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Supplementary Materials

A MORE RELATED WORK

In this section, we review a broader set of related work to our study here.

Theory on double Q-learning: Double Q-learning was proposed and proved to converge asymptot-
ically in Hasselt (2010). In Weng et al. (2020c), the authors explored the properties of mean-square
errors for double Q-learning both in the tabular case and with linear function approximation, under
the assumption that a unique optimal policy exists and the algorithm can converge. The most rel-
evant work to this paper is Xiong et al. (2020), which established the first finite-time convergence
rate for tabular double Q-learning with a polynomial learning rate. This paper provides sharper
finite-time convergence bounds for double Q-learning, which requires a different analysis approach.

Theory on tabular Q-learning: Proposed in Watkins & Dayan (1992) under finite state-action
space, Q-learning has aroused great interest in its theoretical study. Its asymptotic convergence has
been established in Tsitsiklis (1994); Jaakkola et al. (1994); Borkar & Meyn (2000); Melo (2001);
Lee & He (2019) by requiring the learning rates to satisfy

∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t < ∞.

Another line of research focuses on the finite-time analysis of Q-learning under different choices
of the learning rates. Szepesvári (1998) captured the first convergence rate of Q-learning using a
linear learning rate (i.e., αt = 1

t ). Under similar learning rates, Even-Dar & Mansour (2003)
provided finite-time results for both synchronous and asynchronous Q-learning with a convergence
rate being exponentially slow as a function of 1

1−γ . Another popular choice is the polynomial
learning rate which has been studied for synchronous Q-learning in Wainwright (2019b) and for
both synchronous/asynchronous Q-learning in Even-Dar & Mansour (2003). With this learning rate,
however, the convergence rate still has a gap with the lower bound of O( 1√

T
) (Azar et al., 2013).

To handle this, a more sophisticated rescaled linear learning rate was introduced for synchronous
Q-learning (Wainwright, 2019b; Chen et al., 2020) to obtain the state-of-the-art finite bound that
scales in 1

(1−γ)5ε2 . Qu & Wierman (2020) applied a rescaled linear learning rate for asynchronous
Q-learning and obtained a complexity that scales in tmix

µ2
min(1−γ)5ε2

. Such a bound for asynchronous

Q-learning were then improved to 1
µmin(1−γ)5ε2 + tmix

µmin(1−γ) with a constant learning rate in Li et al.
(2020).

Compared with the above results for Q-learning, our bounds on double Q-learning match those on Q-
learning in terms of the dependence on ε for both the synchronous and asynchronous settings, which
indicates that double Q-learning can mitigate overestimation without sacrificing the complexity ef-
ficiency at the high accuracy regime. Furthermore, our bound on asynchronous double Q-learning
also matches that on asynchronous Q-learning in terms of the dependence on µmin andL. In terms of
the dependence on 1− γ, our bounds on double Q-learning is slightly inferior to vanilla Q-learning.
This is not surprising, because double Q-learning by nature takes a more conservative update rule
than vanilla Q-learning, which can cause slower convergence in the lower accuracy regime.

In addition to the convergence analysis of vanilla Q-learning reviewed above, another line of theo-
retical research on Q-learning focuses on the regret bound analysis, e.g., (Jin et al., 2018; Yang et al.,
2020). Furthermore, to improve the performance of Q-learning, various variants of Q-learning have
been studied, e.g., (Dong et al., 2019; Lee & He, 2020).

In addition to Q-learning, the tabular setting has be analyzed for other RL algorithms, such as primal-
dual algorithms (Wang, 2017; Jin & Sidford, 2020), variance reduced value iteration (Sidford et al.,
2018b), model-based algorithms (Sidford et al., 2018a; Agarwal et al., 2020; He et al., 2020), to
name a few.

Q-learning under large state-action space: When the state-action space is considerably large
or even infinite, the Q-function is typically approximated by certain separation schemes of the
space (Shah & Xie, 2018; Sinclair et al., 2019), or is approximated by a class of parameterized
functions. In the latter case, Q-learning has been shown not to converge in general (Baird, 1995).
Strong assumptions are typically needed to establish the convergence of Q-learning with linear func-
tion approximation (Bertsekas & Tsitsiklis, 1996; Melo et al., 2008; Zou et al., 2019; Chen et al.,
2019; Du et al., 2019; Yang & Wang, 2019; Jia et al., 2019; Weng et al., 2020a;b) or neural net-
work approximation (Cai et al., 2019; Xu & Gu, 2019; Fan et al., 2019). The convergence analysis
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of double Q-learning with function approximation raises new technical challenges and can be an
interesting topic for future study.

Two-timescale SAs: It is also worth mentioning that the analysis of two time-scale SAs (Xu et al.,
2019; Doan, 2019; Dalal et al., 2020; Kaledin et al., 2020) also involves nested SAs. However, the
structure is very different from double Q-learning. Specifically, in two time-scale SAs the auxiliary
parameter serves as the estimation of the update of the main parameter, and hence its impact on the
convergence is captured by its tracking error. In contrast, in double Q-learning, the two parameters
(corresponding to two Q-estimators) are symmetric and the update is randomly switched between the
two estimators. Handling such switching randomness is one of the key challenges in the convergence
analysis of double Q-learning, which does not exist in two time-scale SAs.

B NUMERICAL EXPERIMENT

In this section, we compare the performance of double Q-learning with the rescaled linear learning
rate and the polynomial rate. We adopt the MDP model employed in Wainwright (2019b). The
random reward function is uniformly distributed over {Rsa − 10, Rsa + 10}, where Rsa = 1 is the
expected reward. We set the initial conditions as QA = QB = −40 · [1]|S|×|A|, where [1]|S|×|A| de-
notes the all-one matrix with the dimension of |S|×|A|. We run the synchronous double Q-learning
algorithm 20 times independently under each learning rate with each execution of the algorithm tak-
ing 105 iterations. Figure 1 illustrates our experimental result. It can be seen that double Q-learning
with a rescaled linear learning rate substantially outperforms that with a polynomial learning rate,
which corroborates our theoretical bound on the time complexity.

Figure 1: Comparison of the convergence performance of synchronous double Q-learning under
rescaled linear learning rate and polynomial learning rate.

C PROOF OF THE NESTED SA FORMULATION AND VARIOUS PROPERTIES

Derivation of the rt-recursion: For both (3) and (4), we can write the error dynamics as

rt+1(s, a) = (1− α̃t(s, a))rt(s, a) + α̃t(s, a)
(
Rt(s, a, s

′) + γQBt (s′, a∗)−Q∗(s, a)
)

= (1− α̃t(s, a))rt(s, a) + α̃t(s, a)
(
Rt(s, a, s

′) + γQAt (s′, a∗)− T̂tQ∗(s, a)

+T̂tQ∗(s, a)−Q∗(s, a) + γQBt (s′, a∗)− γQAt (s′, a∗)
)

= (1− α̃t(s, a))rt(s, a) + α̃t(s, a)
(
T̂tQAt (s, a)− T̂tQ∗(s, a)

+T̂tQ∗(s, a)−Q∗(s, a) + γQBt (s′, a∗)− γQAt (s′, a∗)
)
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, (1− α̃t(s, a))rt(s, a) + α̃t(s, a)
(
T̂tQAt (s, a)− T̂tQ∗(s, a)

+εt(s, a) + γQBt (s′, a∗)− γQAt (s′, a∗)
)
,

where α̃t(s, a) =

{
αtβt, for synchronous version
αtβtτt(s, a), for asynchronous version

, which is exactly (5).

