
Provably expressive temporal graph networks
(Supplementary material)

A Further details on temporal graph networks
In this section we present more details about the models TGAT, TGN-Att, and CAW.

A.1 Temporal graph attention (TGAT)
Temporal graph attention networks [42] combine time encoders [15] and self-attention [33]. In
particular, the time encoder � is given by

�(t� t
0) = [cos(!1(t� t

0) + b1), . . . , cos(!d(t� t
0) + bd)], (S1)

where !i’s and bi’s are learned scalar parameters. The time embeddings are concatenated to the
edge features before being fed into a typical self-attention layer, where the query q is a function of a
reference node v, and both values V and keys K depend on v’s temporal neighbors. Formally, TGAT
first computes a matrix C

(`)
v (t) whose u-th row is c

(`)
vu(t) = [h(`�1)

u (t) k �(t � tuv) k euv] for all
(u, euv, tuv) 2 N (v, t). Then, the output h̃(`)

v (t) of the AGG(`) function is given by

q = [h(`�1)
v (t) k �(0)]W (`)

q K = C
(`)
v (t)W (`)

K V = C
(`)
v (t)W (`)

V (S2)

h̃
(`)
v (t) = softmax

�
qK

>�
V (S3)

where W
(`)
q ,W

(`)
K , and W

(`)
V are model parameters. Regarding the UPDATE function, TGAT applies

a multilayer perceptron, i.e., h(`)
v (t) = MLP(`)(h(`�1)

v (t) k h̃(`)
v (t)).

A.2 Temporal graph networks with attention (TGN-Att)
We now discuss details regarding the MP-TGN framework omitted from the main paper for simplicity.

For the sake of generality, Rossi et al. [27] present a formulation for MP-TGNs that can handle
node-level events, e.g., node feature updates. These events lead to i) updating node memory states,
and ii) using the time-evolving node features as additional inputs for the message-passing functions.
Nonetheless, to the best of our knowledge, all relevant CTDG benchmarks comprise only edge
events. Therefore, for ease of presentation, we omit node events and temporal node features from our
treatment. In Appendix E, we discuss how to handle node-level events.

Note that MP-TGNs update memory states only after an event occurs, otherwise it would incur
information leakage. Unless we use the updated states to predict another event later on in the batch,
this means that there might be no signal to propagate through memory modules. To get around
this problem, Rossi et al. [27] propose updating the memory with messages coming from previous
batches, and then predicting the interactions.

To speed up computations, MP-TGNs employ a form of batch learning where events in a same batch
are aggregated. In our analysis, we assume that two events belong to the same batch only if they
occur at the same timestamp. Importantly, memory aggregators allow removing ambiguity in the way
the memory of a node participating in multiple events (at the same timestamp) is updated — without
memory aggregator, two events involving a given node i at the same time could lead to different ways
of updating the state of i.



Suppose the event � = (i, u, t) occurs. MP-TGNs proceed by computing a memory-message function
MEMMSGe for each endpoint of �, i.e.,

mi,u(t) = MEMMSGe(si(t), su(t), t� ti, eiu(t))

mu,i(t) = MEMMSGe(su(t), si(t), t� tu, eiu(t))

Following the original formulation, we assume an identity memory-message function — simply the
concatenation of the inputs, i.e., MEMMSGe(si(t), su(t), t�ti, eiu(t)) = [si(t), su(t), t�ti, eiu(t)].

Now, suppose two events (i, u, t) and (i, v, t) happen. MP-TGNs aggregate the memory-messages
from these events using a function MEMAGG to obtain a single memory message for i:

mi(t) = MEMAGG(mi,u(t),mi,v(t))

Rossi et al. [27] propose non-learnable memory aggregators, such as the mean aggregator (average
all memory messages for a given node), that we denote as MEANAGG and adopt throughout our
analysis. As an example, under events (i, u, t) and (i, v, t), the aggregated message for i is mi(t) =
0.5([si(t), su(t), t� ti, eiu(t)] + [si(t), sv(t), t� ti, eiv(t)]).

The memory update of our query node i is given by

si(t
+) = MEMUPDATE(si(t),mi(t)).

Finally, we note that TGAT does not have a memory module. TGN-Att consists of the model resulting
from augmenting TGAT with a GRU-based memory.

A.3 Causal anonymous walks (CAW)
We now provide details regarding how CAW obtains edge embeddings for a query event � = (u, v, t).

A temporal walk is represented as W = ((w1, t1), (w2, t2), . . . , (wL, tL)), with t1 > t2 > · · · > tL

and (wi�1, wi, ti) 2 G(t) for all i > 1. We denote by Su(t) the set of maximal temporal walks
starting at u of size at most L obtained from the temporal graph at time t. Following the original
paper, we drop the time dependence henceforth.

A given walk W gets anonymized through replacing each element wi belonging to W by a 2-element
set of vectors ICAW(wi;Su, Sv) accounting for how many times wi appears at each position of walks
in Su and Sv. These vectors are denoted by g(wi, Su) and g(wi, Sv). The walk is encoded using a
RNN:

ENC(W ;Su, Sv) = RNN([f1(ICAW(wi;Su, Sv))kf2(ti � ti�1)]
L
i=1),

where t1 = t0 = t and f1 is

f1(ICAW(wi;Su, Sv)) = MLP(g(wi, Su)) +MLP(g(wi, Sv)).

We note that the MLPs share parameters. The function f2 is given by

f2(t) = [cos(!it), sin(!1t), . . . , cos(!dt), sin(!dt)]

where !i’s are learned parameters.

To compute the embedding h� for (u, v, t), CAW considers two readout functions: mean and self-
attention. Finally, the final link prediction is obtained from a 2-layer MLP over h� .
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B Proofs
B.1 Further definitions and Lemmata
Definition B1 (Monotone walk.). An N -length monotone walk in a temporal graph G(t) is a sequence
(w1, t1, w2, t2, . . . , wN+1) such that ti > ti+1 and (wi, wi+1, ti) 2 G(t) for all i.

Definition B2 (Temporal diameter.). We say the temporal diameter of a graph G(t) is� if the longest
monotone walk in G(t) has length (i.e, number of edges) exactly�.

Lemma B1. If the TCTs of two nodes are isomorphic, then their monotone TCTs (Definition 2) are
also isomorphic, i.e., Tu(t) ⇠= Tv(t) ) T̃u(t) ⇠= T̃v(t) for two nodes u and v of a dynamic graph.

Proof. Since Tu(t) ⇠= Tv(t), we have that

p = (u0, t1, u1, t2, u2, . . . ) from Tu(t) () p
0 = (f(u0), t1, f(u1), t2, f(u2), . . . ) from Tv(t),

with sui = sf(ui) and euiui+1(ti+1) = ef(ui)f(ui+1)(ti+1) and kui = kf(ui) 8i

where f : V (Tu(t)) ! V (Tv(t)) is a bijection.

Assume that T̃u(t) 6⇠= T̃v(t). Then, either there exists a path ps = (u0
0, t

0
1, u

0
1, t

0
2, . . .) in T̃u(t), such

that t0k+1 < t
0
k for all k (i.e., a monotone walk), with no corresponding one in T̃v(t) or vice-versa.

Without loss of generality, let us consider the former case.

We can construct the path p
0
s in Tv(t) by applying f in all elements of ps, i.e., p

0
s =

(f(u0
0), t

0
1, f(u

0
1), t

0
2, . . .). Note that p0s is a monotone walk in Tv(t). Since T̃v(t) is the maximal

monotone subtree of Tv(t), it must contain p
0
s, leading to contradiction.

Lemma B2. Let G(t) and G
0(t) be any two non-isomorphic temporal graphs. If an MP-TGN obtains

different multisets of node embeddings for G(t) and G
0(t). Then, the temporal WL test decides G(t)

and G
0(t) are not isomorphic.

