Under review as a conference paper at ICLR 2021

Appendices for RG-Flow

A DETAILS OF THE NETWORK AND THE TRAINING PROCEDURE

RNVP block

disentangler decimator residual block

t
e 48
Fxaxy) daxaxy .
512
e ‘ +
e 512
& v
. ‘\ 48
. ““ ?

Mayer

Y
Y
° S
gy
; |

Figure 8: The details of the disentangler/decimator as a bijective map.

As shown in Fig. 2|a), each RG step includes a disentangler (green block) and a decimator (yellow
block), which is parameterized by a bijective neural network. The blocks in every horizontal level
share parameters, so we view them as a same block. In our reported experiments, disentanglers and
decimators in different RG steps do not share parameters. However, we can also make them share
parameters, which implements a scale-invariant course-graining process.

For each disentangler or decimator, we spilt the image into 4 x 4 patches as shown in Fig. 2(b), stack
them along the batch dimension, feed them into the network, and merge the output patches into a
new image. After each RG step, the edge length of the image (the number of black lines above
yellow blocks) is halved, except for the last (topmost) RG step that decimates all variables.

The choice of the bijective neural networks for the disentanglers and decimators can be versatile,
and the performance of RG-Flow is strongly dependent on them. Since tuning the expressive power
of those blocks is not the focus of our work, we choose the conventional Real NVP
coupling layer to build disentanglers and decimators, which has great expressive power and
is easy to invert. Fig. [8]illustrates our implementation. Each RNVP block is shown as a red block.
It takes a 4 x 4 image patch x as input, and split it into 1 and x5 using the checkerboard mask m.
They are coupled to produce the output x5, using the formula

xh = x9 ®exp (s1(x1)) + t1(21), (10)

where © is the element-wise product. s(-) and ¢(-) are named the scale network and the translation
network, which can be arbitrarily complicated to enhance the expressive power, as long as the num-
bers of input and output variables are the same. Then we use x4 to alter z; in the similar manner
and outputs z, and combine them to produce the output =" of the RNVP block.

We use residual networks with n,.s residual blocks as s(-) and #(-), shown as blue blocks in Fig.
and we choose n,s = 4 in our implementation. Each residual block has 3 linear layers with size
24 — 512,512 — 512,512 — 24. Between linear layers, we insert swish activations
[2019), which is reported to give better results than ReLU and softplus, and its smoothness benefits
our further analysis with higher order derivatives. We use Kaiming initialization
and weight normalization (Salimans & Kingma, 2016) on the linear layers.

15

Under review as a conference paper at ICLR 2021

The CelebA dataset contains rich information on different scales, including high-level information
like gender and emotion, mid-level one like shapes of eyes and nose, and low-level one like details
in hair and wrinkles. Because lower-level RG steps take larger images as input, we heuristically
put more parameters in them. The numbers of RNVP blocks in all RG steps are njayer = 8, 6,4, 2
respectively.

To preprocess the dataset, we use the aligned images from CelebA, crop a 148 x 148 patch at the
center of each image, downscale the patch to 32 x 32 using bicubic downsampling, and randomly
flip it horizontally.

We use AdamW optimizer (Loshchilov & Hutter, [2019) with conventional learning rate 10~3 and
weight decay rate 5 x 107°. To further stabilize training, we use gradient clipping with global
norm 1. Between coupling layers, we use checkpointing (Paszke et al., 2019) to reduce memory
usage. After using the checkpointing technique, we find the network’s memory consumption is
greatly reduced. The maximal batch size can be set to 1024 on a single Nvidia Titan RTX given the
current setup, which approximately has a million parameters. In our experiment, the batch size is
conventionally set to 64. A training step takes about 1.2 seconds on an Nvidia Titan RTX.

