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A APPENDIX

The appendix is structured as follows:
§A.1 provides experimental results on weakly-supervised image-text matching with pseudo captions
generated by GIT, CoCa, and BLIP-2.
§A.2 demonstrates the expression format of pseudo captions generated by the image captioning tools.
§A.3 provides the detailed derivation of anchor selection.
§A.4 provides the detailed derivation of Equation 9.
§A.5 provides experimental results on text-based person retrieval.
§A.6 provides experimental results on noisy correspondence learning.
§A.7 provides experimental results on zero-shot image classification of CLIP pre-training.
§A.8 provides experimental results on VLP fine-tuning.
§A.9 provides efficiency analysis of AdaCL.
§A.10 provides a comprehensive study of other hyper-parameters.
§A.11 provides an analysis on additional arguments involved in anchor selection.
§A.12 provides a more comprehensive visualization results of clone negatives.
§A.13 provides a discussion of the limitations for this work.

A.1 WEAKLY-SUPERVISED IMAGE-TEXT MATCHING

In the main manuscript, we utilize BLIP(Li et al., 2022) to generate pseudo captions based on
Flickr30K training set. Then, the original text annotations are replaced by the pseudo captions
for training to verify the robustness of AdaCL in handling clone negatives. To mitigate concerns
about reliance on a specific captioning tool, we conduct a range of complementary experiments,
to comprehensively analyze its robustness. Specifically, four captioning tools are selected, i.e.,
GIT(Wang et al., 2022a), CoCa(Yu et al., 2022), and BLIP-2(Li et al., 2023). GIT is a multi-modal
pre-training method that unifies vision-language tasks such as image/video captioning and question
answering. CoCa employs a unified transformer architecture to perform both image-text matching and
image captioning tasks. CoCa is trained on large-scale image-text pairs and can generate descriptive
captions for images while also understanding the relationship between visual and textual content.
BLIP-2 is an advanced vision-language model that builds upon its predecessor, BLIP. It introduces
a lightweight Querying Transformer (Q-Former) to bridge pre-trained vision and language models
efficiently.

The way of generating pseudo captions is unified, i.e., through the zero-shot image captioning results.
The maximum length of the pseudo caption is 30. Table 1 demonstrates the matching results of
different baselines with AdaCL based on pseudo captions. The experimental settings are the same
with the settings in the main manuscript.

From Table 1, we can make the following conclusions: By employing different image captioning
method, AdaCL demonstrates matching performance that are within a 3% margin. AdaCL achieves
highly competitive performance on the four annotation settings. Therefore, AdaCL is further proved
to be applicable to more general annotation settings, where the issue of clone negatives is well
mitigated. The impact of image captioning methods on AdaCL is trivial. More specifically, AdaCL-X
(BLIP) and AdaCL-X (BLIP-2) performs slightly better than AdaCL-X (GIT) and AdaCL-X (CoCa).
We speculate that this is because the pseudo captions generated by GIT and CoCa typically focus
on action and instance information of the image gallery, while the pseudo captions generated by
BLIP possess general descriptions, often consisting of a subject-verb-object structure with more
holistic-level semantics. Overall, the retrieval performance is quite comparable, further verifying the
robustness of AdaCL.

A.2 EXPRESSION FORMAT OF PSEUDO CAPTIONS

Regarding pseudo captions, we have presented a subset of caption cases generated by four distinct
captioning tools (BLIP, GIT, BLIP-2, and CoCa), as illustrated in Figure 1. Pseudo captions generally
provide a global and coarse overview of the images, encompassing more potential clone negatives.
Among the four methods, GIT produces the most concise captions, while CoCa tends to generate
more detailed descriptions. The weakly-supervised image-text matching based on pseudo captions
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Table 1: Comparisons of Image-Text Retrieval performance on Flickr30K test set with pseudo
captions generated by four distinct captioning methods. AdaCL-X (BLIP), AdaCL-X (GIT), AdaCL-
X (CoCa), and AdaCL-X (BLIP-2) represent AdaCL with respective image captioning methods.
Bold is the best performance, while red indicates the margin between the best and worst.