Proof. Recall Proposition 3 shows that if an MP-TGN with memory is able to distinguish two nodes,
then there is a memoryless MP-TGN with � (temporal diameter) additional layers that does the
same. Thus, it suffices to show that if the multisets of colors from temporal WL for G(t) and G

0(t)
after ` iterations are identical, then the multisets of embeddings from the memoryless MP-TGN
are also identical, i.e., if {{c

`(u)}}u2V (G(t)) = {{c
`(u0)}}u02V (G0(t)), then {{h

(`)
u (t)}}u2V (G(t)) =

{{h
(`)
u0 (t)}}u02V (G0(t)). To do so, we repurpose the proof of Lemma 2 in [43].

More broadly, we show that for any two nodes of a temporal graph G(t), if the temporal WL returns
c
`(u) = c

`(v), we have that corresponding embeddings from MP-TGN without memory are identical
h
`
u(t) = h

`
v(t). We proceed with a proof by induction.

[Base case] For ` = 0, the proposition trivially holds as the temporal WL has the initial node features
as colors, and memoryless MP-TGNs have these features as embeddings.

[Induction step] Assume the proposition holds for iteration `. Thus, for any two nodes u, v, if
c
`+1(u) = c

`+1(v), we have

(c`(u), {{(c`(i), eiu(t
0), t0) : (u, i, t0) 2 G(t)}}) = (c`(v), {{(c`(j), ejv(t

0), t0) : (v, j, t0) 2 G(t)}})

and, by the induction hypothesis, we know

(h(`)
u (t), {{(h(`)

i (t), eiu(t
0), t0) : (u, i, t0) 2G(t)}}) =

(h(`)
v (t), {{(h(`)

j (t), ejv(t
0), t0) : (v, j, t0) 2 G(t)}})

We also note that this last identity also implies

(h(`)
u (t), {{(h(`)

i (t), t� t
0
, e) | (i, e, t0) 2N (u, t)}}) =

(h(`)
v (t), {{(h(`)

j (t), t� t
0
, e) | (j, e, t0) 2 N (v, t)}})

since there exists an event (u, i, t0) 2 G(t) with feature eui(t0) = e iff there is an element (i, e, t0) 2
N (u, t).
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As a result, the inputs of the MP-TGN’s aggregation and update functions are identical, which leads
to identical outputs h

(`+1)
u (t) = h

(`+1)
v (t). Therefore, if the temporal WL test obtains identical

multisets of colors for two temporal graphs after ` steps, the multisets of embeddings at layer ` for
these graphs are also identical.

Lemma B3 (Lemma 5 in [43]). Assume X is countable. There exists a function f : X ! Rn so that
h(X) =

P
x2X f(x) is unique for each multiset X ⇢ X of bounded size. Moreover, any multiset

function g can be decomposed as g(X) = '
�P

x2X f(x)
�

for some function '.

B.2 Proof of Proposition 1: Relationship between DTDGs and CTDGs
Proof. We prove the two statements in Proposition 1 separately. In the following, we treat CTDGs as
sets of events up to a given timestamp.

Statement 1: For any DTDG we can build a CTDG that contains the same information.

A DTDG consists of a sequence of graphs with no temporal information. We can model this using the
CTDG formalism by setting a fixed time difference � between consecutive elements G(ti),G(ti+1)
of the CTDG, i.e., ti+1 � ti = � for all i � 0.

Consider a DTDG given by the sequence (G1, G2, . . . ). To build the equivalent CTDG, we define
S(Gi) as the set of edge events corresponding to Gi, i.e., S(Gi) = {(u, v, i�) : (u, v) 2 E(Gi)}.
We also make the edge features of these events match those in the DTDG, i.e., euv(i�) = euv 2 Ei.
To account for node features, for all u 2 V (Gi), we create an event (u, ⇧, i�) between u and a
dummy node ⇧, with feature eu⇧(i�) = xu 2 Xi. Let C(Gi) denote the set comprising these
node-level events. Then, we can construct the CTDG G(ti) = [

i
j=1S(Gj) [ C(Gj) for i = 1, . . . .

Reconstructing the DTDG (G1, G2, . . . ) is trivial. To build Gi, it suffices to select all events at time
i� in the CTDG. Events involving ⇧ determine node features and the remaining ones constitute edges
in the DTDG.

Statement 2: The converse holds if the CTDG timestamps form a subset of some uniformly spaced
countable set.

We say that a countable set A ⇢ R is uniformly spaced if there exists some � 2 R such that
ai+1 � ai = � for all i where (a1, a2, . . .) is the ordered sequence formed from elements ar of A,
i.e., a1 < a2 < . . . < ai < ai+1, . . .

Note that DTDGs are naturally represented by a set of uniformly spaced timestamps. This is because
DTDGs correspond to sequences that do not contain any time information. Let us denote the set of
CTDG timestamps T ✓ T such that T is countable and uniformly spaced. Our idea is to construct a
DTDG sequence with timestamps that coincide with the elements in T . Then, since T ✓ T , we do
not lose any information pertaining to events occurring at timestamps given by T . Without loss of
generality, in the following we assume that the elements of T and T are arranged in their increasing
order respectively, i.e., ti < ti+1 for all i, and ⌧k < ⌧k+1 for all k.

Consider a CTDG (G(t1),G(t2), . . . ) such that G(ti) = {(u, v, t) : t 2 T and t  ti} for ti 2 T .
Also, let us denote H(ti) = {(u, v, t) 2 G(ti) : t = ti} the set of events at time ti 2 T . We can
build a corresponding DTDG (G1, G2, . . . ) such that for all ⌧k 2 T the k-th snapshot Gk is

V (Gk) =

⇢
{u : (u, ·, ⌧k) 2 H(⌧k)}, if ⌧k 2 T ;
;, otherwise.

E(Gk) =

⇢
{(u, v) : (u, v, ⌧k) 2 H(⌧k)}, if ⌧k 2 T ;
;, otherwise.

To recover the original CTDG, we can adapt the reconstruction procedure we used in the previous
part of the proof. We define

Ĩ = {(i, k) 2 N⇥ N : ⌧k = ti for ti 2 T and ⌧k 2 T }. (S4)

Note that we can treat Ĩ as a map by defining Ĩ(i) = k if and only if (i, k) 2 Ĩ . To recover the
original CTDG, we first create the set of events S(Gk) = {(u, v, k�) : (u, v) 2 E(Gk)}. Then, we
build G(ti) = [j:jĨ(i)S(Gj) for ti 2 T .
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B.3 Proof of Lemma 1

Proof. Here we show that if two nodes u and v have isomorphic (L-depth) TCTs, then MP-TGNs
(with L-layers) compute identical embeddings for u and v. Formally, let Tu,`(t) denote the TCT of u
with ` layers. We want to show that Tu,`(t) ⇠= Tv,`(t) ) h

(`)
u (t) = h

(`)
v (t). We employ a proof by

induction on `. Since there is no ambiguity, we drop the dependence on time in the following.

[Base case] Consider ` = 1. By the isomorphism assumption Tu,1
⇠= Tv,1, h(0)

u = su = sv = h
(0)
v —

roots of both trees have the same states. Also, for any children i of u in Tu,1 there is a corresponding
one f(i) in Tv,1 with si = sf(i). Recall that the `-th layer aggregation function AGG(`)(·) acts
on multisets of triplets of previous-layer embeddings, edge features and timestamps of temporal
neighbors (see Equation 1). Since the temporal neighbors of u correspond to its children in Tu,1,
then the output of the aggregation function for u and v are identical: h̃(1)

u = h̃
(1)
v . In addition, since

the initial embeddings of u and v are also equal (i.e., h(0)
u = h

(0)
v ), we can ensure that the update

function returns h(1)
u = h

(1)
v .