The code for our implementation is at https://github.com/rgflowopen/rg—flow

B DETAILS OF THE SYNTHETIC MULTI-SCALE DATASETS

To illustrate RG-Flow’s ability to disentangle representations at different scales and spatially sep-
arated representations, we propose two synthetic toy datasets with multi-scale features, named
MSDS1 and MSDS2, as shown in Fig. @ Each dataset contains 10° images of 32 x 32 pixels.
In each image, there are 16 ovals with different colors and orientations, and their positions have
small random variations to deform the 4 x 4 grid. In MSDSI, all ovals in an image have almost
the same color, while their orientations are randomly distributed. So the color is a global feature in
MSDS1, and the orientation is a local feature. In MSDS2, on the contrary, the orientation is a global
feature, and the color is a local one.

'3
'y

L
4

!i
4
(1]
[
L]

]
iV
K
3
oI]
.. NN
RN TR L]
D
My
)
[RN
rv——
-~
- o =ll’

"KL

’ '

o’
8

~

o=
.
Y

o g®
”
#

A

[0

vy
>
- 5
" LY
’ [il\
S
\)
Sy AN
4

‘

'
~fres
A}

\

Y
U \' v":

W
()

)
B g’ L AR

-
-—

Figure 9: Samples from MSDS1 and MSDS2.

We trained RG-Flow on those datasets, with n,yer = 4 and nes = 4, and other hyperparameters de-
scribed in Appendix. [A] For comparison. we also trained Real NVP on those datasets, with approxi-
mately the same number of trainable parameters. Their generated images are shown in Fig.[I0] where
we can intuitively find that RG-Flow has learned the characteristics of the two datasets. Namely, in
each image in MSDSI1 the ovals should have almost the same color, and in MSDS?2 the same ori-
entation. In contrast, Real NVP fails to capture the global and local features of those datasets. The
metrics of bits per dimension (BPD) and Fréchet Inception distance (FID) are listed in Table.
Note that FID may not reflect much semantic property for such synthetic datasets.

16

https://github.com/rgflowopen/rg-flow

Under review as a conference paper at ICLR 2021

=
12
o]
19%2)
—
=
%)
)
%)
§)

.

17 -y
-t
=i SN

e

'L

s~
¥

.l
-
IIII !III IIII lill !II| Iliiiiill IIIII
Il

-~y
T
s e

5
N
o

FTAEY RN
N’ ”s
—_—ty I
wew A\l 7 * ¢
3 0 ’
' -
N 5
' ~
-t
17, -
ol

.
.

’
\

-

]

i] '
2 IELD . A
FE - >

I B
\
- L Bl
2| LA

]
2 !
~
’ .
Ve LR
o~ 7 | LY
- . A

W

’
N
. s "
- = "
Kt | N
’ ’ '

Ny
IIII
IIIII

/

-l -
LN 1N
=
' -
II'I!iII'lIEI
/= o

v
-
’
]
-’}
.~ -
N s
e P
=
'
’
\
¢

~

Figure 10: Samples from RG-Flow and Real NVP trained on MSDS1 and MSDS2.

BPD | FID |
MSDS1 MSDS2 MSDS1 MSDS2
RG-Flow 0.906 1.01 1.40 2.61
Real NVP 1.07 1.14 50.4 78.0

Table 1: BPD and FID from RG-Flow and Real NVP trained on MSDS1 and MSDS 2.

C DISCUSSION ON REAL NVP

As a comparison to Fig. 4 we plot receptive fields of Real NVP in Fig. [T[a), together with the
statistics of their strength in Fig. [TT(b). Without local constraints on the bijective maps, there is
no generation causal cone for Real NVP and other globally connected multi-scale models, and we
cannot find semantic factors separated at different scales in general. In contrast, our RG-Flow can
seperate semantic factors at different scales, as shown in Fig.]

Receptive Fields (Real NVP)

.. . e ' e i tr o
Receptive field strength

Figure 11: Subplot (a) shows the randomly picked receptive fields from the trained Real NVP on
CelebA at different levels. Subplot (b) shows the statistics of the receptive fields’ strength.

