
A Technical Appendices and Supplementary Material

A.1 Coordinate Systems and Transformation

To achieve spatial synchronization between different sensors, vehicle-vehicle-UAV collaboration
requires using sensor parameter information to perform coordinate system transformations. The
relationships between the coordinate systems are illustrated in Fig. S 1.

Figure 1: Relationship between coordinate systems.

Pixel Coordinates. The pixel coordinate system refers to a two-dimensional coordinate system
defined on the image plane, typically represented as (u, v), with units in pixels. In this system, the
origin is located at the top-left corner of the image, the u-axis points to the right along the horizontal
direction, and the v-axis points downward along the vertical direction. This coordinate system is used
to describe the position of points on the two-dimensional image captured by the camera.

A 3D point in the camera coordinate system, denoted as (xc, yc, zc), can be projected onto the pixel
coordinate system through the camera’s intrinsic matrix. The transformation process can be expressed
as:

[
u
v
1

]
=

[
fx 0 cx
0 fy cy
0 0 1

]xc

zcyc

zc
1

 (1)

where fx and fy represent the focal lengths along the image’s x and y axes (in pixel units), and
(cx, cy) denote the principal point (the intersection of the optical axis with the image plane, in pixel
coordinates).

Camera Coordinate System and LiDAR-to-Camera Calibration. The camera coordinate system
is defined as a three-dimensional right-handed Cartesian coordinate system, with its origin located at
the optical center of the camera. In this system, the x-axis points to the right along the image plane,
the y-axis points downward along the image plane, and the z-axis extends forward along the optical
axis of the camera.

To determine the spatial relationship between the LiDAR and each camera, we employed a point
correspondence-based calibration procedure [1, 2]. Specifically, for each individual camera view,
several corresponding feature points were manually selected in both the image and the LiDAR point
cloud. Based on these correspondences, an initial extrinsic transformation matrix from the camera to
the LiDAR was estimated using a least-squares fitting approach.

To improve calibration accuracy, the initial matrix was further refined through iterative manual
adjustment and validation by visually checking the alignment of projected LiDAR points on the
image plane. In order to ensure long-term calibration reliability, considering possible sensor shifts
and mechanical vibrations, this calibration procedure was performed once every four hours during
continuous data collection.

1



The final extrinsic parameters for each camera were stored as a 4 × 4 homogeneous transforma-
tion matrix, representing the coordinate transformation from the LiDAR coordinate system to the
corresponding camera coordinate system, as expressed by:

xc

yc
zc
1

 = TLiDAR2Cam

xl

yl
zl
1

 (2)

where TLiDAR2Cam denotes the extrinsic matrix obtained from the calibration process, and (xl, yl, zl)
and (xc, yc, zc) are the point coordinates in the LiDAR and camera coordinate systems, respectively.

A visualization of the LiDAR-to-camera calibration results for all recording platforms is provided in
Fig. S2 S3 S4. The visualizations show the LiDAR point clouds projected onto the corresponding
camera images using the estimated extrinsic parameters. Our dataset includes two ground vehicles,
each equipped with five cameras providing full 360◦ coverage, and a UAV equipped with a single
front-facing camera. The calibration results for each vehicle and the UAV are displayed separately,
demonstrating the alignment quality across all viewpoints. The consistency between the projected
LiDAR points and the visible object boundaries in the images effectively verifies the accuracy and
robustness of our calibration process.

Figure 2: Visualization of the LiDAR-to-camera calibration for Ground Vehicle A equipped with five
cameras covering 360◦. Projected LiDAR points align well with image features across all camera
views.

LiDAR Coordinate System and World Coordinate System. The LiDAR coordinate system for
each platform is defined relative to the sensor’s installation frame on that platform. We adopt a right-
handed coordinate system, where the geometric center of the LiDAR sensor is set as the origin. The
x-axis points forward, the y-axis points to the left, and the z-axis points upward. The world coordinate
system is established as a global East-North-Up (ENU) frame derived from GPS measurements,
which provides a consistent geodetic reference for all platforms.

Point clouds collected from each platform are initially represented in their respective LiDAR co-
ordinate systems. Using GPS and IMU data, the pose of each platform is obtained relative to the
global ENU world coordinate system. In our implementation, we approximate the LiDAR-to-world

2



Figure 3: Visualization of the LiDAR-to-camera calibration for Ground Vehicle B equipped with five
cameras covering 360◦. Projected LiDAR points align well with image features across all camera
views.

Figure 4: Multi-modal data alignment from a UAV perspective. (a) Aerial image captured by the UAV-
mounted camera. (b) LiDAR point cloud projected onto the image plane for visualizing alignment
accuracy. (c) Top-down view of the LiDAR point cloud acquired from the UAV.

transformation using the GPS/IMU-derived vehicle pose, assuming negligible displacement between
the LiDAR sensor and the localization reference point.

The transformation of a point plidar in the LiDAR coordinate system to the world coordinate system
is performed as:

Pw ≈ Tvehicle
w Pl (3)

where Tvehicle
w ∈ SE(3) is the vehicle pose in the world coordinate frame obtained from GPS/IMU

localization.

To compensate for residual misalignments caused by the approximation, an Iterative Closest Point
(ICP) [3] algorithm is applied to refine the registration of point clouds from different platforms
relative to the ego vehicle’s LiDAR frame before transforming them to the world coordinate system.

The final transformation for a point cloud from another platform is given by:

P i
w = Tego

w Ti
ego Pi (4)

3



where Ti
ego is the ICP-refined relative pose between platform i and the ego vehicle.