[Induction step] Assuming that Tu,`�1
⇠= Tv,`�1 ) h

(`�1)
u = h

(`�1)
v for any pair of nodes u and

v, we will show that Tu,`
⇠= Tv,` ) h

(`)
u = h

(`)
v . For any children i of u, let us define the subtree

of Tu,` rooted at i by Ti. We know that Ti has depth ` � 1, and since Tu,`
⇠= Tv,`, there exists a

corresponding subtree of Tv (of depth `� 1) rooted at f(i) such that Ti
⇠= Tf(i). Using the induction

hypothesis, we obtain that the multisets of embeddings from the children i of u and children f(i) of
v are identical. Note that if two `-depth TCTs are isomorphic, they are also isomorphic up to depth
`� 1, i.e., Tu,`

⇠= Tv,` implies Tu,`�1
⇠= Tv,`�1 and, consequently, h(`�1)

u = h
(`�1)
v (by induction

hypothesis). Thus, the input of the aggregation and update functions are identical and they compute
the same embeddings for u and v.

B.4 Proof of Proposition 2: MP-TGNs with injective message passing

Proof. Consider MP-TGNs with parameter values that make AGG(`)(·) and UPDATE(`)(·) injective
functions on multisets of triples of hidden representations, edge features and timestamps. The
existence of these parameters is guaranteed by the fact that, at any given time t, the space of node
states (and hidden embeddings from temporal neighbors), edge features and timestamps is finite (see
Lemma B3).

Again, let Tu,`(t) denote the TCT of u with ` layers. We want to prove that, under the injectivity
assumption, if Tu,`(t) 6⇠= Tv,`(t), then h

(`)
u (t) 6= h

(`)
u (t) for any two nodes u and v. In the following,

we simplify notation by removing the dependence on time. We proceed with proof by induction on
the TCT’s depth `. Also, keep in mind that '` = UPDATE(`)

� AGG(`) is injective for any `.

[Base case] For ` = 1, if Tu,1 6⇠= Tv,1 then the root node states are different (i.e., su 6= sv) or the
multiset of states/edge features/ timestamps triples from u and v’s children are different. In both
cases, the inputs of '` are different and it therefore outputs different embeddings for u and v.

[Induction step] The inductive hypothesis is Tu,`�1 6⇠= Tv,`�1 ) h
(`�1)
u 6= h

(`�1)
v for any pair of

nodes u and v. If Tu,` 6
⇠= Tv,`, at least one of the following holds: i) the states of u and v are different,

ii) the multisets of edges (edge features/ timestamps) with endpoints in u and v are different, or iii)
there is no pair-wise isomorphism between the TCTs rooted at u and v’s children. In the first two
cases, '` trivially outputs different embeddings for u and v. We are left with the case in which only
the latter occurs. Using our inductive hypothesis, the lack of a (isomorphism ensuring) bijection
between the TCTs rooted at u and v’s children implies there is also no bijection between their multiset
of embeddings. In turn, this guarantees that ' will output different embeddings for u and v.

B.5 Proof of Proposition 3: The role of memory

Proof. We prove the two parts of the proposition separately. In the following proofs, we rely on the
concept of monotone TCTs (see Definition 2).

Statement 1: If L < �: Q[M ]
L is strictly stronger than QL.
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We know that the family of L-layer MP-TGNs with memory comprises the family of L-layer MP-
TGNs without memory (we can assume identity memory). Therefore, Q[M ]

L is at least as powerful
as QL. To show that Q[M ]

L is strictly stronger (more powerful) than QL, when L < �, it suffices
to create an example for which memory can help distinguish a pair of nodes. We provide a trivial
example in Figure S1 for L = 1. Note that the 1-depth TCTs of u and v are isomorphic when no
memory is used. However, when equipped with memory, the interaction (b, c, t1) affects the states of
v and c, making the 1-depth TCTs of u and v (at time t > t2) no longer isomorphic.

Figure S1: Temporal graph where all initial node features and edge features are identical, and t2 > t1.

Statement 2: For any L : QL+� is at least as powerful as Q[M ]
L .

It suffices to show that if QL+� cannot distinguish a pair of nodes u and v , Q[M ]
L cannot distinguish

them too. Let TM
u,L(t) and Tu,L(t) denote the L-depth TCTs of u with and without memory respec-

tively. Using Lemma 1, this is equivalent to showing that Tu,L+�(t) ⇠= Tv,L+�(t) ) T
M
u,L(t)

⇠=
T

M
v,L(t), since no MP-TGN can separate nodes associated with isomorphic TCTs. In the following,

when we omit the number of layers from TCTs, we assume TCTs of arbitrary depth.

Step 1: Characterizing the dependence of memory on initial states and events in the dynamic graph.

We now show that the memory for a node u, after processing all events with timestamp  tn, depends
on the initial states of a set of nodes Vn

u , and a set of events annotated with their respective timestamps
and features Bn

u . If at time tn no event involves a node z , we set Bn
z = B

n�1
z and V

n
z = V

n�1
z . We

also initialize B
0
u = ; and V

0
u = {u} for all nodes u. We proceed with a proof by induction on the

number of observed timestamps n.

[Base case] Let I1(u) = {v : (u, v, t1) 2 G(t+1 )} be the set of nodes interacting with u at time t1,
where G(t+1 ) is the temporal graph right after t1. Similarly, let J1(u) = {(u, ·, t1) 2 G(t+1 )} be
the set of events involving u at time t1. Recall that up until t1, all memory states equal initial node
features (i.e., su(t1) = su(0)). Then, the updated memory (see Equation 3 and Equation 4) for u
depends on V

1
u = V

0
u [v2I(u) V

0
v , B1

u = B
0
u [ J1(u).

[Induction step] Assume that for timestamp tn�1 the proposition holds. We now show that it holds for
tn. Since the proposition holds for n�1 timestamps, we know that the memory of any w that interacts
with u in tn, i.e. w 2 In(u), depends on V

n�1
w and B

n�1
w , and the memory of u so far depends on

V
n�1
u and B

n�1
u . Then, the updated memory for u depends on V

n
u = V

n�1
u [w2I(u) {w, u} [ V

n�1
w

and B
n
u = B

n�1
u [ Jn(u) [w2I(u) B

n�1
w .

Step 2: (z, w, tzw) 2 B
n
u if and only if there is a path (uk, tk = tzw, uk+1) in T̃u(t+n ) — the

monotone TCT of u (see Definition 2) after processing events with timestamp  tn — with either
]uk = z, ]uk+1 = w or ]uk = w, ]uk+1 = z.

[Forward direction] An event (z, w, tzw) with tzw  tn will be in B
n
u only if z = u or w = u, or

if there is a subset of events {(u, ]u1, t1), (]u1, ]u2, t2), . . . , (]uk, ]uk+1, tzw)} with ]uk = z and
]uk+1 = w such that tn � t1 > · · · > tzw. In either case, this will lead to root-to-leaf path in T̃u(t+n )
passing through (uk, tzw, uk+1). This subset of events can be easily obtained by backtracking edges
that caused unions/updates in the procedure from Step 1.

[Backward direction] Assume there is a subpath p = (uk, tk = tzw, uk+1) 2 T̃u(t+n ) with ]uk = z

and ]uk+1 = w such that (z, w, tzw) /2 B
n
u . Since we can obtain p from T̃u(t+n ), we know that the

sequence of events r = ((u, ]u1, t1), . . . , (]uk�2, ]uk�1 = z, tk�1), (z, w, tk = tzw)) happened and
that ti > ti+1 8i. However, since (z, w, tzw) /2 B

n
u , there must be no monotone walk starting from

u going through the edge (z, w, tzw) to arrive at w, which is exactly what r characterizes. Thus, we
reach contradiction.
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Note that the nodes in V
n
u are simply the nodes that have an endpoint in the events Bn

u , and therefore
are also nodes in T̃u(t+n ) and vice-versa.

Step 3: For any node u, there is a bijection that maps (Vn
u ,B

n
u ) to T̃u(t+n ).

First, we note that (Vn
u ,B

n
u ) depends on a subset of all events, which we represent as G0

✓ G(t+n ).
Since B

n
u contains all events in G

0 and (Vn
u ,B

n
u) can be uniquely constructed from G

0, then there is a
bijection g that maps from G

0 to (Vn
u ,B

n
u).

Similarly, T̃u(t+n ) also depends on a subset of events which we denote by G
00
✓ G(t+n ). We note that

the unique events in T̃u(t+n ) correspond to G
00, and we can uniquely build the tree T̃u(t+n ) from G

00.
This implies that there is a bijection h that maps from G

00 to T̃u(t+n ).