Uniform bound of εt: It follows from the definition that

|εt(s, a)| =
∣∣∣T̂tQ∗(s, a)− T Q∗(s, a)

∣∣∣
=

∣∣∣∣Rt(s, a, s′) + γmax
a′∈A

Q∗(s′, a′)−Rs
′

sa − γEs′max
a′∈A

Q∗(s′, a′)

∣∣∣∣
≤ 2Rmax + γ

(
max

(s,a)∈S×A
Q∗(s, a)− min

(s,a)∈S×A
Q∗(s, a)

)
= 2Rmax + γ ‖Q∗‖span .

Therefore, we have ‖εt‖ ≤ 2Rmax + γ ‖Q∗‖span := κ.

Derivation of the νt-recursion: Based on (3) or (4), we have ∀t ≥ 1,

νt+1(s, a) = QBt+1(s, a)−QAt+1(s, a)

= (1− α̂t(s, a)(1− βt))QBt (s, a) + α̂t(s, a)(1− βt)
(
Rt(s, a, s

′) + γQAt (s′, b∗)
)

− (1− α̂t(s, a)βt)Q
A
t (s, a)− α̂t(s, a)βt

(
Rt(s, a, s

′) + γQBt (s′, a∗)
)

= (1− α̂t(s, a))νt(s, a) + α̂t(s, a)
[
(1− βt)

(
Rt(s, a, s

′) + γQAt (s′, b∗)−QAt (s, a)
)

+βt
(
QBt (s, a)−Rt(s, a, s′)− γQBt (s′, a∗)

)]
, (1− α̂t(s, a))νt(s, a) + α̂t(s, a)Ht(s, a), (20)

where the definition of Ht is obvious and α̂t(s, a) =

{
αt, for synchronous version
αtτt(s, a), for asynchronous version

. Fur-

ther define Ht = E (Ht|Ft) and µt = Ht − Ht. Then we immediately see that (7) follows from
(20).

Quasi-contractive Property ofHt(νt): By direct calculation using the definition of Ht and Ft, we
have

E (Ht(s, a)|Ft) =
1

2
νt(s, a) +

γ

2
E
s′

(
QBt (s′, a∗)−QAt (s′, b∗)

)
, (21)

where we used the fact that E(βt) = 0.5. It follows from (21) that

|E (Ht(s, a)|Ft)| ≤
1

2
|νt(s, a)|+ γ

2
E
s′

∣∣QBt (s′, a∗)−QAt (s′, b∗)
∣∣

≤ 1

2
‖νt‖+

γ

2
E
s′

{
QBt (s′, a∗)−QAt (s′, b∗) if QBt (s′, a∗) ≥ QAt (s′, b∗)

QAt (s′, b∗)−QBt (s′, a∗) if QBt (s′, a∗) < QAt (s′, b∗)

≤ 1

2
‖νt‖+

γ

2
E
s′

{
QBt (s′, b∗)−QAt (s′, b∗) if QBt (s′, a∗) ≥ QAt (s′, b∗)

QAt (s′, a∗)−QBt (s′, a∗) if QBt (s′, a∗) < QAt (s′, b∗)

≤ 1 + γ

2
‖νt‖ ,

which implies that

‖E (Ht|Ft)‖ ≤
1 + γ

2
‖νt‖ .
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Boundedness of µt: By the definition of Ht in (20) andHt in (21), we have if βt = 0,

|µt(s, a)|

=

∣∣∣∣Rt(s, a, s′) + γQAt (s′, b∗)−QAt (s, a)− 1

2
νt(s, a) +

γ

2
E
s′

(
QBt (s′, a∗)−QAt (s′, b∗)

)∣∣∣∣
≤ |Rt(s, a, s′)|+γ

∣∣QAt (s′, b∗)
∣∣+ 1

2

(∣∣QAt (s, a)
∣∣+∣∣QBt (s, a)

∣∣)+ γ

2

(∣∣QBt (s′, a∗)
∣∣+∣∣QAt (s′, b∗)

∣∣)
≤ Rmax +

γRmax

1− γ
+
Rmax

1− γ
+
γRmax

1− γ
= (1 +

γ

2
)Vmax.

The case of βt = 1 follows similarly and we omit the detailed proof here. Therefore, we conclude
that |µt(s, a)| ≤ (1 + γ

2 )Vmax.

D PROOF OF PROPOSITION 1

To proceed the proof, we first construct some useful recursions:

Wt+1 = (1− αt)Wt + αtεt, with initialization W1 = 0,

bt+1 = (1− (1− γ)αt) bt, with initialization b1 = ‖θ1‖ I,
gt+1 = (1− (1− γ)αt) gt + γαt (‖Wt‖+ ‖νt‖) I, with initialization g1 = 0,

where I denotes all-ones vector and 0 denotes all-zeros vector with appropriate dimensions. Note
that {bt}t≥1 and {gt}t≥1 are both non-negative sequences satisfying bt = ‖bt‖ I and gt = ‖gt‖ I
for all t ≥ 1.

Then we have the following claim which gives a sandwich bound of θt which is given by

− bt − gt +Wt � θt � bt + gt +Wt, (22)

where � denotes the elementwise ≤ relation.

We will prove (22) by induction. For t = 1, we have −b1 � θ1 � b1, which holds easily since
b1 = ‖θ1‖ I . Now suppose (22) holds for some t ≥ 1, and we prove it holds for t+ 1.

We first note that

‖θt‖ I � max {‖bt + gt +Wt‖ I, ‖−bt − gt +Wt‖ I}
� bt + gt + ‖Wt‖ I, (23)

since xt = ‖xt‖ I for x ∈ {b, g}.
For the upper bound, we have

θt+1 = (1− αt)θt + αt (Gt(θt) + εt + γνt)

(i)
� (1− αt)(bt + gt +Wt) + αt (γ ‖θt‖ I + εt + γ ‖νt‖ I)

(ii)
� (1− αt)(bt + gt +Wt) + αt [γ (bt + gt + ‖Wt‖ I) + εt + γ ‖νt‖ I]

= (1− (1− γ)αt)bt︸ ︷︷ ︸
bt+1

+ (1− (1− γ)αt)gt + γαt (‖Wt‖+ ‖νt‖) I︸ ︷︷ ︸
gt+1

+ (1− αt)Wt + αtεt︸ ︷︷ ︸
Wt+1

,

where (i) follows from the induction assumption and the quasi-contractive property of Gt, and (ii)
follows from (23).
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For the lower bound, we have

θt+1 = (1− αt)θt + αt (Gt(θt) + εt + γνt)

(i)
� (1− αt)(−bt − gt +Wt) + αt (−γ ‖θt‖ I + εt − γ ‖νt‖ I)

(ii)
� (1− αt)(−bt − gt +Wt) + αt [−γ (bt + gt + ‖Wt‖ I) + εt − γ ‖νt‖ I]

= −(1− (1− γ)αt)bt︸ ︷︷ ︸
−bt+1

+− [(1− (1− γ)αt)gt + γαt (‖Wt‖+ ‖νt‖) I]︸ ︷︷ ︸
−gt+1

+ (1− αt)Wt + αtεt︸ ︷︷ ︸
Wt+1

,

where (i) follows from the induction assumption and the quasi-contractive property of Gt, and (ii)
follows from (23).

Thus we proved (22) holds for t + 1. By induction, it holds for all t ≥ 1. Finally, we immediately
have

‖θt‖ ≤
t−1∏
k=1

(1− (1− γ)αk) ‖θ1‖+ γαt−1 (‖Wt−1‖+ ‖νt−1‖)

+ γ

t−2∑
k=1

{
t−1∏
l=k+1

(1− (1− γ)αl)

}
αk (‖Wk‖+ ‖νk‖) + ‖Wt‖ ,

where the first term on the right hand side is ‖bt‖ and the sum of the next two terms correspond to
‖gt‖.

