
Expectation consistency for calibration of neural networks
(Supplementary Material)

A DETAILS ON TRAINING PROCEDURE

SVHN For the SVHN dataset Netzer et al. [2011], the Resnet20 model of depth 20 and containing 0.27M parameters was
trained for 50 epochs, using SGD with a learning rate η = 0.1, weight decay 1e− 4 and momentum 0.9. 90% of data points
were used for training and the rest was used for validation.

CIFAR10 ResNet models (of depth 20, 56 with Resnet56 having 0.85M parameters) were trained for 50 epochs, using
SGD with a learning rate η = 0.1, weight decay 1e− 4 and momentum 0.9. The DenseNet 121 (containing 7.9 parameters)
was trained with the same parameters as the ResNets, except for the learning rate η = 0.01. As in He et al. [2016], images in
the training set were randomly cropped and flipped horizontally.

CIFAR100 On CIFAR100, we used pre-trained models from the Github repository https://github.com/
chenyaofo/pytorch-cifar-models. These models were trained on the entirety of the training set, so the test
set containing 10000 images was split in half into a validation and test set, containing 5000 images each.

A.1 ADDITIONAL PLOTS

In Figure 1, we plot the reliability diagram of Resnet20 and Resnet56 on SVHN and CIFAR10 respectively. We observe that
the uncalibrated models are overconfident (as the confidence is higher than the corresponding accuracy), and both TS and
EC mitigate this overconfidence.
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Figure 1: Reliability diagram of Resnet20 on the SVHN dataset (Left) and Resnet56 on the CIFAR10 dataset (Right). Before
calibration, both methods are overconfident. TS and EC improve calibration and mitigate overconfidence.
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B STATE EVOLUTION EQUATION

In this section, we focus on the data model introduced in Section 5. Recall that we consider a dataset of n samples
D = (xµ, yµ)nµ=1 generated by

x ∼ N (0, Id/d),w∗ ∼ N (0, Id),P(y = 1|w⊤
∗ x) = σ⋆(w

⊤
∗ x) (1)

and we fit the following logistic regression model, with σ the sigmoid function:

f̂erm(x) = σ(w⊤
ermx) (2)

by minimizing the following empirical risk

R(w,D, λ) =

n∑
µ=1

log σ(yµw⊤x) + λ/2∥w∥2 (3)

we thus have werm = argminw R(w,D, λ). For a new sample x, we are interested in the joint distribution of f∗(x) and
f̂erm(x). As these two functions only depend on the scalar products w⊤

∗ x, w⊤
ermx it suffices to compute the joint distribution

of these scalar products. By the Gaussianity of x, we just need to compute the overlaps m = w⊤
∗ werm and q = ∥werm∥2.

In the high-dimensional limit where n, d → ∞ but where we keep the sampling ratio constant n/d = α, it is possible to
compute the value of m and q. The idea is to introduce the distribution

µβ,D,λ(w) =
1

Zβ
exp (−βR(w,D, λ)) (4)

where Zβ is a normalization constant. In the limit β → ∞, µβ,D,λ converges to a Dirac distribution peaked at werm =
argminR(w,D, λ). To compute m, q, one needs to compute the expression of logZβ and its limit when β → ∞. In the
high-dimensional regime where both the dimension and number of samples diverge with a fixed ratio, this can be done using
the replica method from statistical physics Zdeborová and Krzakala [2016]. As these computations are not the focus of the
present paper, we refer to Loureiro et al. [2021], Clarté et al. [2022b] for the detailed computations. In the end, if we define

Z∗(y, ω, v∗) =

∫
dzσ∗(y × z)N (z|ω, v∗) (5)

f(y, ω, v) = argmin
z

[
(z − ω)2

2v
− log σ(z)

]
(6)

then m, q are the solution of the following self-consistent equations:
m = m̂

λ+v̂

q = q̂+m̂2

(λ+v̂)2

v = 1
λ+v̂

,


m̂ = αEξ∼N (0,q)

[∫
dy∂ωZ∗(y,m/qξ, v∗)f(y, ξ, v)

]
q̂ = αEξ∼N (0,q)

[∫
dyZ∗(y,m/qξ, v∗)f

2(y, ξ, v)
]

v̂ = −αEξ∼N (0,q)

[∫
dyZ∗(y,m/qξ, v∗)∂ωf(y, ξ, v)

] (7)

with v∗ = ρ− m2/q.

Calibration in the high-dimensional regime Once we obtained the overlaps m, q, we can derive the expression the
calibration ∆ℓ:

∆ℓ = E
[
f∗(x)|f̂erm(x)

]
= P

[
y = 1|f̂erm(x)

]
=

∫
dzσ⋆(z)N (z|m

q
f̂−1
erm(x), ρ− m

2/q) (8)

The second line comes from the fact that the scalar product w⊤
∗ x conditioned on w⊤

ermx = σ−1(ℓ) follows a Gaussian
distribution with mean m/qξ and variance ρ− m2/q. As a consequence, the expression of ECE is

ECE = Ex

[
|∆f̂erm(x)|

]
= Eξ=w⊤

ermx

[
|∆σ(ξ)|

]
=

∫
dξ|∆σ(ξ)|N (ξ|0, q) (9)
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