Previously, we have shown that all events in B
n
u are also in T̃u(t+n ) and vice-versa. This implies that

both sets depend on the same events, and thus on the same subset of all events, i.e., G0 = G
00 = GS .

Since there is a bijection g between GS and (Vn
u ,B

n
u), and a bijection h between GS and T̃u(t+n ),

there exists a bijection f between (Vn
u ,B

n
u) and T̃u(t+n ).

Step 4: If Tu,L+�(t+) ⇠= Tv,L+�(t+), then T
M
u,L(t

+) ⇠= T
M
v,L(t

+).

To simplify notation, we omit here the dependence on time.

Any node w 2 T
M
u,L also appears in Tu,L+� at the same level. The subtree of Tu,L+� rooted at w,

denoted here by T
0
w, has depth at least k � �. Note that T 0

w corresponds to the k-depth TCT of ]w.
Since the depth of T 0

w is at least �, we know that the T̃
0
w
⇠= T̃]w — i.e., imposing time-constraints to

T
0
w results in the monotone TCT of node ]w. Also, because the memory of ]w depends on T̃]w, T 0

w
comprises the information used to compute the memory state of ]w. Note that this applies to any w in
T

M
u,L; thus, Tu,L+� contains all we need to compute the states of any node of the dynamic graph that

appears in T
M
u,L. The same argument applies to Tv,L+� and T

M
v,L. Finally, since TM

u,L can be uniquely
computed from Tu,L+�, and T

M
v,L from Tv,L+�, if Tu,L+�

⇠= Tv,L+�, then T
M
u,L

⇠= T
M
v,L.

B.6 Proof of Proposition 4: Limitations of TGAT and TGN-Att
Proof. In this proof, we first provide an example of a dynamic graph where the TCTs of two
nodes u and v are not isomorphic. Then, we show that we can not find a TGAT model such that
h
(L)
u (t) 6= h

(L)
v (t), i.e., TGAT does not distinguish u and v. Next, we show that even if we consider

TGATs with memory (TGN-Att), it is still not possible to distinguish nodes u and v in our example.

Figure S2: (Leftmost) Example of a temporal graph for which TGN-Att and TGAT cannot distinguish
nodes u and v even though their TCTs are non-isomorphic. Colors denote node features and all edge
features are identical, and t2 > t1 (and t > t2). (Right) The 2-depth TCTs of nodes u, v, z and w.
The TCTs of u and v are non-isomorphic whereas the TCTs of z and w are isomorphic.

Figure S2(leftmost) provides a temporal graph where all edge events have the same edge features.
Colors denote node features. As we can observe, the TCTs of nodes u and v are not isomorphic. In
the following, we consider node distinguishability at time t > t2.

Statement 1: TGAT cannot distinguish the nodes u and v in our example.

Step 1: For any TGAT with ` layers, we have that h(`)
w (t) = h

(`)
z (t).

We note that the `-layer TCTs of nodes w and z are isomorphic, for any `. To see this, one can consider
the symmetry around node u that allows us to define a node permutation function (bijection) f given
by f(z) = w, f(w) = z, f(a) = v, f(u) = u, f(b) = c, f(c) = b, f(v) = a. Figure S2(right)
provides an illustration of the 2-depth TCTs of z and w at time t > t2.
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By Lemma 1, if the `-layer TCTs of two nodes z and w are isomorphic, then no `-layer MP-TGN can
distinguish them. Thus, we conclude that h(`)

w (t) = h
(`)
z (t) for any TGAT with arbitrary number of

layers `.

Step 2: There is no TGAT such that h(`)
v (t) 6= h

(`)
u (t).

To compute h
(`)
v (t), TGAT aggregates the messages of v’s temporal neighbors at layer ` � 1, and

then combines h(`�1)
v (t) with the aggregated message h̃

(`�1)
v (t) to obtain h

(`)
v (t).

Note that N (u, t) = {(z, e, t1), (w, e, t1)} and N (v, t) = {(w, e, t1)}, where e denotes an edge
feature vector. Also, we have previously shown that h(`�1)

w (t) = h
(`�1)
z (t).

Using the TGAT aggregation layer (Equation S2), the query vectors of u and v are qu =

[h(`�1)
u (t)||�(0)]W (`)

q and qv = [h(`�1)
v (t)||�(0)]W (`)

q , respectively.

Since all events have the common edge features e, the matrices C(`)
u and C

(`)
v share the same vector in

their rows. The single-row matrix C
(`)
v is given by C

(`)
v = [h(`�1)

w (t)||�(t�t1)||e], while the two-row
matrix C

(`)
u =

h
[h(`�1)

w (t)||�(t� t1)||e]; [h
(`�1)
z (t)k�(t� t1)||e]

i
, with h

(`�1)
w (t) = h

(`�1)
z (t). We

can express C(`)
u = [1, 1]>r and C

(`)
v = r , where r denotes the row vector r = [h(`�1)

z (t)||�(t �
t1)||e].

Using the key and value matrices of node v, i.e., Kv = C
(`)
v W

(`)
K and Vv = C

(`)
v W

(`)
V , we have that

h̃
(`)
v (t) = softmax(qvK

>
v )Vv

= softmax(qvK
>
v )| {z }

=1

rW
(`)
V [softmax of a single element is 1]

= rW
(`)
V

= softmax(quK
>
u )[1, 1]>| {z }

=1

rW
(`)
V = h̃

(`)
u (t) [softmax outputs a convex combination]

We have shown that the aggregated messages of nodes u and v are the same at any layer `. We note
that the initial embeddings are also identical h(0)

v (t) = h
(0)
u (t) as u and v have the same color. Recall

that the update step is h(`)
v (t) = MLP(h(`�1)

v (t), h̃(`)
v (t)). Therefore, if the initial embeddings are

identical, and the aggregated messages at each layer are also identical, we have that h(`)
u (t) = h

(`)
v (t)

for any `.

Statement 2: TGN-Att cannot distinguish the nodes u and v in our example.

We now show that adding a memory module to TGAT produces node states such that su(t) = sv(t) =
sa(t), sz(t) = sw(t), and sb(t) = sc(t). If that is the case, then these node states could be treated
as node features in a equivalent TGAT model of our example in Figure S2, proving that there is no
TGN-Att such that h(`)

v (t) 6= h
(`)
u (t). In the following, we consider TGN-Att with average memory

aggregators (see Appendix A).

We begin by showing that sa(t) = su(t) = sv(t) after memory updates. We note that the
memory message node a receives is [ekt1ksz(t1)]. The memory message node u receives is
MEANAGG([ekt1ksw(t1)], [ekt1ksz(t1)]), but since sw(t1) = sz(t1), both messages are the same,
and the average aggregator outputs [ekt1ksz(t1)]. Finally, the message that node v receives is
[ekt1ksw(t1)] = [ekt1ksz(t1)]. Since all three nodes receive the same memory message and have
the same initial features, their updated memory states are identical.

Now we show that sz(t) = sw(t), for t1 < t  t2. Note that the message that node z receives
is MEANAGG([ekt1ksa(t1)], [ekt1ksu(t1)]) = [ekt1ksu(t1)], with su(t1) = sa(t1). The message
that node w receives is MEANAGG([ekt1ksu(t1)], [ekt1ksv(t1)]) = [ekt1ksu(t1)]. Again, since the
initial features and the messages received by each node are equal, sz(t) = sw(t) for t1 < t  t2.

We can then use this to show that sz(t) = sw(t) for t > t2. Note that at time t2, the message that
nodes z and w receive are [ekt2 � t1ksb(t2)] and [ekt2 � t1ksc(t2)], respectively. Also, note that
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sb(t2) = sc(t2) = sb(0) = sc(0) as the states of b and c are only updated right after t2. Because
the received messages and the previous states (up until t2) of z and w are identical, we have that
sz(t) = sw(t) for t > t2.