Methods Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
AdaCL-CMPM (BLIP) 46.3 72.9 85.8 34.1 63.6 75.0
AdaCL-CMPM (GIT) 44.5 (-1.8) 71.2 84.9 (-0.9) 32.7 (-1.8) 61.0 (-2.7) 73.7 (-1.5)
AdaCL-CMPM (CoCa) 44.8 71.0 (-2.4) 85.1 34.1 63.7 74.6
AdaCL-CMPM (BLIP-2) 45.9 73.4 85.7 34.5 63.3 75.2
AdaCL-SCAN (BLIP) 59.2 86.9 94.7 41.7 73.2 84.1
AdaCL-SCAN (GIT) 60.0 87.7 94.9 41.1 70.9 (-2.3) 83.4 (-1.6)
AdaCL-SCAN (CoCa) 58.1 (-1.9) 85.2 94.2 (-0.7) 40.2 (-2.0) 72.6 83.6
AdaCL-SCAN (BLIP-2) 58.1 85.2 (-2.5) 94.6 42.2 74.1 85.0
AdaCL-CVSE (BLIP) 64.7 82.6 92.9 47.0 77.5 88.4
AdaCL-CVSE (GIT) 63.6 (-1.9) 80.9 (-1.8) 90.9 (-2.0) 46.2 77.4 88.7
AdaCL-CVSE (CoCa) 63.8 81.4 91.5 45.3 (-1.7) 77.1 (-0.6) 88.0 (-0.7)
AdaCL-CVSE (BLIP-2) 65.5 82.7 92.3 46.3 77.7 88.2
AdaCL-DIME (BLIP) 71.3 88.3 94.9 54.7 82.8 90.4
AdaCL-DIME (GIT) 70.1 (-1.2) 88.0 94.2 55.1 82.3 90.6
AdaCL-DIME (CoCa) 70.8 87.8 (-0.5) 93.7 54.6 (-1.3) 82.0 (-1.4) 90.0 (-1.0)
AdaCL-DIME (BLIP-2) 70.4 88.3 93.7 (-1.2) 55.9 83.4 91.0

poses imposes demands for handling clone negatives, thus rendering this task more challenging. We
will release all datasets based on pseudo captions to facilitate further research in this domain.

A.3 DERIVATION OF m1 AND m2 IN ADACL

Revisiting AdaCL, our goal is to progressively tune m1 and m2 based on the anchor. Therefore,
we first copy Equation 3 in the main manuscript, i.e., softmax normalized similarity for each image I
and its corresponding text T with two margin parameters, which can be expressed as:

p̂i(I) =
exp [m1(s(I, Ti)−m2)]

exp [m1(s(I, Ti)−m2)] +
∑M+1

j−1,j ̸=i exp [s(I, Tj)]
, (1)

Lada = EI∼D [H(y(I),p(I))] = − 1

N

N∑
i=1

yi(I) log(p̂i(I)). (2)

The potential in-batch clone negatives are represented as:S∗ := {s | p (C | s) > p
(
C̄ | s

)
}, and

anchor is defined as the median of S∗. The two specific boundary functions of the anchor are defined
as:

p̂u =
exp [m1(anchor −m2)]

exp [m1(anchor −m2)] +
∑

anchor
, (3)

exp [m1(1−m2)]

exp [m1(1−m2)] +
∑

anchor
= 1− ϵ, (4)

where
∑

anchor is the simplification of
∑M+1

k=1,k ̸=u exp [s(Iu, Tk)].
∑

anchor can be obtained through
Equation 3, expressed as: ∑

anchor =
1−p̂u

p̂u
em1(anchor−m2). (5)

Combining Equation 5 and Equation 4, we have:[
em1(1−m2) +

1− p̂u
p̂u

em1(anchor−m2)

]
(1− ϵ) = em1(1−m2). (6)
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Image Query

A band is playing to a 
cheering concert with
many people.

Music being played by 
several individuals 
while a crowd sits and 
listens.

Two men who are 
riding on a horse both 
are trying to rope a 
bull in a rodeo.

A man wearing blue
jeans is trying to stop 
a horse.

A crowded sidewalk 
in the inner city of an 
Asian country.

A crowd of people is 
walking down the 
middle of a city street. 

