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A PSEUDOCODE FOR PEPITA

Algorithm S1 describes the original PEPITA as presented in Dellaferrera & Kreiman (2022).
Algorithm S2 describes our modification of PEPITA, which is Hebbian and local both in space and
in time (Pepita-time-local).

Algorithm S1 Implementation of PEPITA
Require: Input x and one-hot encoded label y
{standard forward pass}
h0 = x
for ℓ = 1, ..., L do
hℓ = σℓ(Wℓhℓ−1)

end for
e = hL − y
{modulated forward pass}
herr
0 = x+ Fe

for ℓ = 1, ..., L do
herr
ℓ = σℓ(Wℓh

err
ℓ−1)

if ℓ < L then
∆Wℓ = (hℓ − herr

ℓ )(herr
ℓ−1)

⊤

else
∆Wℓ = e(herr

ℓ−1)
⊤

end if
Wℓ(t + 1) = Wℓ(t) − η∆Wℓ {apply up-
date}

end for

Algorithm S2 Impl. of PEPITA-time-local
Require: Input x and one-hot encoded label y
{standard forward pass}
h0 = x
for ℓ = 1, ..., L do

hℓ = σℓ(Wℓhℓ−1)
∆W+

ℓ = hℓh
⊤
ℓ−1

W+
ℓ (t + 1) = Wℓ(t) − η∆W+

ℓ {apply 1st
update}

end for
e = hL − y
{modulated forward pass}
herr
0 = x− Fe

for ℓ = 1, ..., L do
herr
ℓ = σℓ(W

+
ℓ herr

ℓ−1)
if ℓ < L then
∆W−

ℓ = −herr
ℓ herr⊤

ℓ−1
else

∆W−
ℓ = −yherr⊤

ℓ−1
end if
Wℓ(t+ 1) = W+

ℓ (t+ 1)− η∆W−
ℓ {apply

2nd update}
end for

The updates for PEPITA-Hebbian are:

• for the hidden layers:

∆Wℓ = hℓh
err⊤
ℓ−1 − herr

ℓ herr⊤
ℓ−1

≃ hℓh
⊤
ℓ−1 − herr

ℓ herr⊤
ℓ−1 ,

(11)

• for the first and last layers

∆W1 ≃ h1x
⊤ − herr

1 (x− Fe)⊤;

∆WL ≃ hLh
⊤
L−1 − yherr⊤

L−1 .
(12)

These updates are applied at the end of both forward passes for PEPITA-Hebbian, similarly as in
pseudocode S1.
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B TRAINING WITH THE TIME-LOCAL RULE

The weight update of the PEPITA-Hebbian rule in eqn. 8 consists of two separate phases that can
contribute to learning without knowledge of the activity of the other, i.e. learning is time-local.
Specifically, the term hℓh

⊤
ℓ−1 can be applied online, immediately as the activations of the first pass

are computed. Analogously, the second term −herr
ℓ herr⊤

ℓ−1 can be applied immediately during the
second forward pass. To ensure that the hidden-layer updates prescribed by PEPITA are useful,
we compared the test curve of PEPITA-TL against a control with F = 0 (Fig. S1), and found that
removing the feedback decreases the accuracy from approx. 40% to approx. 18%.

Regarding the time-locality of FF, the two forward passes can be computed in parallel, as the modu-
lated pass does not need to wait for the computation of the error of the first pass. However, according
to the available implementations (Mukherjee, 2023) the updates related to both passes are applied
together at the end of the second forward pass.

The time-local PEPITA was trained on the CIFAR-10 dataset with learning rate 0.01. All the other
hyperparameters are the same as the ones reported in Table S3.