Finally, we show that sb(t) = sc(t). Using that sz(t2) = sw(t2) in conjunction with the fact that
node b receives message [[ekt2 � t1ksz(t2)]], and node c receives [ekt2 � t1ksw(t2)], we obtain
sb(t) = sc(t) since initial memory states and messages that the nodes received are the same.

B.7 Proof of Proposition 5: Limitations of MP-TGN and CAWs

Figure S3: (Left) Example of a temporal graph for which CAW can distinguish the events (u, v, t3)
and (z, v, t3) but MP-TGNs cannot. We assume that all edge and node features are identical, and
tk+1 > tk for all k. (Right) Example for which MP-TGNs can distinguish (u, z, t4) and (u0

, z, t4)
but CAW cannot.

Proof. Using the example in Figure S3(Left), we adapt a construction by Wang et al. [38] to show
that CAW can separate events that MP-TGNs adopting node embedding concatenation cannot. We
first note that the TCTs of u and z are isomorphic. Thus, since v is a common endpoint in (u, v, t3)
and (z, v, t3), no MP-TGN can distinguish these two events. Nonetheless, CAW obtains the following
anonymized walks for the event (u, v, t3):

{[1, 0, 0], [0, 1, 0]}| {z }
ICAW(u;Su,Sv)

t1
�! {[0, 1, 0], [2, 0, 0]}| {z }

ICAW(v;Su,Sv)

{[0, 1, 0], [2, 0, 0]}| {z }
ICAW(v;Su,Sv)

t1
�! {[1, 0, 0], [0, 1, 0]}| {z }

ICAW(u;Su,Sv)

{[0, 1, 0], [2, 0, 0]}| {z }
ICAW(v;Su,Sv)

t2
�! {[0, 0, 0], [0, 1, 0]}| {z }

ICAW(w;Su,Sv)

t1
�! {[0, 0, 0], [0, 0, 1]}| {z }

ICAW(z;Su,Sv)

and the walks associated with (z, v, t3) are (here we omit underbraces for readability):

{[1, 0, 0], [0, 0, 1]}
t1
�! {[0, 1, 0], [0, 1, 0]}

{[0, 0, 0], [2, 0, 0]}
t1
�! {[0, 0, 0], [0, 1, 0]}

{[0, 0, 0], [2, 0, 0]}
t2
�! {[0, 1, 0], [0, 1, 0]}

t1
�! {[1, 0, 0], [0, 0, 1]}

In this example, assume that MLPs used to encode each walk correspond to identity mappings. Then,
the sum of the elements in each set is injective since each element of the sets in the anonymized
walks are one-hot vectors. We note that, in this example, we can simply choose a RNN that sums the
vectors in each sequence (walks), and then apply a mean readout layer (or pooling aggregator) to
obtain distinct representations for (u, v, t3) and (z, v, t3).

We now use the example in Figure S3(Right) to show that MP-TGNs can separate events that CAW
cannot. To see why MP-TGNs can separate the events (u, z, t4) and (u0

, z, t4), it suffices to observe
that the 4-depth TCTs of u and u

0 are non-isomorphic. Thus, a MP-TGN with injective layers could
distinguish such events. Now, let us take a look at the anonymized walks for (u, z, t4):

{[1, 0], [0, 0]}| {z }
ICAW(u;Su,Sz)

t1
�! {[0, 1], [0, 0]}| {z }

ICAW(v;Su,Sz)

{[0, 0], [1, 0]}| {z }
ICAW(z;Su,Sz)

t1
�! {[0, 0], [0, 1]}| {z }

ICAW(w;Su,Sz)
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and for (u0
, z, t4):

{[1, 0], [0, 0]}| {z }
ICAW(u0;Su0 ,Sz)

t1
�! {[0, 1], [0, 0]}| {z }

ICAW(v0;Su0 ,Sz)

{[0, 0], [1, 0]}| {z }
ICAW(z;Su0 ,Sz)

t1
�! {[0, 0], [0, 1]}| {z }

ICAW(w;Su0 ,Sz)

Since the sets of walks are identical, they must have the same embedding. Therefore, there is no
CAW model that can separate these two events.

B.8 Proof of Proposition 6: Injective MP-TGNs and the temporal WL test
We want to prove that injective MP-TGNs can separate two temporal graphs if and only if the
temporal WL does the same. Our proof comprises two parts. We first show that if an MP-TGN
produces different multisets of embeddings for two non-isomorphic temporal graphs G(t) and G

0(t),
then the temporal WL decides these graphs are not isomorphic. Then, we prove that, if the temporal
WL decides G(t) and G

0(t) are non-isomorphic, there is an injective MP-TGN (i.e., with injective
message-passing layers) that outputs distinct multisets of embeddings.

Statement 1: Temporal WL is at least as powerful as MP-TGNs.

See Lemma B2 for proof.

Statement 2: Injective MP-TGN is at least as powerful as temporal WL.

Proof. To prove this, we can repurpose the proof of Theorem 3 in [43]. In particular, we assume MP-
TGNs that meet the injective requirements of Proposition 2, i.e., MP-TGNs that implement injective
aggregate and update functions on multisets of hidden representations from temporal neighbors.
Following their footprints, we prove that there is a injection ' to the set of embeddings of all nodes
in a temporal graph from their respective colors in the temporal WL test. We do so via induction
on the number of layers `. To achieve our purpose, we can assume identity memory without loss of
generality.

The base case (` = 0) is straightforward since the temporal WL test initializes colors with node
features. We now focus on the inductive step. Suppose the proposition holds for `� 1. Note that our
update function:

h
(`)
v (t) = UPDATE(`)

⇣
h
(`�1)
v (t), AGG(`)({{(h(`�1)

u (t), t� t
0
, e) | (u, e, t0) 2 N (v, t)}})

⌘

can be rewritten using ' as a function of node colors:

h
(`)
v (t) = UPDATE(`)

⇣
'(c`�1(v)), AGG(`)({{('(c`�1(u)), t� t

0
, e) | (u, e, t0) 2 N (v, t)}})

⌘
.

Note that the composition of injective functions is also injective. In addition, time-shifting operations
are also injective. Thus we can construct an injection  such that:

h
(`)
v (t) =  

�
c
`�1(v), {{(c`�1(u), t0, e) | (u, e, t0) 2 N (v, t)}})

�

=  
�
c
`�1(v), {{(c`�1(u), t0, euv(t

0)) | (v, u, t0) 2 G(t)}})
�

since there exists an element (u, e, t0) 2 N (v, t) if and only if there is an event (u, v, t0) 2 G(t) with
feature euv(t0) = e.

Then, we can write:

h
(`)
v (t) =  � HASH�1

� HASH
�
c
`�1(v), {{(c`�1(u), t0, euv(t

0)) | (u, v, t0) 2 G(t)}})
�

=  � HASH�1(c(`)(v))

Note ' =  � HASH�1 is injective since it is a composition of two injective functions. We then
conclude that if the temporal WL test outputs different multisets of colors, then a suitable MP-TGN
outputs different multisets of embeddings.
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Figure S4: Examples of temporal graphs for which MP-TGNs cannot distinguish the diameter, girth, and
number of cycles. For any node in G(t) (e.g., u1), there is a corresponding one in G0(t) (u0

1) whose TCTs are
isomorphic.

B.9 Proof of Proposition 7: MP-TGNs and CAWs fail to decide some graph properties
Statement 1: MP-TGNs fail to decide some graph properties.

Proof. Adapting a construction by Garg et al. [9], we provide in Figure S4 an example that demon-
strates Proposition 7. Colors denote node features, and all edge features are identical. The temporal
graphs G(t) and G

0(t) are non-isomorphic and differ in properties such as diameter (1 for G(t) and
3 for G0(t)), girth (3 for G(t) and 6 for G0(t)), and number of cycles (2 for G(t) and 1 for G0(t)). In
spite of that, for t > t3, the set of embeddings of nodes in G(t) is the same as that of nodes in G

0(t)
and, therefore, MP-TGNs cannot decide these properties. In particular, by constructing the TCTs of
all nodes at time t > t3, we observe that the TCTs of the pairs (u1, u

0
1), (u2, u

0
2), (v1, v01), (v2, v02),

(w1, w
0
1), (w2, w

0
2) are isomorphic and, therefore, they can not be distinguished (Lemma 1).