Ground-truth BLIP GIT BLIP-2

Many people are 
chilling in front an old 
building.

A group of people 
stand in the park of a 
city, with buildings in 
the background.

A crowd of people in 
running outfits runs
a marathon with two 
skyscrapers in the 
background.

A group of people is 
running a race or 
marathon in the city.

A man in a blue T-
shirt speaks into a 
blow horn towards a 
group of people.

CoCa

A large crowd of people 
are gathered in a concert.

A crowd of people in a 
large concert.

A crowd of people in a 
concert with a band on 
stage.

Many people are 
enjoying a concert.

A group of musicians sitting 
in a room with instruments .

A group of people and a 
man playing a violin

People sitting in chairs 
watching a man play a 
musical instrument.

People having an 
indoor concert.

A man on a horse roping 
a calf in a rodeo.

A man is on a horseThere is a man riding a 
horse with a cow.

A man riding a horse 
chasing the cow.

A man in a black and 
white striped shirt is 
trying to rope a horse . 

A man is trying to catch 
a horse that is running 
away.

A man is falling off of a 
horse.

A man is riding a 
horse.

A group of people 
walking down a street .

A group of people 
walking down a street

People walking on a 
street in a city with shops.

People walking on 
the street.

A crowd of people 
walking down a street .

A large crowd of people 
walking down a street.

There are many people 
walking down the street 
together.

Many people gather on 
the street.

A group of people 
walking on the sidewalk 
near a building .

A group of people 
running in a city

People running in a 
marathon in a city with 
tall buildings.

People are jogging 
during the day. 

A group of people that 
are standing in the street .

A large crowd of people 
running in a marathon

People are running in a 
marathon in a city 
street

Athletes running in 
the city.

A group of people riding 
bikes down a street .

A man is standing on a 
street corner with a 
megaphone

People are walking in a 
crowded city street.

Cyclists riding 
across the street.

A crowd of people sitting 
at tables in front of a 
building.

A crowd of people 
sitting at tables outside 
of a building.

People are in front of a 
large building with a 
clock tower.

Tourists sitting at tables 
outside the building.

A group of people 
standing in front of a 
water fountain .

A group of people 
standing in the park.

People standing around 
a fountain in a city with 
tall buildings

Several people are 
standing in the park.

Figure 1: Cases of pseudo captions by four distinct captioning tools, i.e., BLIP, GIT, BLIP-2, and
CoCa.
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To simplify Equation 6, we have:

(1− ϵ)(1− p̂u)

p̂u
em1·anchor = ϵ · em1 . (7)

By taking the logarithm of both sides of Equation 7, we have:

m1 · anchor + log
(1− ϵ)(1− p̂u)

p̂u
= m1 + log ϵ. (8)

Then, m1 can be obtained, expressed as:

m1 = log(
ϵ p̂u

(1− ϵ)(1− p̂u)
)/(anchor − 1), (9)

which corresponds to Algorithm 1 in the manuscript. Meanwhile, by taking the logarithm of both
sides of Equation 5, we have:

log
∑

anchor = log 1−p̂u

p̂u
+m1(anchor −m2). (10)

Simplifying Equation 10, we obtain m2:

m2 = anchor + log(
1− p̂u

p̂u ·
∑

anchor
)/m1, (11)

which corresponds to Algorithm 1 in the main manuscript. With Equation 9 and Equation 11, m1

and m2 can be computed and updated during each batch training process with the supervision of
anchor, facilitating the model to exploit more distinguishable cross-modal semantics among samples
compared with the original TRL and CL.

A.4 DERIVATION OF EQUATION 9

Here we demonstrate the derivation of Equation 9. To begin with, a K-class classification probability
with Bayes’s formula can be expressed as:

p(y = i | x) = p(x | y = i)p(y = i)∑K
j=1 p(x | y = j)p(y = j)

=
exp (fi(x))∑K
j=1 exp (fj(x))

, (12)

In anchor selection of AdaCL, the input variable x (a.k.a s) is one-dimensional with a binary output
variable y ∈ 0, 1 (a.k.a C̄ and C). We aim to predict p(y = 1 | x). Since GDA assumes that for
each class y = 0 and y = 1, the input x follows a gaussian distribution. This can be expressed
as: p(x | y = 0) = N