Figure S1: Test curve for PEPITA in its time-local formulation and time-local PEPITA with F=0
(i.e., only the last layer is trained) on the CIFAR-10 dataset. The network has 1 hidden layer with
1024 units. The forward matrices are initialized using the He normal initialization. F entries are
sampled from a normal distribution with standard deviation 0.5·2

√
6/(32 · 32 · 3). We use learning

rate 0.0001 and weight decay with λ = 10−4. The learning is reduced by a factor of ×0.1 at epoch
50. The plot indicates mean and standard deviation over 10 independent runs. Time-local PEPITA
achieves a significantly higher accuracy than the time-local, F=0 scheme.
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C DISTRIBUTION OF THE GOODNESS IN PEPITA

a b c

Figure S2: Difference of the norm of the squared activities of the first hidden layer between the
clean and modulated pass in PEPITA (a) before training, (b) after 50 epochs, and (c) at the end of
training. The network is a 2-hidden-layer network trained with WD with λ = 10−4 on the CIFAR-10
dataset. The activites are recorded on the test set. We remark that in PEPITA the input of the second
forward pass is modulated by the error. Since the error decreases during training, also the difference
of the activations in the two passes decreases with training. This explains why the distribution of
the difference of the norm of the squared activities has a lower standard deviation in the middle of
training (b) and at the end of training (c), than before training (a). In contrast, the modulation of the
input in FF is constant during training, and the scope of training is maximising the difference of the
goodness in the two passes.
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D ADDITIONAL FIGURES ON THE AFA APPROXIMATION

Fig. S3 displays the comparison between the “vanilla” PEPITA algorithm and the AFA approxima-
tion introduced in eqn. 6 of the main text. The test accuracy as a function of training epochs is
depicted for the CIFAR-10 dataset in the left panel and for the CIFAR-100 dataset in the right panel.

Fig. S4 depicts the norm of the adaptive feedback matrix f = W1F/D as a function of training time.
The symbols mark the numerical simulations at dimension D = 500, while the full line represents
our theoretical prediction. We observe that, for this run, the norm of the adaptive feedback increases
over time. We have observed by numerical inspection that this behavior is crucial to speed up the
dynamics, as also observed in Dellaferrera & Kreiman (2022).

Figure S3: Comparison between the test accuracy as a function of training epochs between the
“vanilla” PEPITA algorithm and its AFA approximation (eqn. 6 of the main text) for the CIFAR-10
(left panel) and CIFAR-100 (right panel) datasets.
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Figure S4: Norm of the alignment matrix f = W1F/D as a function of training time, for the same
parameters as in Fig. 2 of the main text: D = 500, lr = .05, erf activation, two hidden units in both
teacher and student (K = M = 2).

E ODES FOR ONLINE LEARNING IN THE TEACHER-STUDENT REGRESSION
TASK

In this section, we present the details of the teacher-student model under consideration and we sketch
the derivation of the ordinary differential equations (ODEs) tracking the online learning dynamics of
the AFA rule. We consider a shallow student network trained with AFA to solve a supervised learn-
ing task. The input data are random D−dimensional vectors x ∈ RD with independent identically
distributed (i.i.d.) standard Gaussian entries xj ∼ N (0, 1), j = 1, . . . , D, and the (scalar) labels are
generated as the output of a 1-hidden-layer teacher network with parameters θ̃ = (W̃1, W̃2,M, σ̃):

y =

M∑
m=1

W̃m
2 σ̃(νm), νm =

W̃m
1 x√
D

, (13)

where M is the size of the teacher hidden layer, νm denotes the teacher preactivation at unit m ∈
{1, . . . ,M}, and σ̃(·) is the activation function. The student is a 1-hidden-layer neural network

17



Under review as a conference paper at ICLR 2024

parametrized by θ = (W1,W2,K, σ) that outputs the prediction

ŷ =

K∑
k=1

W k
2 σ(λ

k), λk =
W k

1 x√
D

, (14)

where K is the size of the student hidden layer, σ(·) the student activation function, λk the student
preactivation at unit k ∈ {1, . . . ,K}. For future convenience, we write explicitly the scaling with
respect to the input dimension. Therefore, at variance with the main text, in this supplemementary
section we always rescale the first layer weights as well as the feedback by 1/

√
D.