E PROOF OF THEOREM 1

We start the proof with some important properties of the rescaled learning rate αt = 3
3+(1−γ)t . To

be specific, we can show that the following inequalities hold ∀k ≥ 1:

1− αk
2
≤ 1− 1− γ

2
αk ≤

αk
αk−1

, (24)

(1− αk+1)2 ≤
αNk+1

αNk
, where N =

18

(1− γ)(4− γ)
. (25)

(
1− αk+1

2

)2
≤
αNk+1

αNk
, where N =

9

(1− γ)(4− γ)
. (26)

It is straightforward to verify (24). The proofs of (25) and (26) need significantly more efforts which
we will show in Lemma 1 by taking b = 3, c = 1 and b = 3, c = 2 respectively there. It is very
important to have such a tight characterization as it leads to a better 1/(1 − γ) dependency in the
finite-time error bound (see Proposition 3 and the proof therein).

Step I: Bounding outer SA dynamics E ‖rt‖ by inner SA dynamics E ‖νt‖
We shall apply Proposition 1 to the error dynamics (5) of rt. Recall that Gt in (5) is quasi-contractive,
which satisfies ‖Gt(rt)‖ ≤ γ ‖rt‖. Now construct the following recursion:

Wt+1 = (1− α̃t)Wt + α̃tεt, with initialization W1 = 0. (27)

Further define ν̃t(s, a) = νt(s
′, a∗) and notice that ‖ν̃t‖ ≤ ‖νt‖ since all the elements of ν̃t come

from νt. Then it follows from applying Proposition 1 to the SA (5) that

‖rt‖ ≤
t−1∏
k=1

(1− (1− γ)α̃k) ‖r1‖+ γα̃t−1 (‖Wt−1‖+ ‖ν̃t−1‖)

+ γ

t−2∑
k=1

{
t−1∏
l=k+1

(1− (1− γ)α̃l)

}
α̃k (‖Wk‖+ ‖ν̃k‖) + ‖Wt‖ .
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Further taking the expectation for both sides yields

E ‖rt‖
(i)
≤

t−1∏
k=1

(
1− 1− γ

2
αk

)
‖r1‖+

γ

2
αt−1 (E ‖Wt−1‖+ E ‖ν̃t−1‖)

+
γ

2

t−2∑
k=1

{
t−1∏
l=k+1

(
1− 1− γ

2
αl

)}
αk (E ‖Wk‖+ E ‖ν̃k‖) + E ‖Wt‖

(ii)
≤ αt−1 ‖r1‖+

γ

2
αt−1

t−1∑
k=1

(E ‖Wk‖+ E ‖νk‖) + E ‖Wt‖ , (28)

where (i) follows because {α̃t}t≥1 is a sequence of independent random variables, {α̃s}s≥t is in-
dependent of Wt and ν̃t, and Eα̃t = αt

2 , and (ii) follows by applying (24) repeatedly and noticing
that ‖ν̃t‖ ≤ ‖νt‖.
We bound E ‖Wk‖ and E ‖νk‖ separately in the next two Steps.

Step II: Bounding E ‖Wt‖
We provide the bound on the expectation of the sup norm of Wt+1 in the following Proposition.
Recall D = |S| |A| is the dimension of the state-action space.
Proposition 2. Consider the sequence {Wt+1}t≥1 generated by the recursion (27). We have

E ‖Wt+1‖ ≤ κC̃
√
αt, (29)

where C̃ = 6
√

ln 2D + 3
√
π and κ is defined in (6).

Proof. The key to this proof is to constructing aFt-martingale sequence {W̃i}1≤i≤t+1 with W̃t+1 =

Wt+1 and W̃1 = 0. We next use Lemma 1 to bound the squared difference sequence
(
W̃i+1 − W̃i

)2
by 4V 2

maxα
N
t /α

N−2
i , for 1 ≤ i ≤ t, which is important for a better order dependence of 1−γ. Then

we apply the Azuma-Hoeffding inequality (see Lemma 5) to {W̃i}1≤i≤t+1 and further use Lemma 6
to obtain the bound. The details of this proof can be found in Appendix F.

Step III: Bounding inner SA dynamics E ‖νt‖
Now our goal is to bound E ‖νt‖. Recall that in the νt-recursion (7), the operator Ht is quasi-
contractive, which satisfies ‖Ht(νt)‖ ≤ 1+γ

2 ‖νt‖. Then by constructing the following recursion:

Mt+1 = (1− αt)Mt + αtµt, with initialization M1 = 0, (30)

we have from Proposition 1 that

‖νt‖ ≤
t−1∏
k=1

(1−(1−γ̃)αk) ‖ν1‖+γ̃αt−1 ‖Mt−1‖+γ̃
t−2∑
k=1

{
t−1∏
l=k+1

(1− (1− γ̃)αl)

}
αk ‖Mk‖+‖Mt‖ ,

where γ̃ := 1+γ
2 is the quasi-contractive coefficient ofHt.

Applying inequality (24) and noticing that M1 = 0, we further have ∀t ≥ 2,

‖νt‖ ≤ αt−1 ‖ν1‖+ γ̃αt−1

t−1∑
k=2

‖Mk‖+ ‖Mt‖ . (31)

We provide the bound on E ‖Mt‖ in the following proposition, which is further proved in Ap-
pendix G.
Proposition 3. Consider the sequence {Mt+1}t≥1 generated by the recursion (30). We have

E ‖Mt+1‖ ≤ ṼmaxD̃
√
αt,

where Ṽmax = (1 + γ
2 )Vmax and D̃:=2

√
ln 2D+

√
π.
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Taking expectation for both sides of (31) and using Proposition 3 yields

E ‖νt‖ ≤ αt−1 ‖ν1‖+ γ̃αt−1

t−1∑
k=2

E ‖Mk‖+ E ‖Mt‖

≤ αt−1 ‖ν1‖+ γ̃ṼmaxD̃αt−1

t−1∑
k=2

√
αk−1 + ṼmaxD̃

√
αt−1.

Since
{√

αk
}
k≥1 is a decreasing sequence, we have

t−1∑
k=2

√
αk−1 ≤

∫ t−1

1

1√
1 + 1−γ

3 (s− 1)
ds <

6

1− γ

√
1 +

1− γ
3

(t− 1) =
6

(1− γ)
√
αt−1

. (32)

It follows that ∀t ≥ 2,

E ‖νt‖ ≤ αt−1 ‖ν1‖+
(4 + 2γ)ṼmaxD̃

1− γ
√
αt−1.

Since ν1 = 0, we simplify the bound and obtain

E ‖νt‖ ≤
(4 + 2γ)ṼmaxD̃

1− γ
√
αt−1 <

6ṼmaxD̃

1− γ
√
αt−1. (33)

The above bound suggests that E ‖νt‖ converges to 0 with a rate of order O( 1√
t
).

Step IV: Deriving the finite-time bound

We have from (29) that E ‖Wt+1‖ ≤ κC̃
√
αt. Then we have

γ

2
αt−1

t−1∑
k=1

E ‖Wk‖+ E ‖Wt‖ ≤ κC̃

(
γ

2
αt−1

t−1∑
k=2

√
αk−1 +

√
αt−1

)

≤ κC̃(2 + γ)

1− γ
√
αt−1 <

3κC̃

1− γ
√
αt−1, (34)

where we used the fact that W1 = 0 and the inequality (32).

In addition, using (33) we have

γ

2
αt−1

t−1∑
k=1

E ‖νk‖ ≤
6ṼmaxD̃

1− γ
γ

2
αt−1

t−1∑
k=2

√
αk−1 ≤

36VmaxD̃

(1− γ)2
√
αt−1, (35)

where we used the fact that ν1 = 0.