Statement 2: CAWs fail to decide some graph properties.

Since CAW does not provide a recipe to obtain graph-level embeddings, we first define such a
procedure. Let G(t) be a temporal graph given as a set of events. We sequentially compute event
embeddings h� for each event � = (u, v, t0) 2 G(t) respecting the temporal order (two or more
events at the same timestamp are computed in parallel). We then apply a readout layer to the set of
event embeddings to obtain a graph-level representation. We provide a proof assuming this procedure.

Figure S5: Examples of temporal graphs with different static properties, such as diameter, girth, and
number of cycles. CAWs fail to distinguish G1(t) and G2(t).

Proof. We can adapt our construction in Figure 2 [rightmost] to extend Proposition 7 to CAW. The
idea consists of creating two temporal graphs with different diameters, girths, and numbers of cycles
that comprise events that CAW cannot separate — Figure S5 provides one such construction. In
particular, CAW obtains identical embeddings for (u, z, t3) and (a0, z0, t3) (as shown in Proposition 5).
The remaining events are the same up to node re-labelling and thus also lead to identical embeddings.
Therefore, CAW cannot distinguish G1(t) and G2(t) although they clearly differ in diameter, girth,
and number of cycles.

B.10 Proof of Lemma 2
We now show that the k-th component of the relative positional features r(t)u!v corresponds to the
number of occurrences of u at the k-th layer of the monotone TCT of v, and this is valid for all pairs
of nodes u and v of the dynamic graph. We proceed with a proof by induction.

[Base case] Let us consider t = 0, i.e., no events have occurred. By definition, r(0)u!v is the zero vector
if u 6= v, indicating that node u does not belong to the TCT of v. If u = v, then r

(0)
u!u = [1, 0, . . . , 0]

corresponds to count 1 for the root of the TCT of u. Thus, for t = 0, the proposition holds.
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Figure S6: Illustration of how the monotone
TCT of v changes after an event between u

and v at time t. This allows us to see how to
update the positional features of any node i

of the dynamic graph that belongs to T̃u(t)
relative to v.

[Induction step] Assume that the proposition holds
for all nodes and any time instant up to t. We will
show that after the event � = (u, v, t) at time t, the
proposition remains true.

Note that the event � only impacts the monotone
TCTs of u and v. The reason is that the monotone
TCTs of all other nodes have timestamps lower than
t, which prevents the event � from belonging to any
path (with decreasing timestamps) from the root.

Without loss of generality, let us now consider the
impact of � on the monotone TCT of v. Figure S6
shows how the TCT of v changes after �, i.e., how it
goes from T̃v(t) to T̃v(t+). In particular, the process
attaches the TCT of u to the root node v. Under this
change, we need to update the counts of all nodes
i in T̃u(t) regarding how many times it appears in
T̃v(t+). We do so by adding the counts in T̃u(t) (i.e.,
r
(t)
i!u) to T̃v(t) (i.e., r(t)i!v), accounting for the 1-layer

mismatch, since T̃u(t) is attached to the first layer. This can be easily achieved with the shift matrix

P =


0 0

Id�1 0

�
applied to the counts of any node i in T̃u(t), i.e.,

r
(t+)
i!v = P r

(t)
i!u + r

(t)
i!v 8i 2 V

(t)
u ,

where V
(t)
u comprises the nodes of the original graph that belong to T̃

(t)
u .

Similarly, the event � also affects the counts of nodes in the monotone TCT of v w.r.t. the monotone
TCT of u. To account for that change, we follow the same procedure and update r

(t+)
j!u = P r

(t)
j!v +

r
(t)
j!u, 8j 2 V

(t)
v .

Handling multiple events at the same time. We now consider the setting where a given node v

interacts with multiple nodes u1, u2, . . . , uJ at time t. We can extend the computation of positional
features to this setting in a straightforward manner by noting that each event leads to an independent
branch in the TCT of v. Therefore, the update of the positional features with respect to v is given by

r
(t+)
i!v = P

JX

j=1

r
(t)
i!uj

+ r
(t)
i!v 8i 2

J[

j=1

V
(t)
uj

V
(t+)
v = V

(t)
v

J[

j=1

V
(t)
uj

.

We note that the updates of the positional features of u1, . . . , uJ remain untouched if they do not
interact with other nodes at time t.

B.11 Proof of Proposition 8: Injective function on temporal neighborhood
Proof. To capture the intuition behind the proof, first consider a multiset M such that |M | < 4. We
can assign a unique number  (m) 2 {1, 2, 3, 4} to any distinct element m 2 M . Also, the function
h(m) = 10� (m) denotes the decimal expansion of  (m) and corresponds to reserving one decimal
place for each unique element m 2 M . Since there are less than 10 elements in the multiset, note
that

P
m h(m) is unique for any multiset M .

To prove the proposition, we also leverage the well-known fact that the Cartesian product of two
countable sets is countable — the Cantor’s (bijective) pairing function z : N ⇥ N ! N, with
z(n1, n2) =

(n1+n2)(n1+n2+1)
2 + n2, provides a proof for that.

Here, we consider multisets M = {{(xi, ei, ti)}} whose tuples take values on the Cartesian product of
the countable sets X , E , and T — the latter is also assumed to be bounded. In addition, we assume
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the lengths of all multisets are bounded by N , i.e., |M | < N for all M . Since X and E are countable,
there exists an enumeration function  : X ⇥ E ! N for all M . Without loss of generality, we
assume T = {1, 2, tmax}. We want to show that exists a function of the form

P
i 10

�k (xi,ei)↵��ti

that is unique on any multiset M .

Our idea is to separate a range of k decimal slots for each unique element (xi, ei, ·) in the multiset.
Each such a range has to accommodate at least tmax decimal slots (one for each value of ti). Finally,
we need to make sure we can add up to N values at each decimal slot.

Formally, we map each tuple (xi, ei, ·) to one of k decimal slots starting from 10�k (xi,ei). In
particular, for each element (xi, ei, ti = j) we add one unit at the j-th decimal slot after 10�k (xi,ei).
Also, to ensure the counts for (xi, ei, j) and (xi, ei, l 6= j) do not overlap, we set � = dlog10 Ne

since no tuple can repeat more than N times. We use ↵ = 10 as we shift decimals. Finally, to
guarantee that each range encompasses tmax slots of � decimals, we set k = �(tmax + 1). Therefore,
the function X

i

10�k (xi,ei)↵
��ti

is unique on any multiset M . We note that, without loss of generality, one could choose a different
basis (other than 10).

B.12 Proof of Proposition 9: Expressiveness of PINT: link prediction
Proof. We now show that PINT (with relative positional features) is strictly more powerful than
MP-TGN and CAW in distinguishing edges of temporal graphs. Leveraging Proposition 5, it suffices
to show that PINT is at least as powerful as both CAW and MP-TGN.

Statement 1: PINT is at least as powerful as MP-TGNs.

Since PINT is a generalization of MP-TGNs with injective aggregation/update layers, it derives that
it is at least as powerful as MP-TGNs. We can set the model’s parameters associated with positional
features to zero and obtain an equivalent MP-TGN.

Statement 2: PINT is at least as powerful as CAW.

We wish to show that for any pair of events that PINT cannot distinguish, CAW also cannot distinguish
it. Let us consider the events (u, v, t) and (u0

, v
0
, t) of a temporal graph. Formally, we want to

prove that if {{Tu(t), Tv(t)}} = {{Tu0(t), Tv0(t)}} (i.e., the multisets contain TCTs that are pairwise
isomorphic), then {{ENC(W ;Su, Sv)}}W2{Su[Sv} = {{ENC(W 0;Su0 , Sv0)}}W 02{Su0[Sv0}, where
ENC denotes the walk-encoding function of CAW. Importantly, for the sake of this proof, we assume
that all TCTs here are augmented with positional features, characterizing edge embeddings obtained
from PINT.