(
x | µ0, σ

2
0

)
and p(x | y = 1) = N

(
x | µ1, σ

2
1

)
. µ0, µ1 and σ2

0 , σ2
1 are the

means and variances of distributions for classes y = 0 and y = 1, respectively. Thus, the posterior
probability can be expressed as:

p(y = 0 | x) =
N

(
x | µ0, σ

2
0

)
· π0

N (x | µ0, σ2
0) · π0 +N (x | µ1, σ2

1) · π1
, (13)

p(y = 1 | x) =
N

(
x | µ1, σ

2
1

)
· π1

N (x | µ1, σ2
1) · π1 +N (x | µ0, σ2

0) · π0
. (14)

Since N
(
x | µ1, σ

2
1

)
is the probability density function of a Gaussian distribution, we substitute

N
(
x | µ1, σ

2
1

)
= 1√

2πσ2
exp

(
− (x−µ)2

2σ2

)
into the above equations, obtaining Equation 9 in the

manuscript:

p (y = 0 | x) = 1

1 + π1

π0

σ0

σ1
exp

[
(s−µ0)

2

2σ2
0

− (s−µ1)
2

2σ2
1

] , (15)

p (y = 1 | x) = 1

1 + π0

π1

σ1

σ0
exp

[
(s−µ1)

2

2σ2
1

− (s−µ0)
2

2σ2
0

] , (16)

p (y = 0 | x) and p (y = 1 | x) represent the probability of a similarity score to be a clone negative
or not, without the need of explicit pre-processing to the dataset or training.
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Table 2: R@1 Results on text-based person search. “DG” stands for domain generalization, and “FT”
for fine-tuning on the corresponding dataset.

Method CUHK-PEDES ICFG-PEDES RSTPReid
DG FT DG FT DG FT

CL 16.3 49.3 15.8 43.5 12.7 30.1
AdaCL 30.5 56.7 27.9 49.0 23.9 41.4

A.5 DOMAIN GENERALIZATION ON TEXT-BASED PERSON RETRIEVAL

To evaluate the robustness of AdaCL as a plug-and-play module, we seek to evaluate its domain
generalization capabilities in text-based person retrieval. Specifically, we conduct training using
Flickr30K and select three mainstream text-based person retrieval datasets, CUHK-PEDES(Li et al.,
2017), ICFG-PEDES(Ding et al., 2021), and RSTPReid(Zhu et al., 2021) for domain generalization
experiments. To ensure a fair comparison, we choose CMPM as the baseline, as the learning objective
it adopt in its paper is the closest to vanilla contrastive learning, and its original paper indeed
conducted experiments on two of the datasets. As illustrated in Table 2, it is observed that AdaCL
boosts CMPM by a large margin. Especially for DG, the results of AdaCL on each dataset improves
by over 10%.

Table 3: Fine-tuning results of AdaCL on three baselines under ICFG-PEDES.
Method Text-Image R@1 Text-Image R@5 Text-Image R@10
CMPM 43.5 65.4 74.2
AdaCL-CMPM 49.0 69.7 79.1
ViTAA 51.0 68.8 75.8
AdaCL-ViTAA 54.8 74.1 78.6
IRRA 63.5 80.3 85.8
AdaCL-IRRA 64.3 81.1 86.5

Table 4: Fine-tuning results of AdaCL on three baselines under RSTPReid.
Method Text-Image R@1 Text-Image R@5 Text-Image R@10
CMPM 30.1 38.5 59.6
AdaCL-CMPM 41.4 57.0 55.7
ViTAA 37.7 60.6 66.5
AdaCL-ViTAA 42.6 62.1 69.2
IRRA 60.2 81.3 88.2
AdaCL-IRRA 62.7 81.4 89.0

For fine-tuning, in addition to CUHK-PEDES, we also validate the performance of AdaCL on ICFG-
PEDES and RSTPReid. Three baselines are employed: CMPM(Zhang & Lu, 2018), ViTAA(Wang
et al., 2020), and IRRA(Jiang & Ye, 2023), and compare the effectiveness of incorporating AdaCL as
a constraint. The experimental results w/ and w/o using AdaCL are presented in Table 3 and Table 4. It
is observed that AdaCL demonstrates significant improvements across the three baselines, achieving
absolute enhancements of 5.5%, 3.8%, and 0.8% in R@1, respectively. These matching results
substantiate the robustness of AdaCL in other vision-language downstream tasks, demonstrating its
insensitivity to the diverse dataset distributions (both natural images and person search images), and
the choice of baselines.