We focus on the online (or one-pass) learning protocol, so that at each training time the student
network is presented with a fresh example xµ, µ = 1, . . . N , and N/D ∼ OD(1). The weights are
updated according to the Adaptive Feedback Alignment (AFA) rule defined in eqn. 6:

W1(µ+ 1) = W1(µ)− η1∆W1(µ), ∆W1 =
W1F

D
eh′

1

x⊤
√
D
, (15)

W2(µ+ 1) = W2(µ)− η2∆W2(µ), ∆W2 = e h⊤
1 . (16)

We consider fixed learning rates η1 = η, η2 = η/D. Different learning rate regimes have been
explored in Veiga et al. (2022). It is crucial to notice that the mean squared generalization error

ϵg(θ, θ̃) =
1

2
Ex

( K∑
k=1

W k
2 σ(λ

k)−
M∑

m=1

W̃m
2 σ̃(νm)

)2
 (17)

depends on the high-dimensional input expectation only through the low-dimensional expectation
over the preactivations {λk}Kk=1, {νm}Mm=1. Notice that, in this online-learning setup, the input x is
independent of the weights, which are held fixed when taking the expectation. Furthermore, due to
the Gaussianity of the inputs, the preactivations are also jointly Gaussian with zero mean and second
moments:

Qkl = Ex

[
λkλl

]
=

W k
1 ·W l

1

D
, (18)

Rkm = Ex

[
λkνm

]
=

W k
1 · W̃m

1

D
, (19)

Tmn = Ex [ν
mνn] =

W̃m
1 · W̃n

1

D
. (20)

The above matrices are named order parameters in the statistical physics literature and play an
important role in the interpretation. The matrices Q and T capture the self-overlap of the student
and teacher networks respectively, while the matrix R encodes the teacher-student overlap. In the
infinite-dimensional limit discussed above, the generalization error is only a function of the order
parameters Q,T,R and of the second layer weights W̃2,W2 of teacher and student respectively.
Therefore, by tracking the evolution of these matrices via a set of ODEs – their “equations of motion”
– we obtain theoretical predictions for the learning curves. The update equations for Q,R,W2 can
be obtained from eqn. 15 according to the following rationale. As an example, we consider the
update equation for the matrix Q:

Qkl(µ+ 1)−Qkl(µ)

=
1

D

[
W k

1 (µ)− η∆W k
1 (µ)

]
·
[
W l

1(µ)− η∆W l
1(µ)

]
− 1

D
W k

1 (µ) ·W l
1(µ)

= − 1

D
η fk e σ′(λk)λl − 1

D
η f l e σ′(λl)λk +

1

D
η2 fk f l σ′(λk)σ′(λl)e2,

(21)

where we have defined the adaptive feedback f := W1F/D, we have used that ∥xµ∥2 = D as
D → ∞ and omitted the µ−dependence on the right hand side for simplicity. By taking t = µ/D,
as shown in Goldt et al. (2019), in the infinite-dimensional limit Qkl(µ) concentrates to the solution
of the following ODE:

dQkl

dt
= −ηfkE

[
σ′(λk)λle

]
− ηf lE

[
σ′(λl)λke

]
+ η2fkf lE

[
σ′(λk)σ′(λl)e2

]
, (22)
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Similarly, we can derive ODEs for the evolution of R,W2 and the adaptive feedback f :

dRkm

dt
= −η fkE

[
σ′(λk)νme

]
,

dW k
2

dt
= −ηE

[
σ(λk)e

]
,

dfk

dt
= −ηfkE

[
ρσ′(λk)e

]
, (23)

where the expectations are taken over the preactivatons and ρ = F x/
√
D, and we have Ex[λ

kρ] =

fk, Ex[ν
mρ] = f̃m := W̃1F/D, qf := F · F/D. The generalization error can be rewritten as

lim
D→∞

ϵg(θ, θ̃) =
1

2

K∑
k,l=1

W k
2 W

l
2 I2(k, l) +

1

2

M∑
m,n=1

W̃m
2 W̃n

2 I2(m,n)−
K∑

k=1

M∑
m=1

W k
2 W̃

m
2 I2(k,m),

(24)

where I2 generically encodes the averages over the activations

I2(α, β) = E
[
σα(γ

α)σβ(γ
β)
]
, γα =

{
λk if α = k, l

νm if α = m,n
, σα =

{
σ if α = k, l

σ̃ if α = m,n
. (25)

The other averages in eqns. can be expressed in a similar way and estimated by Monte Carlo meth-
ods. In the case of sigmoidal activation σ(x) = erf(x/

√
2), the function I2 has an analytic expres-

sion.