Without loss of generality, we can assume that Tu(t) ⇠= Tu0(t) and Tv(t) ⇠= Tv0(t). By Lemma B1,
we know that the corresponding monotone TCTs are also isomorphic: T̃u(t) ⇠= T̃u0(t), and T̃v(t) ⇠=
T̃v0(t) with associated bijections f1 : V (T̃u(t)) ! V (T̃u0(t)) and f2 : V (T̃v(t)) ! V (T̃v0(t)).

We can construct a tree Tuv by attaching T̃u(t) and T̃v(t) to a (virtual) root node uv — without loss
of generality, u and v are the left-hand and right-hand child of uv, respectively. We can follow the
same procedure and create the tree Tu0v0 by attaching the TCTs T̃u0(t) and T̃v0(t) to a root node
u
0
v
0. Since the left-hand and right-hand subtrees of Tuv and Tu0v0 are isomorphic, then Tuv and

Tu0v0 are also isomorphic. Let f : V (Tuv) ! V (Tu0v0) denote the bijection associated with the
augmented trees. We also assume f is constructed by preserving the bijections f1 and f2 defined
between the original monotone TCTs: this ensures that f does not map any node in V (T̃u(t)) to a
node in V (T̃v0(t)), for instance. We have that

[r(t)]i!ukr
(t)
]i!v] = [r(t)]f(i)!u0kr

(t)
]f(i)!v0 ] 8i 2 V (Tuv) \ {uv}

Note that we use the function ] (that maps nodes in the TCT to nodes in the dynamic graph) here
because the positional feature vectors are defined for nodes in the dynamic graph.

To guarantee that two encoded walks are identical ENC(W ;Su, Sv) = ENC(W 0;Su0 , Sv0), it
suffices to show that the anonymized walks are equal. Thus, we turn our problem into show-
ing that for any walk W = (w0, t0, w1, t1, . . . ) in Su [ Sv, there exists a corresponding one
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W
0 = (w0

0, t0, w
0
1, t1, . . . ) in Su0 [ Sv0 such that ICAW(wi;Su, Sv) = ICAW(w0

i;Su0 , Sv0) for all
i. Recall that ICAW(wi;Su, Sv) = {g(wi;Su), g(wi;Sv)}, where g(wi;Su) is a vector whose k-
component stores how many times wi appears in a walk from Su at position k.

A key observation is that there is an equivalence between deanonymized root-leaf paths in Tuv and
walks in Su [ Sv (disregarding the virtual root node). By deanonymized, we mean paths where node
identities (in the temporal graph) are revealed by applying the function ]. Using this equivalence, it
suffices to show that

g(]i;Su) = g(]f(i);Su0) and g(]i;Sv) = g(]f(i);Sv0) 8i 2 V (Tuv) \ {uv}

Suppose there is an i 2 V (Tuv)\{uv} such that g(]i;Su) 6= g(]f(i);Su0). Without loss of generality,
suppose this holds for the `-th entry of the vectors.

We know there are exactly r
(t)
a!u[`] nodes at the `-th level of T̃u(t) that are associated with a = ]i 2

V (G(t)). We denote by  the set comprising such nodes. It also follows that computing g(]i;Su)[`]
is the same as summing up the amount of leaves of each subtree of T̃u(t) rooted at  2  , which we
denote as �( ; T̃u(t)), i.e.,

g(]i;Su)[`] =
X

 2 
�( ; T̃u(t)).

Since we assume g(]i;Su)[`] 6= g(]f(i);Su0)[`], then it holds that

g(]i;Su)[`] 6= g(]f(i);Su0)[`] )
X

 2 
�( ; T̃u(t)) 6=

X

 2 
�(f( ); T̃u0(t)) (S5)

Note that the subtree of T̃u rooted at  should be isomorphic to the subtree of T̃u0 rooted at f( ),
and therefore have the same number of leaves. However, the RHS of Equation S5 above implies there
is a  2  for which �( ; T̃u) 6= �(f( ); T̃u0), reaching a contradiction. The same argument can
be applied to v and v

0 to prove that g(]i;Sv) = g(]f(i);Sv0).

C Additional related works
Structural features for static GNNs. Using structural features to enhance the power of GNNs is
an active research topic. Bouritsas et al. [48] improved GNN expressivity by incorporating counts
of local structures in the message-passing procedure, e.g, the number triangles a node appears on.
These counts depend on identifying subgraph isomorphisms and, naturally, can become intractable
depending on the chosen substructure. Li et al. [52] proposed increasing the power of GNNs using
distance encodings, i.e., augmenting original node features with distance-based ones. In particular,
they compute the distance between a node set whose representation is to be learned and each node
in the graph. To alleviate the cost of distance encoding, an alternative is to learn absolute position
encoding schemes [51, 61, 62], that try to summarize the role each node plays in the overall graph
topology. We note that another class of methods uses random features to boost the power of GNNs
[47, 58]. However, these models are referred to be hard to converge and obtain noisy predictions [62].

The most trivial difference between these approaches and PINT is that our relative positional features
account for temporal information. On a deeper level, our features summarize the role each node plays
in each other’s monotone TCT instead of measuring, e.g., pair-wise distances in the original graph or
counting substructures. Also, our scheme leverages the temporal aspect to achieve computational
tractability, updating features incrementally as events unroll. Finally, while some works proposing
structural features for static GNNs present marginal gains [62], PINT exhibits significant performance
gains in real-world temporal link prediction tasks.

Other models for temporal graphs. Representation learning for dynamic graphs is a broad and
diverse field. In fact, strategies to cope with the challenge of modeling dynamic graphs can come
in many flavors, including simple aggregation schemes [18], walk-aggregating methods [53], and
combinations of sequence models with GNNs [56, 59]. For instance, Seo et al. [59] used a spectral
graph convolutional network [49] to encode graph snapshots followed by a graph-level LSTM [13].
Manessi et al. [55] followed a similar approach but employed a node-level LSTM, with parameters
shared across the nodes. Sankar et al. [57] proposed a fully attentive model based on graph attention
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networks [34]. Pareja et al. [56] applied a recurrent neural net to dynamically update the parameters
of a GCN. Gao and Ribeiro [50] compared the expressive power of two classes of models for discrete
dynamic graphs: time-and-graph and time-then-graph. The former represents the standard approach
of interleaving GNNs and sequence (e.g., RNN) models. In the latter class, the models first capture
node and edge dynamics using RNNs, and are then feed into graph neural networks. The authors
showed that time-then-graph has expressive advantage over time-and-graph approaches under mild
assumptions. For an in-depth review of representation learning for dynamic graphs, we refer to the
survey works by Kazemi et al. [14] and Skarding et al. [60].

While most of the early works focused on discrete-time dynamic graphs, we have recently witnessed
a rise in interest in models for event-based temporal graphs (i.e., CTDGs). The reason is that
models for DTDGs may fail to leverage fine-grained temporal and structural information that can be
crucial in many applications. In addition, it is hard to specify meaningful time intervals for different
tasks. Thus, modern methods for temporal graphs explicitly incorporate timestamp information
into sequence/graph models, achieving significant performance gains over approaches for DTDGs
[38]. Appendix A provides a more detailed presentation of CAW, TGN-Att, and TGAT, which are
among the best performing models for link prediction on temporal graphs. Besides these methods,
JODIE [16] applies two RNNs (for the source and target nodes of an event) with a time-dependent
embedding projection to learn node representations of item-user interaction networks. Trivedi et al.
[32] employed RNNs with a temporally attentive module to update node representations. APAN
[63] consists of a memory-based TGN that uses attention mechanism to update memory states using
multi-hop temporal neighborhood information. Makarov et al. [54] proposed incorporating edge
embeddings obtained from CAW into MP-TGNs’ memory and message-passing computations.
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D Datasets and implementation details
D.1 Datasets
In our empirical evaluation, we have considered six datasets for dynamic link prediction: Reddit1,
Wikipedia2, UCI3, LastFM4, Enron5, and Twitter. Reddit is a network of posts made by users on
subreddits, considering the 1,000 most active subreddits and the 10,000 most active users. Wikipedia
comprises edits made on the 1,000 most edited Wikipedia pages by editors with at least 5 edits. Both
Reddit and Wikipedia networks include links collected over one month, and text is used as edge
features, providing informative context. The LastFM dataset is a network of interactions between
user and the songs they listened to. UCI comprises students’ posts to a forum at the University
of California Irvine. Enron contains a collection of email events between employees of the Enron
Corporation, before its bankruptcy. The Twitter dataset is a non-bipartite net where nodes are users
and interactions are retweets. Since Twitter is not publicly available, we build our own version by
following the guidelines by Rossi et al. [27]. We use the data available from the 2021 Twitter RecSys
Challenge and select 10,000 nodes and their associated interactions based on node participation:
number of interactions the node participates in. We also apply multilingual BERT to obtain text
representations of retweets (edge features).