A.6 NOISY CORRESPONDENCE LEARNING

As mentioned in Seection 1, noisy correspondence learning (NC) (Huang et al., 2021; Yang et al.,
2023; Ma et al., 2024; Qin et al., 2023) focuses on handling negatives by manually introducing noisy
labels. Several works classify samples into clean and noisy subsets, followed by a rectifier and triplet
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ranking loss to boost the learning of NC. We further validate AdaCL in such challenging scenarios
by plugging in AdaCL and verify its NC effectiveness on Flickr30K using the same pre-processing
strategy (by shuffling the captions of training images for a specific percentage, denoted by noise
ratio). The matching results under two noise ratio (20% and 40%) are reported in Table 5.

Table 5: Noisy correspondence learning of AdaCL. We follow (Huang et al., 2021) to shuffle the
captions of training images for a specific percentage, i.e., noise ratio.

Noise Ratio Methods Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10

20%

NCR 75.0 93.9 97.5 58.3 83.0 89.0
AdaCL-NCR 75.3 93.8 97.4 61.2 84.1 89.7
BiCro 78.1 94.4 97.5 60.4 84.4 89.9
AdaCL-BiCro 79.6 95.2 97.5 62.7 85.1 91.3
CREAM 77.4 95.0 97.3 58.7 84.1 89.8
AdaCL-CREAM 80.0 95.6 97.4 61.9 86.4 91.3
CRCL 77.9 95.4 98.3 60.9 84.7 90.6
AdaCL-CRCL 81.0 96.2 98.5 62.3 84.9 91.7

40%

NCR 68.1 89.6 94.8 51.4 78.4 84.8
AdaCL-NCR 74.7 92.3 96.6 57.8 82.0 87.1
BiCro 74.6 92.7 96.2 55.5 81.1 87.4
AdaCL-BiCro 75.3 93.1 96.2 57.4 82.5 89.6
CREAM 76.3 93.4 97.1 57.0 82.6 88.7
AdaCL-CREAM 79.2 95.1 98.3 61.5 86.0 90.2
CRCL 77.8 95.2 98.0 60.0 84.0 90.2
AdaCL-CRCL 80.3 95.0 98.1 61.7 84.4 90.9

We also validate the effectiveness of AdaCL on CC152K. CC152K consists of 150,000 samples from
training split of Conceptual Captions (CC) (Sharma et al., 2018) for training, 1,000 samples from
validation split for validation, and 1,000 samples from validation split for testing. As all image-text
pairs in CC are automatically harvested from the Internet, approximately 3%–20% of the pairs in
the dataset are mismatched or weakly matched. This benchmark aligns well with the settings of NC,
making it a suitable choice for evaluating AdaCL.

From Table 5 and Table 6, it can be concluded that for a noise ratio of 20%, AdaCL achieves notable
improvements, particularly in I-T R@1 (AdaCL-CRCL improves from 77.9 to 81.0) and T-I R@1
(AdaCL-NCR improves from 58.3 to 61.2). For a noise ratio of 40%, the trend of improvement
remains consistent, although the performance naturally decreases as noise increases. Notably, AdaCL-
CRCL demonstrates strong robustness with I-T R@1 improving from 77.8 to 80.3, even at high noise
levels. While the baseline results degrade significantly as the noise ratio increases, AdaCL exhibits
better resilience, as evidenced in AdaCL-NCR (I-T R@1 only drops from 75.3 to 74.7). AdaCL’s
robustness is particularly evident in T-I matching, where the decline in performance is less pronounced
compared to the baselines (AdaCL-CRCL achieves T-I R@5 of 84.4 at 40% noise ratio). Similar
to Flickr30K, AdaCL also demonstrates consistent improvements over the baselines on CC152K.
The performance improvements of AdaCL on both datasets further support its generalizability and
applicability in noisy correspondence learning.