Using (34)-(35) in (28) we have ∀t ≥ 3,

E ‖rt+1‖ ≤ ‖r1‖αt +
γ

2
αt

t∑
k=2

(E ‖Wk‖+ E ‖νk‖) + E ‖Wt‖

≤ ‖r1‖αt +
3κC̃

1− γ
√
αt +

36VmaxD̃

(1− γ)2
√
αt

<
3 ‖r1‖

(1− γ)t
+

3
√

3κC̃

(1− γ)3/2
1√
t

+
36
√

3VmaxD̃

(1− γ)5/2
1√
t
,

where C̃ = 6
√

ln 2D + 3
√
π, D̃ = 2

√
ln 2D +

√
π. Thus it completes the proof.

E.1 SUPPORTING LEMMAS

The following lemma provides a sharp bound on (1− 1
cαk)2.
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Lemma 1. Consider the rescaled linear step sizes αk = b
b+(1−γ)k . Fix a positive constant c satis-

fying 1 ≤ c ≤ b. We have ∀k ≥ 0,(
1− 1

c
αk+1

)2

≤
αnk+1

αnk
, where n :=

2b2

c(1− γ)(b+ 1− γ)
. (36)

Proof. For convenience, we denote a = (1− γ)(k + 1) and d = 1− 1
c , and write(

1− 1

c
αk+1

)2

=

(
(1− 1

c )b+ (1− γ)(k + 1)

b+ (1− γ)(k + 1)

)2

=

(
db+ a

b+ a

)2

,

αnk+1

αnk
=

(
b+ (1− γ)k

b+ (1− γ)(k + 1)

)n
=

(
b− 1 + γ + a

b+ a

)n
.

Then (36) becomes
(
b−1+γ+a
b+a

)n (
db+a
b+a

)−2
≥ 1. Further take the natural logarithm of both sides,

yielding

n ln

(
b− 1 + γ + a

b+ a

)
− 2 ln

(
db+ a

b+ a

)
≥ 0. (37)

Or equivalently,

n ≤
2 ln

(
b+a
db+a

)
ln
(

b+a
b−1+γ+a

) := f(a). (38)

Therefore, it is sufficient to show that

min
a∈[1−γ,∞)

f(a) ≥ 2(1− d)b2

(1− γ)(b+ 1− γ)
.

To this end, we will lower bound f(a) for 3 cases: 1) a = 1 − γ, 2) a → ∞, and 3) at the extrema
a∗ which satisfy f ′(a∗) = 0.

For case 1) where a = 1− γ,we have

f(a) =
2 ln

(
1 + (1−d)b)

db+1−γ

)
ln
(
1 + 1−γ

b

) (i)
>

2(1− d)b

b+ 1− γ
b

1− γ
=

2(1− d)b2

(1− γ)(b+ 1− γ)
,

where (i) follows from Lemma 2.

For case 2) a→∞, we have

lim
a→∞

2 ln
(
b+a
db+a

)
ln
(

b+a
b−1+γ+a

) (i)
= 2 lim

a→∞

db+a
b+a

(d−1)b
(db+a)2

b−1+γ+a
b+a

γ−1
(b−1+γ+a)2

= 2 lim
a→∞

b(1− d)(b− 1 + γ + a)

(db+ a)(1− γ)

=
2b(1− d)

1− γ
,

where (i) follows from the L’Hôpital’s Rule.

For case 3), denote f(a) = 2 g(a)h(a) , and directly calculating f ′(a∗) = 0 yields

g(a∗)

h(a∗)
=
g′(a∗)

h′(a∗)
=
b(1− d)(b− 1 + γ + a∗)

(1− γ)(db+ a∗)
.

Using the above equation in f(a∗), we have

f(a∗) =
2b(1− d)(b− 1 + γ + a∗)

(1− γ)(db+ a∗)
=

2b(1− d)

1− γ

(
1 +

(1− d)b− 1 + γ

db+ a∗

)
.
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Since a∗ ≥ 1− γ and (1− d)b = b
c ≥ 1 > 1− γ, we have

f(a∗) ≥ 2b(1− d)

1− γ
.

Now combining the 3 cases, we have

min
a∈[1−γ,∞)

f(a) = min

{
f(

1− γ
2

), lim
a→∞

f(a), f(a∗)

}
≥ min

{
2(1− d)b2

(1− γ)(b+ 1− γ)
,

2b(1− d)

1− γ

}
=

2(1− d)b2

(1− γ)(b+ 1− γ)

=
2b2

c(1− γ)(b+ 1− γ)
,

which completes the proof.

The inequalities in the next lemma are useful for bounding logarithm functions. It can be easily
proved, for example, using the properties of exponential functions. Therefore we omit the proof
here.

Lemma 2. x
1+x < ln(1 + x) < x for −1 < x 6= 0.

F PROOF OF PROPOSITION 2

Recall the definition of Ft in (8), and we have

E (Wt+1 |Ft ) = E ((1− α̃t)Wt + α̃tεt |Ft )
(i)
= (1− αt

2
)Wt +

αt
2
E (εt |Ft )

(ii)
= (1− αt

2
)Wt +

αt
2
E (εt)︸ ︷︷ ︸
=0

= (1− αt
2

)Wt,

where (i) follows since βt,Wt, εt are independent, σ(Wt) ⊂ Ft (because Wt is a measurable
function of {βk−1, sk}2≤k≤t), and E(α̃t) = αtE(βt) = αt

2 , (ii) follows because σ(εt) = σ(st+1)
which is independent of Ft (as a result of the i.i.d. sampling). We immediately have E (Wt+1) =
E (Wt+1 |F1 ) = 0.

Therefore, if we define

W̃i :=

{
Wt+1, i = t+ 1,∏t
k=i(1−

αk
2 )Wi, 1 ≤ i ≤ t, (39)

then {W̃i}1≤i≤t+1 is a martingale sequence with W̃1 = 0, for any t ≥ 1.

Now from Lemma 4, we have

di :=
∣∣∣W̃i+1 − W̃i

∣∣∣ ≤ {2
∏t
k=i+1

(
1− αk

2

)
αiκ, 1 ≤ i < t,

2αtκ, i = t.

Then we have

d2i ≤

4
∏t
k=i+1

(
1− αk

2

)2
α2
iκ

2
(i)
≤ 4

αNt
αN−2
i

κ2, 1 ≤ i < t,

4α2
tκ

2, i = t,

20



Under review as a conference paper at ICLR 2021

where N := 9
(1−γ)(4−γ) and (i) follows from (26).

Then using the Azuma-Hoeffding Inequality (see Lemma 5), we have for t ≥ 1,

P (|Wt+1| ≥ ρ) ≤ 2 exp

(
− ρ2

2
∑t
i=1 d

2
i

)
≤ 2 exp

(
− ρ2

8κ2αNt
∑t
i=1 α

−(N−2)
i

)
. (40)

Since N > 2, {α−(N−2)i }1≤i≤t is a monotonically increasing sequence. We have

αNt

t∑
i=1

α
−(N−2)
i = αNt

t−1∑
i=1

α
−(N−2)
i + α2

t

≤ αNt
∫ t

1

(
1 +

(1− γ)

3
s

)N−2
ds+ α2

t

≤ 3

1− γ
αt

N − 1
+ α2

t

=

(
3(4− γ)

9− (1− γ)(4− γ)
+ αt

)
αt

< (3 + 1)αt

= 4αt.

Using the above bound in (40) yields

P (|Wt+1| ≥ ρ) ≤ 2 exp

(
− ρ2

32κ2αt

)
.

