
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DETAILS OF BENCHMARK DATASET

A.1 DATASETS

This study leverages two key datasets for benchmark:

• Custom collection: We generated custom characters such as cartoon style cat and dog,
created using the character sheet trick 4 popular within the Stable Diffusion community.
This set comprises 20 unique characters, where we trained a LoRA per character.

• CustomConcept101: We used a popular dataset Kumari et al. (2023) CustomConcept101
that includes several diverse objects such as plushie bunny, flower, and chair. All 101
concepts are utilized.

Leveraging the datasets above, we trained LoRAs to represent each concept, totaling to 131 LoRA
models. For every competitor, the base stable diffusion model cited in the relevant paper is used. For
instance, ZipLoRA Shah et al. (2023) employs SDXL, while MixOfShow Gu et al. (2023) utilizes
EDLoRA alongside SDv1.5. Similarly, our method uses SDv1.5.

A.2 EXPERIMENTAL PROMPTS

To evaluate the merging capabilities of the methods, we created 200 text prompts designed to repre-
sent various scenarios such as (the corresponding LoRA models are indicated within paranthesis):

• A cat and a dog in the mountain (blackcat, browndog)
• A cat and a dog at the beach (blackcat, browndog)
• A cat and a dog in the street (blackcat, browndog)
• A cat and a dog in the forest (blackcat, browndog)
• A plushie bunny and a flower in the forest (plushie bunny and flower 1)
• A cat and a flower on the mountain (blackcat, flower 1)
• A cat and a chair in the room (blackcat, furniture 1)
• A cat watching a garden scene intently from behind a window, eager to explore. (blackcat,

scene garden)
• A cat playfully batting at a Pikachu toy on the floor of a child’s room. (blackcat,

toy pikachu1)
• A cat cautiously approaching a plushie tortoise left on the patio. (blackcat, plushie tortoise)
• A cat curiously inspecting a sculpture in the garden, adding to the scenery. (blackcat,

scene sculpture1)

B ADDITIONAL QUANTITATIVE ANALYSIS

Merge Composite ZipLoRA Mix-of-Show Ours

C
L

IP

Min. 76.0% ± 8.7% 76.2% ± 7.2% 73.4% ± 8.1% 75.2% ± 9.5% 83.3% ± 5.5%
Avg. 79.5% ± 8.3% 79.7% ± 6.8% 77.1% ± 7.6% 78.7% ± 9.2% 87.1% ± 4.9%
Max. 82.5% ± 8.1% 82.5% ± 6.7% 80.6% ± 7.6% 81.7% ± 9.2% 89.8% ± 4.8%

D
IN

O Min. 37.0% ± 15% 30.3% ± 13% 36.9% ± 13% 37.5% ± 17% 47.2% ± 14%
Avg. 43.7% ± 17% 38.5% ± 13% 49.6% ± 15% 48.0% ± 22% 57.3% ± 14%
Max. 50.5% ± 17% 49.5% ± 14% 53.3% ± 16% 55.6% ± 23% 69.1% ± 14%

In addition to the results presented
in the main paper, we apply fur-
ther experiments to assess the per-
formance of our method in de-
tail. Specifically, we apply instance
segmentation methods to the com-
posed images to identify and isolate
object instances. For this, we use SEEM (Zou et al., 2024) to segment the objects within the images.
After segmentation, we calculate the similarity metrics separately for each object instance, allow-
ing for a more granular comparison of the methods. We perform these evaluations on a set of 700
images per method, as shown in the table. The results demonstrate that our method significantly
outperforms others across multiple metrics. In particular, we calculate DINO scores, which further

4https://web.archive.org/web/20231025170948/https://semicolon.dev/
midjourney/how-to-make-consistent-characters
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highlight the effectiveness of our approach compared to competing methods. Moreover, we also
compute CLIP scores as additional evidence of our method’s superior performance.

C ADDITIONAL QUALITATIVE RESULTS

Comparison with OMG. We perform a qualitative comparison between our method, CLoRA, and
OMG (Kong et al., 2024). OMG relies on off-the-shelf segmentation methods to isolate subjects
before generating images. As seen in Fig. 7, while this enables well-defined subject boundaries,
the performance of OMG is heavily dependent on the accuracy of the segmentation model. Errors
in segmentation can result in incomplete or incorrect generation, particularly in complex scenes
involving multiple interacting subject. For instance, if the segmentation model fails to detect a
flower, this may prevent the correct placement of the LoRA in the composition (see Fig. 7 bottom-
left). Moreover, since OMG depends on the base image generated by the Stable Diffusion model, it
also encounters the attention overlap and attribute binding issues identified by Chefer et al. (2023).
For instance, if the Stable Diffusion model does not generate the required objects in the base image
from the text prompt ’A man and a bunny in the room’, then OMG cannot produce the desired
composition. This issue is apparent in Fig. 7, where the rightmost image shows that the base
model generated only a bunny, omitting the man. In contrast, CLoRA bypasses the need for explicit
segmentation by directly updating attention maps and fusing latent representations. This ensures
that each concept, represented by different LoRA models, is accurately captured and preserved
during generation. The comparison in Fig. 7 demonstrates that CLoRA produces more coherent
compositions, maintaining the integrity of each concept even in challenging multi-concept scenarios.

L1 cat

An L1 cat and an L2 flower 
in the garden

L2 flower

L3 woman

An L3 woman and an L2 flower 
in L4 style

An L5 man and an L6 bunny 
in the room

Ours Ours Ours

OMG OMGOMG

L4 style

L5 man

L6 bunny

Figure 7: Qualitative comparison with OMG. Our method (top row) consistently produces more
coherent and accurate compositions compared to OMG (bottom row). By leveraging attention map
updates and latent fusion, CLoRA effectively handles multi-concept generation without relying on
segmentation, leading to higher quality results, particularly in complex scenes.

Extensive Qualitative Results. The rest of the Supplementary Materials will provide additional
qualitative comparisons which contain the following competitors: Mix of Show Gu et al. (2023),
MultiLoRA Zhong et al. (2024), LoRA-Merge Ryu (2023), ZipLoRA Shah et al. (2023), and Custom
Diffusion Kumari et al. (2023) on various LoRAs and prompts. Figure 8 compare LoRA-Merge and
MultiLoRA using three combined LoRAs, while later figures expand the comparison to include all
methods across two separate LoRAs.
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L2 shoesL1 panda

An L1 panda, an L2 shoes and an L3 plant in the room

L3 plant

Ours LoRA Merge MultiLoRA

Figure 8: Qualitative comparison of CLoRA with other LoRA methods using 3 LoRAs to generate
a single image. Our approach consistently produces images that more accurately reflect the input
text prompts, LoRA subjects, and LoRA styles.

Figure 9: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA
styles.
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Figure 10: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

Figure 11: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 12: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

Figure 13: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 14: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

Figure 15: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 16: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

Figure 17: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 18: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

Figure 19: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 20: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

Figure 21: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 22: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

Figure 23: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 24: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.

Figure 25: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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Figure 26: Qualitative comparison of CLoRA with other LoRA methods. Our approach consis-
tently produces images that more accurately reflect the input text prompts, LoRA subjects, and
LoRA styles.
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