Table 6: Noisy correspondence learning of AdaCL on CC152K.

Methods Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
NCR 39.5 64.5 73.5 40.3 64.6 73.2
AdaCL-NCR 43.2 66.9 74.9 42.5 69.0 76.2
BiCro 40.8 67.2 76.1 42.1 67.6 76.4
AdaCL-BiCro 42.9 66.1 76.0 42.7 68.4 78.7
CREAM 40.3 68.5 77.1 40.2 68.2 78.3
AdaCL-CREAM 43.1 69.6 77.2 42.2 70.0 80.2
CRCL 41.8 67.4 76.5 41.6 68.0 78.4
AdaCL-CRCL 42.4 68.0 77.4 41.7 69.3 80.0

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

A.7 ZERO-SHOT IMAGE CLASSIFICATION OF ADACL IN CLIP PRE-TRAINING

In addition to image-text matching, we also evaluate AdaCL on other pre-training task, i.e., zero-shot
image classification. Specifically, we validate AdaCL on eight common classification benchmarks,
which can be divided into (i) general datasets: ImageNet(Deng et al., 2009), CIFAR-10(Krizhevsky
et al., 2009), CIFAR-100(Krizhevsky et al., 2009), Caltech-101(Fei-Fei et al., 2004)), and (ii)
fine-grained datasets: Food-101(Bossard et al., 2014), Flowers-102(Nilsback & Zisserman, 2008),
OxfordPets(Parkhi et al., 2012), and FGVCAircraft(Maji et al., 2013). The Top-1 accuracy results of
“CLIP + AdaCL” pretrained on CC3M and CC12M are demonstrated in Table 7:

Table 7: Zero-shot image classification of CLIP pre-training under different learning objectives.
“Baseline” represents “CLIP+vanilla contrastive learning”, and “AdaCL” represents “CLIP+AdaCL”.
Results under two pre-training settings, i.e., CC3M and CC12M are compared.

Data Model Datasets
Im

ag
eN

et

C
IF

A
R

-1
0

C
IF

A
R

-1
00

C
al

te
ch

-1
01

Fo
od

-1
01

Fl
ow

er
s

Pe
ts

A
ir

cr
af

t

CC3M
Baseline 17.2 71.3 32.1 50.9 10.2 10.8 12.1 1.0
AdaCL 22.0 77.1 42.2 54.8 12.6 13.3 14.9 1.7

CC12M
Baseline 32.9 72.5 38.0 74.0 26.5 25.7 46.2 2.6
AdaCL 34.8 73.4 43.3 74.7 33.1 25.4 46.7 2.8

It is observed that AdaCL outperforms CL in all the general datasets and most of the fine-grained
datasets, proving its advantage in recognition tasks. Specifically, in ImageNet, CIFAR-10, CIFAR-
100, the Top-1 accuracy of AdaCL has surpassed vanilla CL by over 5%. It is noteworthy that the
performance on fine-grained datasets further verifies AdaCL’s capacity in challenging scenarios.

A.8 VLP FINE-TUNING

Apart from CLIP pre-training, we further report the fine-tuning results of AdaCL in several Vision
Language Pre-training methods (VLP) by fine-tuning them using AdaCL on MS-COCO (5K). As
illustrated in Table 8, AdaCL facilitates matching performance across nearly all metrics under both
dual-encoder method (BEIT-3(Wang et al., 2022b)) and fusion-encoder methods (UNITER(Chen
et al., 2020), OSCAR(Li et al., 2020), VinVL(Zhang et al., 2021)), effectively boosting the fine-tuning
process. These results further corroborate the robustness of AdaCL across multiple baselines.

Table 8: Results of AdaCL on VLP fine-tuning.

Methods Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
UNITER† 65.7 88.6 93.8 52.9 79.9 88.0
AdaCL-UNITER 67.6 89.0 94.3 55.1 81.2 88.9
OSCAR 70.0 91.1 95.5 54.0 80.8 88.5
AdaCL-OSCAR 71.0 92.7 96.3 54.0 80.6 89.1
VinVL 75.4 92.9 96.2 58.8 83.5 90.3
AdaCL-VinVL 78.7 94.4 96.8 60.4 84.2 91.1
BEIT-3 84.8 96.5 98.3 67.2 87.7 92.8
AdaCL-BEIT-3 84.4 96.9 98.3 68.6 89.1 93.7

† Evaluated by us with official repository.