Table S1 reports statistics of the datasets such as number of temporal nodes and links, and the
dimensionality of the edge features. We note that UCI, Enron, and LastFM represent non-attributed
networks and therefore do not contain feature vectors associated with the events. Also, the node
features for all datasets are vectors of zeros [42].

Table S1: Summary statistics of the datasets.
Dataset #Nodes #Events #Edge feat. Bipartite?
Reddit 10,984 (10,000 / 984) 672,447 172 Yes
Wikipedia 9,227 (8,227 / 1,000) 157,474 172 Yes
Twitter 8,925 406,564 768 No
UCI 1,899 59,835 - No
Enron 184 125,235 - No
LastFM 1,980 (980 / 1,000) 1,293,103 - Yes

D.2 Implementation details
We train all models in link prediction tasks in a self-supervised approach. During training, we
generate negative samples: for each actual event (z, w, t) (class 1), we create a fake one (z, w0

, t)
(class 0) where w

0 is uniformly sampled from the set of nodes, and both events have the same edge
feature vector.

To ensure a fair comparison, we mainly rely on the original repositories and guidelines. For instance,
regarding the training of MP-TGNs (including PINT), we mostly follow the setup and choices in the
implementation available in [27]. In particular, we apply the Adam optimizer with learning rate 10�4

during 50 epochs with early stopping if there is no improvement in validation AP for 5 epochs. In
addition, we use batch size 200 for all methods. We report statistics (mean and standard deviation) of
the performance metric (AP) over ten runs.

MP-TGNs. For TGN-Att, we follow Rossi et al. [27] and sample either ten or twenty temporal
neighbors with memory dimensionality equal to 32 (Enron), 100 (UCI, Twitter), or 172 (Reddit,
Wikipedia, LastFM), node embedding dimension equal to 100, and two attention heads. We use a
memory unit implemented as a GRU, and update the state of each node based on only its most recent
message. For TGAT, we use twenty temporal neighbors and two layers.

CAW. We conduct model selection using grid search over: i) time decay ↵ 2

{0.01, 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 10.0, 100.0} ⇥ 10�6, ii) number of walks M 2 {1, 2, 3, 4, 5};
1http://snap.stanford.edu/jodie/reddit.csv
2http://snap.stanford.edu/jodie/wikipedia.csv
3http://konect.cc/networks/opsahl-ucforum/
4http://snap.stanford.edu/jodie/lastfm.csv
5https://www.cs.cmu.edu/~./enron/
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and iii) walk length L 2 {32, 64, 128}. The best combination of hyperparameters is shown in
Table S2. The remaining training choices follows the default values from the original implementation.
Importantly, we note that TGN-Att’s original evaluation setup is different from CAW’s. Thus, we
adapted CAW’s original repo to reflect these differences and ensure a valid comparison.

Table S2: Optimal hyperparameters for CAW.
Dataset Time decay ↵ #Walks Walk length
Reddit 10�8 32 3
Wikipedia 4⇥ 10�6 64 4
Twitter 10�6 64 3
UCI 10�5 64 2
Enron 10�6 64 5
LastFM 10�6 64 2

PINT. We use ↵ = 2 (in the exponential aggregation function), and experiment with learned and
fixed �. We apply a relu function to avoid negative values of �, which could lead to unstable training.
We do grid search as the follow: when learning beta, we consider initial values for � 2 {0.1, 0.5}; for
the fixed case (requires_grad=False), we evaluate � 2 {10�3

⇥ |N |, 10�4
⇥ |N |, 10�5

⇥ |N |}

— |N | denotes the number of temporal neighbors — and always apply memory as in the original
implementation of TGN-Att. We consider number message passing layers ` in {1, 2}. Also, we apply
neighborhood sampling with the number of neighbors in {10, 20}, and update the state of a node
based on its most recent message. We then carry out model selection based on AP values obtained
during validation. Overall, the models with fixed � led to better results. Table S3 reports the optimal
hyperparameters for PINT found via automatic model selection.

In all experiments, we use relative positional features with d = 4 dimensions. For computational
efficiency, we update the relative positional features only after processing a batch, factoring in all
events from that batch. Note that this prevents information linkage as these positional features take
effect after prediction. In addition, since temporal events repeat (in the same order) at each epoch, we
also speed up PINT’s training procedure by precomputing and saving the positional features for each
batch. To save up space, we store the positional features as sparse matrices.

Table S3: Optimal hyperparameters for PINT.
Dataset �/|N | #Neighbors (|N |) #Layers
Reddit 10�5 10 2
Wikipedia 10�4 10 2
Twitter 10�5 20 2
UCI 10�5 10 2
Enron 10�5 20 2
LastFM 10�4 10 2

Hardware. For all experiments, we use Tesla V100 GPU cards and consider a memory budget of
32GB of RAM.

E Deletion and node-level events
Rossi et al. [27] propose handling edge deletions by simply updating memory states of the edge’s
endpoints, as if we were dealing with a usual edge addition. However, it is not discussed whether
the edge in question should be excluded from the event list or if we should just add a novel event
with edge features that characterize deletion. If we choose the former, we may be unable to recover
the memory state of a node from its monotone TCT and the original node features. Removing an
edge from the event list also affects the computation of node embeddings. Therefore, we advise
practitioners to do the latter when using PINT. It is worth mentioning that the vast majority of models
for temporal interaction prediction do not consider the possibility of deletion events.

Regarding node-level events, PINT can accommodate node addition by simply creating novel memory
states. To deal with node feature updates, we can create an edge event with both endpoints on that
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node, inducing a self-loop in the dynamic graph. Also, we can combine (e.g., concatenate) the
temporal features in message-passage operations, similarly to the general formulation of the MP-TGN
framework [27]. Finally, we can deal with the removal of a node v by following our previous (edge
deletion) procedure to delete all edges with endpoints in v.

F Additional experiments
Time comparison. Figure S7 compares the time per epoch for PINT and for the prior art (CAW,
TGN-Att, and TGAT) in the Enron and LastFM datasets. Following the trend in Figure 7, Figure S7
further supports that PINT is generally slower than other MP-TGNs but, after a few training epochs,
is orders of magnitude faster than CAW. In the case of Enron, the time CAW takes to complete an
epoch is much higher than the time we need to preprocess PINT’s positional features.
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Figure S7: Time comparison: PINT versus TGNs (in log-scale) on Enron and LastFM.

Experiments on node classification. For completeness, we also evaluate PINT on node-level
tasks (Wikipedia and Reddit). We follow closely the experimental setup in Rossi et al. [27] and
compare against the baselines therein. Table S4 shows that PINT ranks first on Reddit and second on
Wikipedia. The values for PINT reflect the outcome of 5 repetitions.

Table S4: Results for node classification (AUC).
Wikipedia Reddit

CTDNE 75.89 ± 0.5 59.43 ± 0.6
JODIE 84.84 ± 1.2 61.83 ± 2.7
TGAT 83.69 ± 0.7 65.56 ± 0.7
DyRep 84.59 ± 2.2 62.91 ± 2.4
TGN-Att 87.81 ± 0.3 67.06 ± 0.9
PINT 87.59 ± 0.6 67.31 ± 0.2
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