I2(α, β) =
2

π
arcsin

Cαβ

√
1 + Cαα

√
1 + Cββ

, Ckl = Qkl, Ckm = Rkm, Cmn = Tmn. (26)

E.1 EARLY-TRAINING EXPANSION

As done by Refinetti et al. (2021a) for DFA, it is instructive to consider an expansion of the ODEs
at early training times. We assume the following initialization: W k

2 (0) = 0, ∀k ∈ {1, . . . ,K},
while the first layer is assumed to be orthogonal to the teacher W k

1 (0) · W̃m
1 = 0 and of fixed norm

∥W k
1 (0)∥2/D = q0, ∀k ∈ {1, . . . ,K},∀m ∈ {1, . . . ,M}. We also take orthogonal first-layer

teacher weights, such that T is the identity matrix. This initialization leads to:

Rkm(0) = 0 ,
d

dt
W k

2

∣∣∣∣
t=0

= 0 ,
d

dt
Rkm

∣∣∣∣
t=0

=

√
2

π
√
1 + q0

η fk(0) W̃m
2 . (27)

We can therefore compute the second-layer update to linear order:

d

dt
W k

2 (t) =
2

π2(1 + q0)
η2 fk(0) ∥W̃2∥22 t+O(t2). (28)

Eqn. 28 shows that the update of the second-layer weights at early training times is in the direction
of the adaptive feedback matrix, in agreement with the alignment phase observed in experiments.
Crucially, it is necessary that fk(0) ̸= 0 ∀k in order to have non-zero updates, i.e. the feedback F
must not be orthogonal to the first-layer weights at initialization. We now inspect the behavior of
the adaptive feedback at the beginning of training. We have that the update at time zero is:

d

dt
fk

∣∣∣∣
t=0

=
2

π
η

fk(0)√
(1 + q0)(1 + qf )− fk(0)2

(W̃2 · f̃), (29)

and

fk(t) = fk(0) +
2

π
η

fk(0)√
(1 + q0)(1 + qf )− fk(0)2

(W̃2 · f̃) t+O(t2). (30)

Eqn. 29 illustrates that the feedback-teacher alignment f̃ plays an important role in speeding up the
dynamics. Indeed, if ∥f̃∥22 is close to zero, the feedback update slows down inducing long plateaus
in the generalization error. A similar role is played by the alignment angle between W̃2 and f̃ .
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F PEPITA’S RESULTS COMPARED TO THE BASELINES

Table S1: Test accuracy [%] achieved by BP, FA, DRTP, PEPITA, and PEPITA with WM in the
experiments. Mean and standard deviation are computed over 10 independent runs. The nonlinearity
is ReLU for all algorithms except DRTP, for which is tanh. WM was used in combination with
weight decay with λ = 10−4 for the networks trained on the CIFAR-10 dataset and for the 3-
hidden-layer networks trained on the CIFAR-100 dataset. The other networks are trained without
weight decay. Bold fonts refer to the best results exclusively among PEPITA and its improvements.

2 HIDDEN LAYERS 3 HIDDEN LAYERS

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

BP 98.85±0.06 59.69±0.25 32.28±0.17 98.89±0.04 60.07±0.28 32.80±0.16
FA 98.64±0.05 57.76±0.39 22.90±0.14 97.48±0.06 52.99±0.21 22.81±0.21
DRTP 95.36±0.09 47.48±0.19 20.55±0.30 95.74±0.10 47.44±0.19 21.81±0.24

PEPITA 98.19±0.07 52.39±0.27 24.88±0.15 95.07±0.11 52.47±0.24 01.00±0.00
PEPITA

+WD 98.09±0.07 53.09±0.33 24.64±0.24 95.09±0.16 52.56±0.31 23.13±0.21

PEPITA
+WM 98.13±0.05 53.44±0.28 26.95±0.24 96.33±0.12 52.80±0.33 23.03±0.28

G SLOWNESS RESULTS

In our analysis of convergence rate, we used the plateau equation for learning curves (Dellaferrera
et al., 2022):

accuracy =
max accuracy · epochs

slowness + epochs
(31)

By fitting the test curve to this equation, we calculated the slowness parameter, which measures
how quickly the network reduces error during training. In mathematical terms, the slowness value
corresponds to the number of epochs needed to reach half of the maximum accuracy. In practice, a
lower slowness value indicates faster training.