A.9 EFFICIENCY ANALYSIS

Serving as a plug-and-play module, AdaCL does not increase the inference time since it is independent
of the cross-modal reasoning module. For training efficiency, we add detailed analysis on AdaCL.
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The speed of model convergence mirrors the learning efficiency of a certain constraint. As shown
in Figure 2, AdaCL brings considerable convergence efficiency and retrieval results, which even
boost CMPM and DIME to achieve their ultimate results within the first 5 epochs, demonstrating the
scalability and efficiency of AdaCL.

Figure 2: Training efficiency of AdaCL.

A.10 ABLATION STUDIES OF OTHER HYPER-PARAMETERS

A.10.1 ANALYSIS OF MOMENTUM MEMORY BANK

Since memory bank is widely adopted in vision-language contrastive learning, we further analyze
AdaCL by varying the memory bank size M , which leads to different number of negative samples.
The results in Table 9 reveal that the momentum memory bank yields a modest yet discernible
improvement: Among the sizes of 4096, 6144, and 8192, the impact of memory bank is not that
significant. This suggests that AdaCL does not excessively rely on the quantity of negative samples
for an ideal similarity distribution.

Table 9: Effect of different memory bank sizes.

Memory
Bank Size

Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
N/A 70.3 90.0 95.5 49.5 77.5 87.3
2048 71.9 90.9 96.7 51.4 78.4 87.3
4096 74.2 91.7 97.9 53.7 81.1 88.2
6144 73.7 91.9 98.2 53.2 79.6 87.8
8192 73.9 91.4 98.0 53.3 80.5 87.8

A.10.2 ANALYSIS OF MINI-BATCH SIZE

Since mini-batch size is correlated with the number of potential anchor candidates for selection, we
also investigate the impact of mini-batch size, as shown in Table 10. It can be observed that AdaCL
exhibits remarkable robustness to variations in batch size settings. Across a range of batch sizes from
16 to 128, the fluctuation in R@1 remains within a narrow margin of 4%.
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Table 10: Effect of different mini-batch sizes.
Batch
Size

Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
16 70.6 89.2 96.5 50.0 79.3 84.8
32 72.9 90.9 97.4 52.1 81.0 87.1
64 74.2 91.7 97.9 53.7 81.1 88.2

128 74.0 91.2 97.6 53.9 81.2 88.0

A.11 ADDITIONAL PARAMETERS IN ANCHOR SELECTION

Here we further analyze the anchor selection methodology. In the main manuscript, we utilize the
negatives from Ssln and Scln within each mini-batch to represent the empirical means and variances.
However, we cannot guarantee that all samples in Ssln and Scln are exclusively salient negatives
and clone negatives. Based on this speculation, we continue to select Top-K similarity scores from
Ssln and Scln as observational samples for calculating means and variances. The assumption of this
study is higher similarity scores for certain negatives correlate with an increased probability of them
being clone negatives. We set K to 32 and conduct experiments on CMPM, SCAN, and DIME under
Flickr30K, as shown in Table 11. It can be concluded that employing Top-K selection strategy does
not result in a significant improvement or deterioration in matching performance, with fluctuations
generally remaining within a 2% range. This observation contradicts our initial hypothesis and
intuition. Consequently, we can infer that AdaCL exhibits low sensitivity to the specific values of
the empirical mean and variance, which is another minor merit. Given that the Top-K selection
explicitly increase computation without yielding significant performance improvements, we have
opted to maintain the original calculation method in the main manuscript.

Table 11: Matching results of Top-K selection for empirical means and variances.

Methods Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
AdaCL-CMPM 54.7 79.0 87.5 41.6 69.4 79.2
AdaCL-CMPM † 54.2 77.8 87.1 41.8 68.1 80.0
AdaCL-SCAN 71.4 93.0 97.2 50.9 79.9 86.8
AdaCL-SCAN † 72.7 93.4 96.5 50.2 79.0 87.1
AdaCL-DIME 82.6 96.3 98.9 63.6 88.4 93.7
AdaCL-DIME † 82.4 95.3 98.7 63.7 88.2 93.0

†: Employ Top-K selection.

