ) then . Cleanup
25: delete Y,∇Y f

26: Y , ∇Y f = X̂, ∇̂Xf

14



DQT =

d/4 d ... d
d d ... d

...
d d ... d

 (92)

where d is an integer, and the first element is decreased to reduce error on the mean of the
activations.
Using this parameterization, we investigate the d/error relationship, where increasing d
increases compression (Figure S4). We measure this by first sampling uncompressed training
of CIFAR10/ResNet50. Every 10 epochs, we save one batch (N=128) worth of activations
(30 samples total). Offline, we run JPEG compression on the sampled activations for each
value of d to establish the compression-error relationship (Figure S4). While there is a wide
range of compression errors (from 2−16 to 20), we can bound most activations by using a
percentile of this distribution. Then, we train all models, using this empirical compression-
error relationship to calculate the JPEG compression levels, which approximately satisfy the
AC-GC convergence constraint.
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Figure S4: JPEG error response with a scaled constant DQT on activations sampled from
every 10 epochs of training CIFAR10/ResNet50. Allowable values for d are integers in the
range [1, 255].

We select the 90%-ile for our work as a proof of concept, as our goal is not to rigorously
study JPEG compression, simply to present a case study for how AC-GC error bounds can
be used with unbounded compression methods.
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Appendix D Detailed Hyperparameters

In this section, we summarize the dataset and model setup for this work.
We use the CIFAR10 [2] and IMDB.fine [10] dataset implementations [14], and use the
standard training/test dataset split. We use ImageNet 2012[9], with the validation dataset,
as we do not have access to the test dataset. ImageNet images are scaled so that the
shortest edge is 256 pixels. From the Div2K [1] datasets, we perform 2× upsampling from
bicubic downsampled images (LR_BICUBIC_2X → HR). Div2K images are cropped to the
minimum dimensions present in the dataset.
Dataset augmentations are shown in Table S1, and selections of hyperparameters are shown
in Table S2. Models have no significant modifications from their original source.

Table S1: Dataset augmentations for this work.
Dataset Augmentations

CIFAR10 Random scale up to 1.2×, random crop to 32 × 32, random horizontal
flip, 10% random PCA, 15o random angle, 8 × 8 random cutout

Div2K Random crop to 48 × 48, random horizontal flip
IMDB.fine No dataset augmentations
ImageNet Random crop to 224 × 224, random horizontal flip, 10% random PCA

Table S2: Training hyperparameters. N batch size, lr learning rate, E epochs. If not
otherwise stated, all use MomentumSGD with a momentum of 0.9. H. Param. Source
specifies how hyperparameters were chosen.
Model lr N E

lr decay/
E interval Model / H. Param. Source

All CIFAR10 0.05 128 300 0.5×/70 From [12]
Div2K/VDSR 0.1 32 110 0.1×/50 Re-implemented / grid search
IMDB/CNN 0.001 64 20 (ADAM) From [14] examples
ImageNet/ResNets 0.1 64 105 0.1×/25 From [14] examples/ [15]
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Appendix E Extended Experimental Results

To accompany the experimental section in the main text, we include tabulated data for all
experiments. Table S3 shows the accuracy resulting from grid search over QuantZ bitwidths.
The selected bitwidth (within 0.1 of the baseline) is bolded. We do not show high-bitwidth
configurations as they have a similar accuracy to 8-bit fixpoint. QuantZ compression rates
are shown in Table S4, which are averages over all runs and all epochs of training. Finally,
Table S5 shows accuracy for the AutoX methods with standard deviations included.

Table S3: Full accuracy with standard deviations for all models with fixpoint compression
(QuantZ). Bolded accuracy was selected for GridQuantZ as accuracy is within 0.1 of the
baseline. Configurations of 10, 12, 14, and 16 bits are not shown as accuracy is similar to
8-bit for all models. All non-ImageNet configurations are run five times.

Model Base 2-bit QuantZ 4-bit QuantZ 6-bit QuantZ 8-bit QuantZ
CIFAR10 % Top-1 Test Accuracy
VGG 93.6±0.11 89.2±0.73 93.4±0.16 93.4±0.11 93.5±0.09
RN50 94.9±0.12 85.6±2.47 94.5±0.07 95.0±0.09 95.1±0.12
WRN 95.8±0.04 90.9±1.42 95.6±0.10 96.0±0.06 95.8±0.04
Div2K Best Val. PSNR
VDSR 36.1±0.00 31.7±0.37 35.8±0.03 36.0±0.00 36.1±0.01
IMDB % Best Val. Accuracy
CNN 61.4±0.20 61.7±0.35 61.6±0.30 61.3±0.20 61.5±0.37
LSTM 60.3±0.52 60.4±0.45 60.4±1.27 60.2±0.85 60.0±0.52
Text Copy % Best Test Accuracy
TRANS 98.8±0.41 9.3±7.87 98.3±0.13 98.9±0.48 99.1±0.10
ImageNet % Top-1 Single Crop Val. Accuracy
RN18 68.6±0.17 46.6±30.1 67.3±0.19 68.1±0.67 68.5±0.39
RN50 72.6±0.28 17.4±6.1 70.8±0.11 72.2±0.22 72.5±0.38

Table S4: Average compression rates for all models with fixpoint compression (QuantZ).
Selected compression rates for each network are bolded.