—e— level 0

level 1
—o— level 2
—o— level 3

Ry

log(count)

17

Under review as a conference paper at ICLR 2021

D IMAGE GENERATION USING EFFECTIVE AND MIXED TEMPERATURES

Just like other generative models, we can define the effective temperature for RG-flow. Our prior
distribution is
pz(z) =[] p(20), (a1
l

where | = (i, 7, h) labels every latent variable by its coordinate on the hyperbolic tree, especially
h is the RG level. A model with effective temperature 7" (" > 0) changes the prior distribution to
pzr(z), with
1/T
pzr(2) o (pz(2))" . (12)

For Laplacian prior, the effective temperature is implemented as

1
pzr(z) = H o XP (—|;l|) . (13)

l

Moreover, we can define a mixed temperature model on the hyperbolic tree by

pzmix(2) o [] (p(20))"" (14)
l

where T; can be coordinate-dependent.

In our training procedure, we find the bijective maps on the lowest level take a longer time to
converge. Therefore, when plotting the results in Fig. [5] we use the mixed temperature scheme
with Tp,—g = 0.2,Th—1 = Th—2 = Th—3 = 0.6, where T}, is the effective temperature on level h.
Then we vary each latent variable from 0 to 1.5 if it is in high level or mid level, and from O to 6 if
itis in low level.

E A TOY MODEL FOR SPARSE PRIOR DISTRIBUTION

Density plot Latent space Visible space Target

: L]
4 4

'-g 9 ..h °

3 o Be °

pe] 2 2

b

=

(7]

E o 0

]

8 -2 -2

a

g -4 - -4

-4 -2 0 2 4

c

.0 4

=]

S

% 2

=

2

[a] 0

c

]

2 -

1]

S

] -4

O

Figure 12: Two-dimensional pinwheel model.

In the first column of Fig.[I2} the density plots of Laplacian distribution and Gaussian distribution
are shown. As we can see, the Gaussian distribution has rotational symmetry, whereas the Laplacian
distribution breaks SO(2) rotational symmetry to Cy symmetry. A flow-based generative model is
trained to match the target distribution, which is a four-leg pinwheel as shown in the last column
in Fig.[I2] Given either Gaussian distribution or Laplacian distribution as the prior distribution, the
model can learn the target distribution. In the second column, we sample 100 points and color them

18

Under review as a conference paper at ICLR 2021

by their living quadrant in the prior distribution. Then we map them to the visible space by the
trained model, as shown in the third column. We see that four quadrants are approximately mapped
to the four legs of the pinwheel if Laplacian prior is used. But for the Gaussian case, since it has
rotational symmetry, the points in different quadrants are mixed more in the visible space, which
makes it harder to interpret the mapping.

F DETAILS OF INPAINTING EXPERIMENTS

For the inpainting experiments shown in Fig.[/| we randomly choose a corrupted region of 10 x 10
pixels on the ground truth image, marked as the red patch in the second row of Fig.[/| We generate
an image x4, from latent variables z,4, and use its corresponding region to fill in the corrupted region.
Then we map the filled image x ¢ back to the latent variables zy, and compute the log-likelihood.
To recover the ground truth image, we optimize z, to maximize the log-likelihood.

For RG-Flow, we only variate the latent variables living inside the inference causal cone, which is
about 1200 out of 3072 latent variables. For the constrained Real NVP, we randomly pick the same
amount of latent variables and allow them to variate, and we find it fails to inpaint the image in
general. As a check, we find Real NVP can successfully inpaint the images if we optimize all latent
variables, as shown in the last row of Fig.

We use the conventional Adam optimizer to do the optimization. During the optimization procedure,
we find the optimizer can be trapped in local minima. Therefore, for all experiments, we first
randomly draw 200 initial samples of latent variables that are allowed to variate, then pick the one
with the largest log-likelihood as the initialization.