A.12 MORE VISUALIZATION OF ADACL

We present a more comprehensive comparison of CL, TRL, and AdaCL trained with ground-truth
annotations and pseudo captions. The visualization results of the early training stage are demonstrated
in Figure 3, which include 4 kinds of clone negatives with 11 cases. Based on the attention maps, we
can summarize the following conclusions: AdaCL captures abundant semantics on highly similar
clone negatives. Specifically, case (a) and case (b) demonstrate that AdaCL boosts the exploration of
spatial semantics among the images, such as “music being played by several individuals”, as well as
“is trying to stop a horse”, which effectively distinguishes clone negatives apart. Additionally, case (c)
demonstrates AdaCL’s ability in capturing background information such as “Asian country” and “a
city street” are crucial phrases that are reasoned through AdaCL. Case (d) showcases five examples
of urban landscape, demonstrating that AdaCL is able to discover instances that are not explicitly
described in the text query. For instance, the unique attribute “spectator” is not included in Q8, but
AdaCL facilitate learning the corresponding representation, which is highlighted in the attention map.
Also, the latent “fountain” is not included in Q11 but reasoned by AdaCL. In this way, AdaCL is
proved to achieve comprehensive cross-modal semantics with its adaptive tuning strategy even when
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the quality of textual annotations is not high. This finding presents great potential of AdaCL to handle
retrieval with low quality labels.

Furthermore, we obtain the attention maps by training with pseudo captions under AdaCL, as depicted
in the last column of Figure 3. Due to the lack of instance-level information during the training
process, we do not expect the results to surpass models trained on original annotations. However,
AdaCL (Pseudo Caption) manages to capture the approximate cross-modal semantics and pays
attention to the fine-grained representation, which outperforms CL and TRL (trained with ground-
truth) in most cases. This demonstrates the prospects of AdaCL in the vision-language contrastive
learning of automatically annotated image-text pairs.

A.13 DISCUSSION: LIMITATION

In this work, AdaCL is evaluated on (1) image-text matching under Flickr30K, MS-COCO, (2) CLIP
pre-training under CC3M and CC12M, (3) weakly-supervised image-text matching under pseudo
captions, (4) text-based person search under CUHK-PEDES, ICFG-PEDES, and RSTPReid. We have
not extended AdaCL to an all-round vision-language tasks due to time and computational limitations,
which is undoubtedly planned in our future endeavor.

Also, although AdaCL maintains high convergence efficiency, we acknowledge that AdaCL inevitably
introduces additional computation during training with a moderate computational overhead of O(N ·
M) per batch training. We believe this trade-off is acceptable given the context of contrastive learning
and pre-training. In future work, we will delve into a more lightweight vision-language learning
paradigm.
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Image QueryText Query

Q1:
A band is playing to a 
cheering concert with
many people.

Q2:
Music being played 
by several individuals 
while a crowd sits and 
listens.

Q3:
Two men who are 
riding on a horse both 
are trying to rope a 
bull in a rodeo.

Q4:
A man wearing blue
jeans is trying to stop 
a horse.

Q5:
A crowded sidewalk 
in the inner city of 
an Asian country.

Q6:
A crowd of people is 
walking down the 
middle of a city street. 

(b)

(c)

(a)

CL TRL AdaCL AdaCL (Pseudo Caption)

Q10:
Many people are 
chilling in front an old 
building.

Q11:
A group of people 
stand in the park of 
a city, with buildings 
in the background.

Q7:
A crowd of people in 
running outfits runs
a marathon with two 
skyscrapers in the 
background.

Q8:
A group of people is 
running a race or 
marathon in the city.

Q9:
A man in a blue T-
shirt speaks into a 
blow horn towards a 
group of people.

(d)

Figure 3: Attention maps of clone negative cases in early stage (Epoch 10). “CL”, “TRL”, and
“AdaCL” represent model trained with different constraints. The last column represents AdaCL
trained with pseudo captions.
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