By the union bound for the max operator, we have

P (‖Wt+1‖ ≥ ρ) = P
(

max
(s,a)∈S×A

|Wt+1| ≥ ρ
)
≤ DP (|Wt+1| ≥ ρ) .

Then it follows that

E ‖Wt+1‖ =

∫ ∞
0

P(‖Wt+1‖ ≥ ρ)dρ,

≤ 2D

∫ ∞
0

exp

(
− ρ2

32κ2αt

)
dρ

(i)
≤ 6κ

√
αt

(√
ln 2D +

√
π

2

)
:= κC̃

√
αt,

where (i) follows from Lemma 6 and C̃ := 6
√

ln 2D + 3
√
π.

F.1 SUPPORTING LEMMAS

Lemma 3. Consider the sequence {Wt+1}t≥1 generated by the recursion (27). We have |Wt+1| ≤ κ
where κ is the uniform bound of the i.i.d. noise sequence {εt}t≥1 defined in (6).

Proof. We prove it by induction. For t = 1, we have

|W2| = |α̃1ε1| ≤ α1κ < κ.

Suppose |Wt| ≤ κ for some t ≥ 2. Then it follows that,

|Wt+1| ≤ (1− α̃t) |Wt|+ |α̃tεt| ≤ (1− α̃t)κ+ α̃tκ = κ.

Thus by induction |Wt+1| ≤ κ for all t ≥ 1.
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Lemma 4. Consider the martingale sequence {W̃i}1≤i≤T+1, T ≥ 1 defined in (39). We have the
corresponding difference sequence bounded by∣∣∣W̃i+1 − W̃i

∣∣∣ ≤ {2αTκ, i = T,

2
∏T
k=i+1(1− αk

2 )αiκ, 1 ≤ i < T,
(41)

where κ is the uniform bound of the i.i.d. noise sequence {εt}t≥1 defined in (6).

Proof. By the definition of {W̃i}1≤i≤T+1, we have,

W̃i+1 − W̃i =

{
αTΓT , i = T,∏T
k=i+1(1− αk

2 )αiΓi, 1 ≤ i < T,
(42)

where Γi := ( 1
2 − βi)Wi + βiεi, for all 1 ≤ i ≤ T . Since W1 = 0,we easily have |Γ1| ≤ κ. For

i ≥ 2, we have

|Γi| =
{∣∣− 1

2Wi + εi
∣∣ if βt = 1

1
2 |Wi| if βt = 0

≤ 1

2
|Wi|+ |εi|

(i)
≤ 3

2
κ < 2κ,

where (i) follows from Lemma 3. Plugging the above bound in (42) completes the proof.

Lemma 5. (Azuma-Hoeffding Inequality) Suppose {Sn}n≥1 is a martingale such that S0 = 0 and
|Si − Si−1| ≤ di almost surely for some constants di, 1 ≤ i ≤ n. Then, for all t ≥ 0,

P (|Sn| ≥ ρ) ≤ 2 exp

(
− ρ2

2
∑n
i=1 d

2
i

)
.

The following lemma slightly extends Wainwright (2019a, Exercise 2.8 (a)) to handle the case where
b = 0. The proof is similar and we include it here for completeness.

Lemma 6. Suppose Z is a non-negative random variable satisfying the concentration inequal-
ity P (Z ≥ ρ) ≤ C exp

(
−ρ2/σ2

)
, ∀ρ > 0, for some C > 1, σ > 0. Then we have E (Z) ≤

σ
(√

lnC +
√
π
2

)
.

Proof. By the expectation formula of non-negative random variables, we have

E (Z) =

∫ ∞
0

P(Z ≥ ρ)dρ ≤
∫ ∞
0

1 ∧ C exp

(
− ρ

2

σ2

)
dρ

=

∫ σ
√
lnC

0

1dρ+

∫ ∞
σ
√
lnC

C exp

(
− ρ

2

σ2

)
dρ

= σ
√

lnC +

∫ ∞
σ
√
lnC

exp

(
−ρ

2 − σ2 lnC

σ2

)
dρ

(i)
≤ σ
√

lnC +

∫ ∞
σ
√
lnC

exp

−
(
ρ− σ

√
lnC

)2
σ2

 dρ

= σ
√

lnC +

∫ ∞
0

exp

(
− z

2

σ2

)
dz

= σ

(√
lnC +

√
π

2

)
,

where (i) follows because ρ2 − a2 ≥ (ρ− a)
2 for ρ ≥ a ≥ 0.
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G PROOF OF PROPOSITION 3

Since {µt}t≥1is a martingale difference sequence, we have

E (Mt+1 |Ft ) = E ((1− αt)Mt + αtµt |Ft )
= (1− αt)Mt + E (αtµt |Ft )
= (1− αt)Mt.

Therefore, if we define

M̃i :=

{
Mt+1, i = t+ 1,∏t
k=i(1− αk)Mi, 1 ≤ i ≤ t,

then {M̃i}1≤i≤t+1 is a martingale sequence with E
(
M̃1

)
= 0, for any t ≥ 1.

To utilize the Azuma-Hoeffding inequality to bound P
(∣∣∣M̃t+1

∣∣∣ ≥ ρ), ∀ρ ≥ 0, we first need to

bound
∣∣∣M̃i+1 − M̃i

∣∣∣, 1 ≤ i ≤ t. By the definition of {M̃i}1≤i≤t+1, we have

M̃i+1 − M̃i =

{∏t
k=i+1(1− αk)αiµi, 1 ≤ i < t,

αtµt, i = t.

Since |µt| ≤ (1 + γ
2 )Vmax := Ṽmax, we further have

di :=
∣∣∣M̃i+1 − M̃i

∣∣∣ ≤ {∏t
k=i+1(1− αk)αiṼmax, 1 ≤ i < t,

αtṼmax, i = t,

Then we have

d2i =


∏t
k=i+1(1− αk)2α2

i Ṽ
2
max

(i)
≤ αNt

αN−2
i

Ṽ 2
max, 1 ≤ i < t,

α2
t Ṽ

2
max, i = t,

where N := 18
(1−γ)(4−γ) and (i) follows from (25).

Then using the Azuma-Hoeffding Inequality (see Lemma 5), we have for t ≥ 1,

P (|Mt+1| ≥ ρ) ≤ 2 exp

(
− ρ2

2
∑t
i=1 d

2
i

)
≤ 2 exp

(
− ρ2

2Ṽ 2
maxα

N
t

∑t
i=1 α

−(N−2)
i

)
. (43)

Since N > 2, {α−(N−2)i }1≤i≤t is a monotonically increasing sequence. We have

αNt

t∑
i=1

α
−(N−2)
i = αNt

t−1∑
i=1

α
−(N−2)
i + α2

t

≤ αNt
∫ t

1

(
1 +

(1− γ)

3
s

)N−2
ds+ α2

t

≤ 3

1− γ
αt

N − 1
+ α2

t

=

(
3(4− γ)

18− (1− γ)(4− γ)
+ αt

)
αt

< (1 + 1)αt

= 2αt.

Using the above bound in (43) yields

P (|Mt+1| ≥ ρ) ≤ 2 exp

(
− ρ2

4Ṽ 2
maxαt

)
.
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By the union bound for the max operator, we have

P (‖Mt+1‖ ≥ ρ) = P
(

max
(s,a)∈S×A

|Mt+1| ≥ ρ
)
≤ DP (|Mt+1| ≥ ρ) .