Table S2 shows that the best convergence rate for PEPITA (i.e., small slowness value) is obtained
in general by PEPITA with WM (MNIST, CIFAR-100). Compared to the baselines, PEPITA has a
better convergence than all the algorithms on MNIST, is the slowest on CIFAR-10, and the second
best after BP on CIFAR-100. However, these results are strongly dependent on the chosen learning
rate.
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Table S2: Convergence rate in terms of slowness value obtained by BP, FA, DRTP and PEPITA in
the experiments for the fully connected models trained on MNIST, CIFAR-10 and CIFAR-100 (same
simulations reported in Table 2). PreM refers to pre-mirroring (Sec. 4). The smallest the slowness
value, the better the convergence rate. The slowness is computed on the first 60 epochs of the test
curve (before the learning rate decay), averaged over 10 independent runs. All the networks are
trained without weight decay. The slowness result of FA on CIFAR-10 is lower than in Dellaferrera
& Kreiman (2022) as our grid search returned a higher value for the learning rate. Bold fonts refer
to the best results exclusively among PEPITA and its improvements.

1×1024 FULLY CONNECTED MODELS

MNIST CIFAR-10 CIFAR-100

BP 0.061±0.001 0.421±0.016 1.406±0.053
FA 0.081±0.002 0.463±0.020 4.946±0.123
DRTP 0.059±0.002 0.362±0.021 12.904±0.443

PEPITA 0.052±0.004 0.894±0.071 2.695±0.166
PEPITA+WM 0.047±0.005 0.890±0.081 2.333±0.102
PEPITA+WM+PREM 0.040±0.002 0.856±0.051 1.999±0.059

H HYPERPARAMETERS

Table S3: 1-hidden-layer network architectures and settings used in the experiments. The nonlinear-
ity is ReLU for all algorithms except DRTP, for which is tanh.

1 HIDDEN LAYER 1 HIDDEN LAYER - NORMALIZATION

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

INPUTSIZE 28×28×1 32×32×3 32×32×3 28×28×1 32×32×3 32×32×3
HIDDEN UNITS 1×1024 1×1024 1×1024 1×1024 1×1024 1×1024
OUTPUT UNITS 10 10 100 10 10 100

η BP 0.1 0.01 0.1 − − −
η FA 0.1 0.01 0.01 − − −
η DRTP 0.01 0.001 0.001 − − −
η PEPITA 0.1 0.01 0.01 100 10 100
λ WEIGHT DECAY 10−5 10−4 10−5 0.0 0.0 0.0
η DECAY RATE ×0.1 ×0.1 ×0.1 ×0.5 ×0.1 ×0.1
DECAY EPOCH 60,90 60,90 60,90 60,90 60,90 60,90
BATCH SIZE 64 64 64 64 64 64
η WM 0.1 0.001 0.1 0.001 0.001 0.001
λ WEIGHT DECAY WM 0.0 0.1 0.5 0.1 0.1 0.1

σ
(0)
F (UNIFORM) 0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN

σ
(0)
F (NORMAL) 0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN

FAN IN 28 · 28 · 1 32 · 32 · 3 32 · 32 · 3 28 · 28 · 1 32 · 32 · 3 32 · 32 · 3
#EPOCHS 100 100 100 100 100 100
DROPOUT 10% 10% 10% 10% 10% 10%
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Table S4: 2-, 3-hidden-layer network architectures and settings used in the experiments. The nonlin-
earity is ReLU for all algorithms except DRTP, for which is tanh. (*) For the 3-hidden-layer network
trained with PEPITA on the MNIST dataset, we did not use learning rate decay, as indicated by the
grid search.