Model 2-bit QuantZ 4-bit QuantZ 6-bit QuantZ 8-bit QuantZ
CIFAR10
VGG 15.9× 10.5× 7.9× 6.3×
RN50 12.5× 7.8× 5.7× 4.4×
WRN 15.5× 10.2× 7.6× 6.1×
Div2K
VDSR 14.2× 9.1× 6.7× 5.3×
IMDB
CNN 16.5× 11.1× 8.3× 6.7×
LSTM 14.7× 7.6× 5.2× 3.9×
Text Copy
TRANS 14.0× 7.5× 5.1× 3.9×
ImageNet
RN18 9.2× 5.4× 3.8× 2.9×
RN50 13.4× 8.5× 6.2× 4.9×
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Table S5: Full accuracy with standard deviations for all models with AutoX compression.
N/A indicates that the configuration was not examined. All ImageNet configurations are
run three times, and the remaining configurations are run five times.

Model AutoQuantZ AutoCuSZ AutoJPEGZ
CIFAR10 % Top-1 Test Accuracy
VGG 93.5±0.11 93.5±0.09 92.9±0.17
RN50 95.0±0.11 94.7±0.19 94.3±0.57
WRN 95.9±0.20 95.8±0.06 95.3±0.11
Div2K Best Val. PSNR
VDSR 36.1±0.01 35.8±0.08 36.1±0.00
IMDB % Best Val. Accuracy
CNN 61.6±0.33 61.8±0.38 61.4±0.58
RNN 60.1±0.81 60.9±0.92 N/A
Text Copy % Best Test Accuracy
TRANS 98.6±0.54 98.3±0.10 N/A
ImageNet % Top-1 Single Crop Val. Accuracy
RN18 68.5±0.24 68.1±0.14 68.1±0.29
RN50 72.7±0.18 72.5±0.57 71.5±1.47

Appendix F Additional Experiments

F.1 Sensitivity Study

In this appendix, we examine the empirical relationship between e and compression, as well
as whether using separate parameterizations for different layer types is beneficial. As bounds
for convolution and batch normalization layers are obtained using differing procedures,
it is useful to examine if there is a differing sensitivity with each layer type. We train
CIFAR10/ResNet50 using AutoQuant and the training parameters listed in the primary
manuscript. For convenience, we define

ε := − log2 |e| (93)

We sweep across a grid ε values for the convolution and BN layers and measure average
accuracy, loss, and bitwidth (across five randomly initialized runs).
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Figure S5: Sensitivity to ε for CIFAR10/ResNet50. a) Maximum validation accuracy over
the course of training, b) Average training loss over the final 10 epochs, c) Average bitwidth
over the course of training. All values are the average of 5 training runs, and are represented
relative to convolution ε = 0 and batch normalization ε = 0.

The sweeps demonstrate the correlation where increasing ε results in increased accuracy
(Figure S5a), but decreased bitwidth (Figure S5c). The average bitwidth over training
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changes nearly identically with ε, except for slight deviations due to an uneven split of
activations between convolution and BN. Examining accuracy across constant-bitwidth
diagonals reveals that BN layers have a slightly lower error tolerance than convolution layers
(Figure S5a top-right is higher than bottom-left). Despite the noise in the results, it also
appears that the -0.5 bits diagonal has higher accuracy than the 0 bits diagonal (+0.09% on
average), likely due to non-convexity of the error response. These results demonstrate that
the AutoQuant bitwidth is within 0.5 bits and 0.12% of a locally-optimal solution.

F.2 Norm Approximation Error

In this section, we examine the error distribution resulting from approximating the norms
for the AC-GC error bounds. To collect this data, we train ImageNet/ResNet50 using
AutoQuantZ. Every 10 epochs for 100 iteration, the exact and approximated (mean and
max) norms are measured, and the error between them is recorded. We measure across all
layers in the network.
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Figure S6: Histogram of mean approximation error for the activation gradient ‖∇Y f‖2 and
batch norm gradient ‖∇γf‖2 for the first 100 epochs of ImageNet/ResNet50.
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Figure S7: Histogram of max approximation error for the activation gradient ‖∇Y f‖2 and
batch norm gradient‖∇γf‖2 for the first 100 epochs of ImageNet/ResNet50.

In Figure S6 it can be seen that the approximations have residuals with approximately zero
mean, and a normal distribution with small variance. This is advantageous, as it indicates
that there is little difference from measuring norms at every iteration. Overall, we find that
the mean is an over-estimate of the norms, as the norms follow a distribution with a long
tail.
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In Figure S7 it can be seen that using a maximum instead of mean results in biased residuals.
However, as all norms are over-approximated, compression rate will decrease somewhat.
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