Then it follows that

E ‖Mt+1‖ =

∫ ∞
0

P(‖Mt+1‖ ≥ ρ)dρ,

≤ 2D

∫ ∞
0

exp

(
− ρ2

4Ṽ 2
maxαt

)
dρ

(i)
≤ 2Ṽmax

√
αt

(√
ln 2D +

√
π

2

)
:= ṼmaxD̃

√
αt,

where (i) follows from Lemma 6 and D̃ := 2
√

ln 2D +
√
π.

H PROOF OF THEOREM 2

In the following, we consider a constant learning rate, i.e., αt = α. We keep the notations rt =
QAt −Q∗, νt = QBt −QAt .

To proceed the proof, we first introduce the following definition of valid iterations when using a
fixed state-action pair (s, a) to update.

Definition 1. We denote by T (s, a) the set of all the iteration indices at which the state-action pair
(s, a) is updated for either Q-estimator QA or QB . In addition, we denote by T t2t1 (s, a) ⊆ T (s, a)
the set of indices that are between time t1 and t2, that is,

T t2t1 (s, a) = {t : t ∈ [t1, t2] and t ∈ T (s, a)} .

The number of iterations updating (s, a) between time t1 and t2 is thus given by |T t2t1 (s, a)|, i.e., the
cardinally of T t2t1 (s, a).

Based on Definition 1, it is easy to observe that τt defined in (4) can be rewritten as

τt(s, a) = 1t∈T (s,a).

In the remaining, we show how to use the constant learning rate and the above definition to derive
the convergence result.

We first continue with the dynamics of rt(s, a) derived in Appendix C and obtain

rt+1(s, a) = (1− α̃t(s, a))rt(s, a) + α̃t(s, a)
(
T̂tQAt (s, a)− T̂tQ∗(s, a)

)
+ α̃t(s, a)εt(s, a) + α̃t(s, a)γνt(s

′, a∗)

=

t∏
i=1

(1− α̃i(s, a))r1(s, a) +

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)εi(s, a)

+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)
(
T̂iQAt (s, a)− T̂iQ∗(s, a)

)

+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γνi(s
′, a∗).
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Then we have

|rt+1(s, a)| =
∣∣∣∣ t∏
i=1

(1− α̃i(s, a))r1(s, a) +

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)εi(s, a)

+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)
(
T̂iQAt (s, a)− T̂iQ∗(s, a)

)

+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γνi(s
′, a∗)

∣∣∣∣
≤

t∏
i=1

(1− α̃i(s, a)) ‖r1‖︸ ︷︷ ︸
P1,t(s,a)

+

∣∣∣∣ t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)εi(s, a)

∣∣∣∣︸ ︷︷ ︸
P2,t(s,a)

+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖ri‖

+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖νi‖ . (44)

Next, we will bound the first two terms and also ‖νi‖, respectively. First, we give a high probability
bound for term P1,t(s, a).

Proposition 4. Fix any δ ∈ (0, 1). Suppose T > 886tmix
µmin

ln
(
4DT
δ

)
:= tframe and Assumption 1 holds.

Then for any t satisfying tframe ≤ t ≤ T and for any (s, a), we have

P1,t(s, a) ≤ (1− α)
1
2 tµmin ‖r1‖ , (45)

with probability at least 1− δ, where D = |S||A|.

Proposition 4 immediately follows from Lemma 7 whose proof is different from Q-learning since
we need to additionally handle the switching parameter βt.

The next proposition is the bound for term P2,t(s, a), whose proof can be found in Appendix I.
Proposition 5. Fix any δ ∈ (0, 1). Then for any t ∈ [1, T ] and for any (s, a), we have

P2,t(s, a) ≤

√
2α ln

(
2DT

δ

)
κ, (46)

with probability at least 1− δ, where D = |S||A| and κ is defined in (6).

We next bound ‖νt‖, whose proof can be found in Appendix J.
Proposition 6. Fix any δ ∈ (0, 1). Then for any t ∈ [1, T ], we have

‖νt‖ ≤

√
8α ln

(
2DT

δ

)
Vmax

1− γ
, (47)

with probability at least 1− δ, where D = |S||A|.

Then, we apply the above propositions to (44) and obtain that ∀t ∈ [1, T ],∀(s, a), with probability
at least 1− 3δ we have

|rt+1(s, a)| ≤
t∏
i=1

(1− α̃i(s, a)) ‖r1‖+

∣∣∣∣ t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)εi(s, a)

∣∣∣∣
+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖ri‖
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+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖νi‖

≤ (1− α)
1
2 tµmin ‖r1‖+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖ri‖

+

√
2α ln

(
2DT

δ

)
κ+

√
8α ln

(
2DT

δ

)
γVmax

1− γ

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)

(i)
≤ (1− α)

1
2 tµmin ‖r1‖+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖ri‖

+

√
2α ln

(
2DT

δ

)
κ+

√
8α ln

(
2DT

δ

)
γVmax

1− γ

, (1− α)
1
2 tµmin ‖r1‖+

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)γ ‖ri‖+ C, (48)

where (i) follows from Lemma 8 and

C =

√
2α ln

(
2DT

δ

)
κ+

√
8α ln

(
2DT

δ

)
γVmax

1− γ
. (49)

We further define more quantities for the ease of presentation:

µframe :=
1

2
µmintframe, (50)

tth := max

{
2 ln 1

(1−γ)ε

αµmin
, tframe

}
, (51)

ρ := (1− γ) (1− (1− α)µframe) , (52)

where tframe is defined in Proposition 4. Then we have the following upper bound.

Proposition 7. (Li et al., 2020, Lemma 3,4) Fix any δ ∈ (0, 1/2), ε ∈ (0, 1/(1 − γ)). Given the
dynamics of rt(s, a) in (48), then with probability at least 1− δ, we have

‖rt‖ ≤
C

1− γ
+ (1− ρ)k

‖r1‖
1− γ

+ ε, (53)

where k = max
{

0, b t−tth
tframe
c
}

.

The proof is the same as the combining proofs of Lemma 3-4 in Li et al. (2020) except different
constants C, tframe, and is thus omitted here.

Combining Propositions 4-7, we have for any δ ∈ (0, 1/6) and with probability at least 1− 6δ,

‖rt‖ ≤
C

1− γ
+ (1− ρ)k

‖r1‖
1− γ

+ ε. (54)

First, we have C
1−γ ≤ ε when letting

α =
(1− γ)6ε2

c′ ln 2DT
δ

, (55)

where c′ is some positive constant and is derived by observing κ ≤ c1
1−γ , Vmax ≤ c2

1−γ for some
positive constant c1, c2.
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Next, we have (1 − ρ)k ‖r1‖1−γ ≤ exp(−ρk)‖r1‖1−γ ≤ ε if k ≥ ln ‖r1‖
(1−γ)ε

/
ρ. By the definition of k in

Proposition 7, we have

t ≥ tth + tframe +
tframe

ρ
ln
‖r1‖

(1− γ)ε
. (56)

Further, since (1− α)µframe ≤ 1− αµframe
2 when α < 1

µframe
, we have

ρ = (1− γ) (1− (1− α)µframe) ≥ αµframe(1− γ)

2
. (57)

Last, we know (56) holds as long as

t ≥ tth + tframe +
2tframe

αµframe(1− γ)
ln
‖r1‖
v

= tth + tframe +
4

αµmin(1− γ)
ln
‖r1‖

(1− γ)ε

≥ tth + tframe +
4

µmin(1− γ)
ln
‖r1‖

(1− γ)ε
·max

{
c′ ln 2DT

δ

(1− γ)6ε2
, µframe

}

= tth + tframe +
4

µmin(1− γ)
ln
‖r1‖

(1− γ)ε
·max

{
c′ ln 2DT

δ

(1− γ)6ε2
, c′′tmix ln

DT

δ

}
.