2 HIDDEN LAYERS 3 HIDDEN LAYERS

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

INPUTSIZE 28×28×1 32×32×3 32×32×3 28×28×1 32×32×3 32×32×3
HIDDEN UNITS 2×1024 2×1024 2×1024 3×1024 3×1024 3×1024
OUTPUT UNITS 10 10 100 10 10 100

η BP 0.1 0.01 0.1 0.1 0.01 0.1
η FA 0.1 0.01 0.01 0.01 0.001 0.01
η DRTP 0.001 0.001 0.001 0.001 0.001 0.001
η PEPITA 0.1 0.01 0.01 0.001 0.01 0.01
λ WEIGHT DECAY 10−5 10−4 10−5 10−5 10−4 10−4

η DECAY RATE (*) ×0.1 ×0.1 ×0.1 ×0.1 ×0.1 ×0.1
DECAY EPOCH 60,90 60,90 60,90 60,90 60,90 60,90
BATCH SIZE 64 64 64 64 64 64
η WM 0.00001 1.0 1.0 0.1 0.001 0.001
λ WD WM 0.0 0.1 0.1 0.001 0.1 0.1

σ
(0)
F (UNIFORM) 0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN

σ
(0)
F (NORMAL) 0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN

FAN IN 28 · 28 · 1 32 · 32 · 3 32 · 32 · 3 28 · 28 · 1 32 · 32 · 3 32 · 32 · 3
#EPOCHS 100 100 100 100 100 100
DROPOUT 10% 10% 10% 10% 10% 10%

I TRAINING DEEPER FULLY-CONNECTED MODELS

In the field of biologically inspired learning, reaching convergence on networks with more than
a couple of hidden layers is a long standing challenge. Two significant reasons for this are the
difficulty of learning hierarchical representations and the explosion of weight updates and activities
in deep layers Illing et al. (2021). In particular, forward-only learning schemes have been shown to
work so far on a maximum of four hidden layers (FF (Hinton, 2022)). The original PEPITA paper
was only able to train 1 hidden layer models (Dellaferrera & Kreiman, 2022), therefore our strategy
to reach convergence with up to 5 hidden layers (Fig. S5) represents a significant improvement over
the previous work.

a b c

Figure S5: Test accuracy obtained with PEPITA and normalization of the activations for 1- to 5-
hidden-layer networks on (a) MNIST, (b) CIFAR-10, and (c) CIFAR-100. Note that compared to
Fig. 3 the trend is decreasing, as here we used activation normalization to obtain convergence for 4
and 5 hidden layers, which we did not use for Fig. 3.
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J WEIGHT MIRRORING

Algorithm S3 describes how WM is applied to PEPITA. This algorithm is applied at the end of each
training epoch. σ(t+1)

F refers to the standard deviation of the entries of F (t+ 1) =
∏L

ℓ=1 Fℓ(t+ 1).

Algorithm S3 Implementation of WM
{Mirror weights}
for ℓ = 1, ..., L do
δℓ−1 ∼ N (µ, σ2)
δℓ = σℓ(Wℓδℓ−1)
Fℓ(t+ 1) = Fℓ(t)− ηδℓ−1δ

⊤
ℓ

end for
{Normalize feedback matrices}
for ℓ = 1, ..., L do

Fℓ(t+ 1) =
(
σ
(0)
F /σ

(t+1)
F

)1/L
· Fℓ

end for

Figure S6: Alignment angle between F and Wtot during training with (pink and purple curves) or
without (blue curve) WM for the MNIST (left panel) and CIFAR-100 (right panel) datasets. PreM
refers to pre-mirroring (Sec. 4). The hyperparameters are reported in Table S3. The plots indicate
mean and standard deviation over 10 independent runs.

a b c

Figure S7: Alignment angle between F and Wtot during training with (pink curve) or without
(blue curve) WM for the MNIST dataset for (a) 1-, (b) 2-, (c) 3-hidden-layer networks. The hy-
perparameters are reported in Table S3 for the 1-hidden-layer network and Table S4 for the 2- and
3-hidden-layer networks. The plots indicate mean and standard deviation over 10 independent runs.
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a b c

Figure S8: Alignment angle between F and Wtot during training with (pink curve) or without
(blue curve) WM for the CIFAR-10 dataset for (a) 1-, (b) 2-, (c) 3-hidden-layer networks. The
hyperparameters are reported in Table S3 for the 1-hidden-layer network and Table S4 for the 2- and
3-hidden-layer networks. The plots indicate mean and standard deviation over 10 independent runs.
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