To quantitatively assess the quality of inpainted images, we compute the peak signal-to-noise ratio
(PSNR) of them against the ground truth images, and take the average over the 15 samples shown
in Fig. To further incorporate the semantic properties in the assessment, we can also use the
Inception-v3 network (Szegedy et al.,[2016). We first scale the images to 299 x 299, then feed them
into the Inception-v3 network, extract the features from the “pool3” layer (as in FID score), and
compute the PSNR. The results are listed in Table

PSNR 1+ Inception-PSNR 1

RG-Flow 38.7 24.9
Constrained Real NVP 23.2 15.7
Real NVP 37.0 24.8

Table 2: PSNR and Inception-PSNR of inpainted images.

G EXPERIMENTS ON OTHER DATASETS

For CIFAR-10 dataset, we use the same hyperparameters as described in Appendix. [Al For 3D
Chair dataset, we use njayer = 8 for all RG steps, because there is not so much low-level information
as in CelebA and CIFAR-10. We also trained Real NVP on those datasets for comparison, with
approximately the same number of trainable parameters. The metrics of bits per dimension (BPD)
and Fréchet Inception distance (FID) are listed in Table.

BPD | FID |
CelebA CIFAR-10 3D Chair CelebA CIFAR-10 3D Chair
RG-Flow 3.47 3.35 0.930 31.3 98.5 36.2
Real NVP 3.36 3.61 0.933 11.1 126 73.8

Table 3: Bits per dimension (BPD) from RG-Flow and Real NVP trained on various datasets.

19

Under review as a conference paper at ICLR 2021

LDl
(O
Dy, Wl
)| el FD PR
@ ERTm™
DIDe
o G AL
DLl e
AR
5 e Dl

Dl e
LD\ el
el DIEDID
e
™
e)| DD,
D@
o P
e el
CaEls

0.9 when sampling.

Figure 13: Samples from RG-Flow trained on CelebA dataset. We use T’

20

Under review as a conference paper at ICLR 2021

Figure 14: Samples from RG-Flow trained on CIFAR-10 dataset.

21

| T AL RS B S
s sPFrvregaur s
Crs PE P EER |
Y L
iveavyEuwos L
ST EPEE
of & v Pt w0 S
“w T ga € e Pa @
TP HF s ETwm~T K

Under review as a conference paper at ICLR 2021

H RECEPTIVE FIELDS OF THE LATENT REPRESENTATIONS

More examples of randomly picked receptive fields are plotted in Fig. [T6] Fig. Fig. [18] and
Fig.[T9] For better visualization, we normalize all receptive fields’ strength to one.

0i24j24 0i16j16 0i16j0 0i0j0

[‘.

0i0j16 0i16j24 0i24j16

-

0i24j8 0i8j24

€0i8j16 c0i24j0

I

€0i0j24

Figure 16: Receptive fields of high-level latent variables (h = 3).

€0i20j16 <0i4j24 c0i4j8 0i12j4 €0i16j12 €0i20j28

0i4j16 0i24j20 0i20j0 0i28j24 0i028 0i8)20

€0i16j20 €0i20j4 0i0j4 c0i8j4 €0i20j24 c0i4j0

0i16j28 €0i12j0 <0i8j28 0i12j28 0i12j8 0i24j12

.

€0i20j12 0i28)12 0i4j20 0i8j12 O0i4j4 €0i24j28

.
-

€0i12j20 <0i28j8 €0i12j16 €0i20j20 0i28j4 0i24j4

.

Figure 17: Receptive fields of mid-level latent variables (h = 2).

23

Under review as a conference paper at ICLR 2021

‘‘‘‘‘‘‘‘‘

Figure 18: Receptive fields of low-level latent variables (h =

&
|

—_

~

(((((((

.3 -1 .; .w . . .A .;

.; -% .g -A .? -g -g .A

Figure 19: Receptive fields of the lowest-level latent variables (h = 0).

24