Thus, we can continue with (54) and conclude that for any δ ∈ (0, 1/6) and with probability at least
1− 6δ, we have ‖rt‖ ≤ 3ε as long as

T = Ω̃

(
1

µminε2(1− γ)7
ln

1

ε(1− γ)2
+

tmix

µmin(1− γ)
ln

1

ε(1− γ)2

)
.

H.1 SUPPORTING LEMMAS

The following lemma characterizes the probability of the number of non-zero α̃i’s after a sufficient
number of iterations.
Lemma 7. Let βt, τt(s, a) be as defined in (5). Suppose Assumption 1 holds. Fix any δ ∈ (0, 1) and
T ≥ t > 886tmix

µmin
ln
(
4DT
δ

)
:= tframe. Then

∀(s1, a1), P(s1,a1)

(
t∑
i=1

βtτt(s, a) ≤ 1

2
tµπ(s, a)

)
≤ δ. (58)

Proof. The proof is an application of Lemma 5 of Li et al. (2020), where µmin is taken to be half of
it. The idea is to construct an auxiliary Markov chain which has the same mixing time as the original
MDP under the behavioral policy but only has half of its µmin.

The construction is inspired by the following intuition. Since {βi} is a Bernoulli random variable
with expectation 1

2 , intuitively, double-Q learning should take two times of the iterations needed
by vanilla Q-learning to visit all the states of QA the same amount of times (with the same high
probability).To show this formally, we construct an auxiliary Markov chain by augmenting the states
with βt, namely, M̄ := {X̄t}t≥1 = {st, at, βt}∀t≥1 with state space X̄ := S × A × B, where
B = {0, 1}. It is easy to see that this auxiliary Markov chain is aperiodic and irreducible (and thus
uniformly ergodic) given that the original Markov chain Mo := {Xt}t≥1 = {st, at}t≥1 is aperiodic
and irreducible. The transition probability can be calculated by

P
(
X̄t+1|X̄t

) (i)
= P (βt)P (st+1, at+1|st, at)

(ii)
=

1

2
π(at+1|st+1)P (st+1|st, at) , (59)

where (i) follows from the fact that {βt}t≥1 are i.i.d Bernoulli random variables which are also
independent of {st, at}t≥1, and in (ii) we denote by π the underlying behavior policy of the
Markov chain we sampled from. Let P̄ denote the transition probability matrix of M̄ where the
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((s, a, β), (s′, a′, β′))th entry of P̄ is 1
2π(a′|s′)P (s′|s, a). For the ease of discussion, assume that

the top left |S||A| × |S||A| submatrix of P̄ corresponds to the transitions between (s, a, 1)’s. Fur-
thermore, let µ̄ ∈ ∆(S ×A× B) denote the stationary distribution of M̄ .

Let Po denote the transition probability matrix of Mo where the ((s, a), (s′, a′))th entry of Po is
π(a′|s′)P (s′|s, a). Let µ ∈ ∆(S × A) be the stationary distribution of Mo, and thus we have
µPo = µ, assuming that µ is a row vector. Let P t(·|x) denote the distribution of Xt (assuming a
row vector), conditioned on X1 = x ∈ X , and we have P t(·|x)Po = P t+1(·|x). By (59), we have
for M̄ that

P̄ =

[
1 1
1 1

]
⊗ 1

2
Po, (60)

where ⊗ denotes the Kronecker product. Similarly, we call P̄ t(·|x̄) the distribution of X̄t, condi-
tioned on X̄1 = x̄. It is easy to verify (using (60)) that P̄ t(·|x̄) = [ 12P

t(·|x), 12P
t(·|x)] with either

x̄ = (x, 1) or x̄ = (x, 1). Let t→∞, and we have the stationary distribution of M̄as µ̄ = [ 12µ,
1
2µ].

It follows that µ̄min = 1
2µmin.

We claim that the mixing times for M̄ and Mo are the same. To see this, we calculate the variation
distances ∀x ∈ X ,

dTV(P t(·|x), µ) =
1

2

∑
y∈X

∣∣P t(y|x)− µ(y)
∣∣ ,

dTV(P̄ t(·|x̄), µ̄) = dTV([
1

2
P t(·|x),

1

2
P t(·|x)], [

1

2
µ,

1

2
µ]) =

1

2

∑
y∈X

∣∣P t(y|x)− µ(y)
∣∣ ,

which are the same. Therefore we conclude the claim by the definition of the mixing time.

Finally, applying Lemma 5 of Li et al. (2020) to the auxiliary Markov chain, which has µ̄min =
1
2µmin and the same tmix as the original sampled Markov process, we immediately have (58).

The next lemma is used to deal with the term about learning rates and corresponding randomness.
Lemma 8. Let α̃t(s, a) = αβtτt(s, a) as defined in (5). Then,

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a) ≤ 1.

Proof. Based on the definition of τi(s, a), we have

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a) =
∑

i∈T t1 (s,a)

∏
j∈T ti+1(s,a)

(1− αβj)αβi

,
|T t1 (s,a)|∑
i=1

∏
j∈T tti+1(s,a)

(1− αβj)αβti ,

where ti denotes the time stamp when (s, a) is visited for the ith time in the window [1, t].

Fix any m ∈ [0, |T t1(s, a)|]. If there are m non-zero βi’s in the set
{
βt1 , . . . , βt|Tt1(s,a)|

}
, i.e.,∑|T t1 (s,a)|

i=1 βti = m, then we have

t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a) =

|T t1 (s,a)|∑
i=1

∏
j∈T tti+1(s,a)

(1− αβj)αβti

=

m∑
i=1

(1− α)m−iα

≤ 1.
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Since the above bound holds for any |T t1(s, a)| and any m ∈ [0, |T t1(s, a)|], we can conclude the
lemma.

I PROOF OF PROPOSITION 5

Recall that

P2,t(s, a) =

∣∣∣∣ t∑
i=1

t∏
j=i+1

(1− α̃j(s, a))α̃i(s, a)εi(s, a)

∣∣∣∣
=

∣∣∣∣ ∑
i∈T t1 (s,a)

∏
j∈T ji+1(s,a)

(1− αβj)αβiεi(s, a)

∣∣∣∣
=

∣∣∣∣ |T
t
1 (s,a)|∑
i=1

∏
j∈T jti+1(s,a)

(1− αβj)αβtiεti(s, a)

∣∣∣∣,
where ti denotes the time stamp when (s, a) is sampled for the ith time in the window [1, t].

It suffices to show that for any fixed m = |T t1(s, a)| ∈ [0, t], we have

P (P2,t(s, a) ≥ ρ) = P

∣∣∣∣ m∑
i=1

∏
j∈T jti+1(s,a)

(1− αβj)αβtiεti(s, a)

∣∣∣∣ ≥ ρ


≤ 2 exp

(
− ρ2

2ακ2

)
:=

δ

DT
.

To this end, we observe that

P (P2,t(s, a) ≥ ρ) = P

(
P2,t(s, a) ≥ ρ

∣∣ m∑
i=1

βti = 0

)
P

(
m∑
i=1

βti = 0

)

+ P

(
P2,t(s, a) ≥ ρ

∣∣ m∑
i=1

βti = 1

)
P

(
m∑
i=1

βti = 1

)
+ · · ·

+ P

(
P2,t(s, a) ≥ ρ

∣∣ m∑
i=1

βti = m

)
P

(
m∑
i=1

βti = m

)
. (61)

Next, we state the following claim for further proof.

Claim: For any k ∈ [0,m], we have

P

(
P2,t(s, a) ≥ ρ

∣∣ m∑
i=1

βti = k

)
≤ 2 exp

(
− ρ2

2ακ2

)
.

