Appendix

A Omitted Proofs

A.1 Online Santa Claus with Adversarial Arrival Order

Proof of Theorem[I.3] We consider the following instance: of the n agents, n — 1 are private agents
each having k private items that have valuation 1 for the corresponding private agent and 0 for every
other agent. The n-th agent is a public agent and there are k public items that have a valuation of 1
for all the n agents.

The optimal solution assigns the private items to the corresponding private agents and the public
items to the public agent. Thus, OPT = k. In the online instance, the adversary chooses to present
all the public items before the private items. Since all the agents look identical before the arrival of
the first private item, the public agent gets no more than k/n items in expectation for any algorithm
(this adversarial input is comparable to our toy example discussed in Figure[I). Since none of the
remaining private items can be allocated to the one public agent, their bundle value can no longer
increase beyond k/n. The theorem follows. O

Theorem A.l. In the adversarial setting, for any ¢ € (0,1), there is an algorithm for the online
Santa Claus problem that has a competitive ratio of (1 — €) - %far OPT > C- ”é’;" for a large
enough constant C.

Proof. The algorithm is to simply assign every item uniformly at random among all the n agents.
Note that for any fixed agent, its expected value is at least % - OPT. By Chernoff bounds, the
probability that its total value is less than (1 — £)% - OPT is given by exp(—1 - 5 - 1. OPT) < =&
for OPT > C - ™17 for a sufficiently large constant C.. By union bound over all the n agents, the

2
probability that any agent’s overall value is less than (1 — %)% -OPT is at most 5. Thus, the expected

competitive ratio is at least (1 — £)(1 — £)- L > (1 —¢) - L. O

n

A.2 Online Algorithm Lemmas

Proof of Lemma[2.3] Property (a) is an established property of the LOGSUMEXP function [14} 53]
but we present the proof here for completeness. We start by exponentiating the input, summing over
all elements and applying the logarithm to the resultant bounds.
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Where (1) is the result of taking the logarithm, (II) is a negation on the inequalities and (111) is by
property of the maximum. Now, since € > 0, the result follows from simple algebraic manipulation.
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where (1v) follows from positive scalar multiplication within a minimum, (V) by dividing through by
¢ and (VI) is merely the definition of our smoothing function ¢.. This verifies the desired property.
To prove (b), we first calculate the partial derivative of the smoothed minimum function
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and now, using u; > 0 and v; € [0, 1] we derive
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Therefore, we have property (b).

Lastly, to prove (c) we first invoke the definition ¢.:
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This statement is equivalent to
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which, by exponentiating both sides, yields
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and expansion of the left-hand side verifies the claim. O
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Proof of Lemma By direct integration and the stability property (b), we see

de(u+v) = ¢ (u) —|—/ (Ve (u+ av),v)da
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Therefore, we can further show

(Ve (u),v) > e [pe(u +v) — ¢(u)]
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where the first and last inequality is a direct result of Lemma 2.3, and the second is from assumption
on the inputs. O

Proof of Lemma[2.3] Let u = % >, y* be the average of the set of vectors and to simplify notation
we additionally break apart the expectation and let E(Y*, Z) = EE;,_,(Y*, Z) where E;_; denote
the expectation conditioned on Y, ..., Y*~1. Note that since Z is a unit-vector in éf, an innerproduct
of this vector with Y is simply a weighted sum of the latter’s elements. Thus, we have

B, 1(Y*, Z) > min{E [Y*|Y',..., Y]} 4
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Additionally, by nature of the sampling set and the procedure of sampling without replacement, we
have the conditional expectation
mp— (Y + ...+ Yk

m—(k—1)

E[YHY', .. Y] =

and further note that mu — (Y' + ... + Y*~1) has the same distribution as Y* + ... 4 Y™~ (¢=1),
This concretely gives us the simplifying equivalences

mp— (Y 4.+ YRy oy ey
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We now return to the inequality bound of (@) and, using the above equivalences, obtain

E[YHY' .. Y] =
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Finally combining the above results, we obtain
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Thus, after rearranging terms, this completes the lemma. O
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