A.2 Multi-agent Time Synchronization

Time Source Synchronization. In our multi-agent system, all platforms achieve unified time source
synchronization through GPS-based timing signals. Each platform’s onboard clock is disciplined
by the GPS receiver, providing a highly accurate and stable global time reference. This approach
effectively eliminates clock drift and offset among different agents, ensuring that all sensors across
vehicles and the UAV are synchronized to the same absolute time base. As a result, temporal
consistency is maintained across heterogeneous sensors and platforms, which is critical for tasks such
as sensor fusion, data alignment, and multi-agent cooperative perception.

Timestamp Synchronization. Although all platforms in our system share a common GPS-based time
source, the sensors operate at different sampling frequencies, and their measurements are not neces-
sarily captured at exactly the same timestamps. To address this, we employ the message_filters
package in ROS to perform precise timestamp synchronization. This framework matches sensor
messages based on their timestamps by finding the temporally nearest frames across heterogeneous
data streams. In doing so, it compensates for both acquisition frequency differences and minor delays,
ensuring accurate temporal alignment for multi-sensor fusion and multi-agent cooperative perception.

Figure 5: At 10 Hz, timestamp synchronization is performed for sensor data with different frequencies.
The nearest frame within the red dashed box is regarded as the data corresponding to the same
timestamp within this sampling period.

The combination of GPS-based time source synchronization and message-level timestamp syn-
chronization enables reliable multi-sensor fusion and cooperative perception across heterogeneous
platforms.

A.3 AGC-Drive Dataset Statistics

3D Bounding Box Category Distribution. To provide a comprehensive overview of the dataset, we
present the number of annotated 3D bounding boxes for each object category. The dataset defines
a total of 13 categories, which we group into two main groups: Vehicle and Other. The Vehicle
group includes four subcategories: Car, Bus, Truck, and Van, while the Other group covers nine
subcategories: Person, Bicycle, Tricycle, Motorcycle, Rider, Traffic Sign, Barrier, Cone, and Others.

The detailed number of 3D bounding boxes for each subcategory is illustrated in Fig. S6. As shown
in the figure, Car is the most frequently annotated category with over 650K instances, followed
by Sign, Truck, and Rider. This distribution reflects the typical composition of cooperative driving
environments, which feature a high density of vehicles and static traffic infrastructures like traffic

4



signs and barriers. In comparison, dynamic vulnerable road users such as Bicycles, Motorcycles, and
Persons are less commonly observed.

Figure 6: The number of annotated 3D bounding boxes for each object subcategory in our dataset.

A.4 AGC-Drive vs. CoPeD

Table S1 summarizes the comparison between AGC-Drive and CoPeD [4] datasets. Both datasets pro-
vide real-world, multi-agent cooperative perception data, integrating LiDAR, camera, and GNSS/IMU
sensors to support collaborative tasks in diverse environments. Additionally, both support ground and
aerial agents, enabling cross-platform multi-robot cooperation.

However, significant differences exist. AGC-Drive focuses on real driving environments (rural, urban,
highway) with higher vehicle speeds, while CoPeD covers mixed indoor and outdoor robot scenarios
at lower speeds. AGC-Drive uniquely offers aerial LiDAR data from UAVs, in-cabin cameras, and 3D
bounding box annotations with occlusion labels, providing richer multi-view and multi-modal data.
In contrast, CoPeD provides 2D bounding boxes only and relies on automatic annotation methods.
Furthermore, AGC-Drive contributes a larger scale of point clouds and images, with available source
code, enhancing its value as an open benchmark for autonomous driving research.

Table 1: Comparison between CoPeD and AGC-Drive.

AGC-Drive CoPeD

Source Real Real
scenario types 14 Diverse driving scenarios Mixed indoor and outdoor environments

Agents 2*Veh & 1*UAV 3*Ground robots & 2*Aerial robots
Sensors Camera, Lidar, IMU/GPS, Radar, In-cabin camera Camera, Lidar, IMU/GPS

Aerial LiDAR Support ✓ ×
Cams (/Agent) Multiple Single

Height 15 to 20m 2m, 2 to 10m
Vehicle speed 30(Rural), 30 to 50(Urban), 80(highway) km/h 1.8(Indoor), 5.4(Outdoor) km/h

Categories 13 -
Labels 3D Boxes & Occlusion 2D Boxes
Images 360,000 203,400

Pointclouds 80,000 -
Source code ✓ only calibration

5



References
[1] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato Hirabayashi, Yuki Kitsukawa,
Abraham Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya Azumi. Autoware on board: Enabling autonomous
vehicles with embedded systems. In 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS), pages 287–296. IEEE, 2018.

[2] A. Dhall, K. Chelani, V. Radhakrishnan, and K. M. Krishna. LiDAR-Camera Calibration using 3D-3D Point
correspondences. ArXiv e-prints, May 2017.

[3] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor fusion IV: control paradigms
and data structures, volume 1611, pages 586–606. Spie, 1992.

[4] Yang Zhou, Long Quang, Carlos Nieto-Granda, and Giuseppe Loianno. Coped-advancing multi-robot
collaborative perception: A comprehensive dataset in real-world environments. IEEE Robotics and Automation
Letters, 9(7):6416–6423, 2024.

6


	Technical Appendices and Supplementary Material
	Coordinate Systems and Transformation
	Multi-agent Time Synchronization
	AGC-Drive Dataset Statistics
	AGC-Drive vs. CoPeD