Thus, we obtain

P (P2,t(s, a) ≥ ρ) ≤ 2 exp

(
− ρ2

2ακ2

) m∑
k=0

P

(
m∑
i=1

βti = k

)
= 2 exp

(
− ρ2

2ακ2

)
. (62)
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It remains to prove the claim, which can be done by observing

P

(
P2,t(s, a) ≥ ρ

∣∣ m∑
i=1

βti = k

)

= P

∣∣∣∣ m∑
i=1

∏
j∈T jti+1(s,a)

(1− αβj)αβtiεti(s, a)

∣∣∣∣ ≥ ρ∣∣ m∑
i=1

βti = k


= P

(∣∣∣∣ k∑
i=1

(1− α)k−iαεt′i(s, a)

∣∣∣∣ ≥ ρ
)

(i)
≤ 2 exp

(
− ρ2

2ακ2

)
, (63)

where t′i denotes the time stamp of the ith non-zero βti is the sequential array (βt1 , βt2 , . . . , βtm),
and (i) follows from (9) with the fact that E(εi(s, a)) = 0 and |εi(s, a)| ≤ κ.

I.1 SUPPORTING LEMMAS

The following lemma is useful to bound the sum of a sequence of discounted random variables (not
necessarily independent).

Lemma 9. Fix k > 0 and α ∈ (0, 1). Given a sequence of random variables {Xi} and a filtration
{Fi} satisfying E(Xi|Fi) = 0 and |Xi| ≤ c̄, then

P

(∣∣∣∣ k∑
i=1

(1− α)k−iαXi

∣∣∣∣ ≥ ρ
)
≤ 2 exp

(
− ρ2

2αc̄2

)
.

Proof. Define {Mi}1≤i≤k as

Mi+1 = (1− α)Mi + αXi, with M1 = 0.

Clearly we have Mk+1 =
∑k
i=1(1− α)k−iαXi, and

E(Mi+1|Fi) = E((1− α)Mi + αXi|Fi)
= (1− α)Mi + E(αXi|Fi)
= (1− α)Mi.

Next, we construct {M̃i} as

M̃i :=

{
Mk+1, i = k + 1,

(1− α)k−i+1Mi, 1 ≤ i ≤ k.

Then {M̃i}1≤i≤k+1 is a martingale sequence with E
(
M̃1

)
= 0.

Observe that

di :=
∣∣∣M̃i+1 − M̃i

∣∣∣ ≤ {Mk+1 − (1− α)Mk = αXk, i = k,

(1− α)k−iMi+1 − (1− α)k−i+1Mi = (1− α)k−iαXi, 1 ≤ i < k.

Then we have
d2i ≤ (1− α)2(k−i)α2|Xi|2 ≤ (1− α)k−iα2c̄2,

where the last inequality follows because (1− α)2 < 1− α and |Xi| ≤ c̄.
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Applying the Azuma-Hoeffding Inequality (see Lemma 5) yields

P

(∣∣∣∣ k∑
i=1

(1− α)k−iαXi

∣∣∣∣ ≥ ρ
)

= P (Mk+1 ≥ ρ)

≤ 2 exp

(
− ρ2

2
∑k
i=1 d

2
i

)

≤ 2 exp

(
− ρ2

2
∑k
i=1(1− α)k−iα2c̄2

)

≤ 2 exp

(
− ρ2

2αc̄2

)
.

J PROOF OF PROPOSITION 6

We start with the dynamics of νt derived in Appendix C and have

νt+1(s, a) = QBt+1(s, a)−QAt+1(s, a)

= (1− α̂t(s, a))νt(s, a) + α̂t(s, a)Ht(s, a) + α̂t(s, a)µt(s, a)

= (1− α̂t(s, a))νt(s, a) + α̂t(s, a)

1

2
νt(s, a) +

γ

2
E
s′

(
QBt (s′, a∗)−QAt (s′, b∗)

)
︸ ︷︷ ︸

Jt(s,a)


+ α̂t(s, a)µt(s, a)

=

(
1− α̂t(s, a)

2

)
νt(s, a) +

γα̂t(s, a)

2
Jt(s, a) + α̂t(s, a)µt(s, a)

=

t∏
i=1

(
1− α̂i(s, a)

2

)
ν1(s, a) +

t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
γα̂i(s, a)

2
Ji(s, a)

+

t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a)

(i)
=

t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
γα̂i(s, a)

2
Ji(s, a)

+

t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a),

where (i) follows because ‖ν1‖ = 0.

Next, we have

|νt+1(s, a)| ≤
∣∣∣∣ t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)

2
γJi(s, a)

∣∣∣∣
+

∣∣∣∣ t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a)

∣∣∣∣
(i)
≤

t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)

2
γ ‖νi‖
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+

∣∣∣∣ t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a)

∣∣∣∣, (64)

where (i) follows from the property |Ji(s, a)| ≤ ‖νi‖ derived in Appendix C.

Next, from Lemma 10 we have ∀t ∈ [1, T ],∀(s, a), with probability at least 1− δ,

|νt+1(s, a)| ≤
t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)

2
γ ‖νi‖+

√
8α ln

(
2DT

δ

)
Vmax.

In the remaining, we close this proof by induction. The base case holds trivially since ‖ν1‖ = 0.

Suppose that ‖νt‖ ≤
√

8α ln
(
2DT
δ

)
Vmax

1−γ . Then we have

‖νt+1‖ ≤
t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)

2
γ ‖νi‖+

√
8α ln

(
2DT

δ

)
Vmax

≤
t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)

2

√
8α ln

(
2DT

δ

)
γVmax

1− γ
+

√
8α ln

(
2DT

δ

)
Vmax

(i)
≤

√
8α ln

(
2DT

δ

)
γVmax

1− γ
+

√
8α ln

(
2DT

δ

)
Vmax

=

√
8α ln

(
2DT

δ

)
Vmax

1− γ
,

where (i) follows from Lemma 8 by replacing βi = 1
2 without affecting the upper bound.

J.1 SUPPORTING LEMMAS

Lemma 10. Fix δ ∈ (0, 1). Then for any t ∈ [1, T ] and for any (s, a), we have∣∣∣∣ t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a)

∣∣∣∣ ≤
√

8α ln

(
2DT

δ

)
Vmax, (65)

with probability at least 1− δ, where D = |S||A|.

Proof. Observe that
t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a)

=
∑

i∈T t1 (s,a)

(
1− α

2

)|T t1 (s,a)|−i
αµi(s, a)

=

|T t1 (s,a)|∑
i=1

(
1− α

2

)|T t1 (s,a)|−i
αµti(s, a),

where ti denotes the time stamp when (s, a) is sampled for the ith time in the window [1, t].

It suffices to show that for any m = |T t1(s, a)| ∈ [0, t], we have

P

∣∣∣∣ t∑
i=1

t∏
j=i+1

(
1− α̂j(s, a)

2

)
α̂i(s, a)µi(s, a)

∣∣∣∣ ≥ ρ


= P

(∣∣∣∣ m∑
i=1

(
1− α

2

)m−i
αµti(s, a)

∣∣∣∣ ≥ ρ
)

≤ 2 exp

(
− ρ2

8αV 2
max

)
:=

δ

DT
.
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The last inequality can be shown based on Lemma 9 by observing that |µi(s, a)| ≤ 2Vmax and
E(µti(s, a)|F ′i) = E(µti(s, a)|Fti) = 0 as derived in Appendix C, which completes the proof.

K PROOF OF THEOREM 3

The adaption from Theorem 2 to Theorem 3 is the same as the proof of Theorem 2 in Li et al. (2020),
and is thus omitted here.
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