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A1 DETAILS OF THEOREM 1

Here, we provide a detailed proof of the decomposition of the robust risk given in Eq. 9.
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Thus the equality holds.

A2 EFFECT OF DNN ARCHITECTURE ON FCA

To examine whether the source DNN architecture significantly impacts TTA vulnerabilities, we eval-
uated the performance of FCA on the MobileNet family of DNNs, specifically using MobileNet-v2
as the source DNN. We assessed the performance of five baseline TTA methods across three bench-
mark datasets and report the results in Table 7. Our findings show that TTA methods exhibit similar
vulnerabilities on CIFAR-10C and CIFAR-100C datasets as those observed with ResNet variants.
However, for the ImageNet-C benchmark, MobileNet-v2 proved to be even more vulnerable, with
performance degradation under FCA being ∼ 10% greater compared to the ResNet-50 results.

A3 PERFORMANCE EVALUATION FOR ADVERSARIALLY TRAINED MODELS

A potential defense against the vulnerabilities highlighted by FCA is to proactively use an adversari-
ally trained source DNN. To evaluate this, we utilized the adversarially trained WideResNet-28 with
an l∞ budget (ϵ∞ = 8/255) from Robustbench Croce et al. (2020) by Wu et al. (2020), and assessed
its performance on CIFAR10-C and CIFAR-100C benchmark datasets. The results are reported in
Table 8. Adversarially trained DNNs are highly effective against FCA when the same perturbation
is used for both crafting adversarial examples and training the source DNN. However, with a dif-
ferent perturbation budget, such as an l2 norm constraint of (ϵ∞ = 8/255), FCA can still degrade
performance by approximately 4%. Furthermore, for the CIFAR-100C dataset, adversarially trained
source DNNs result in more than a 10% increase in error rate during adaptation with benign data.
This is unexpected, as TTA is generally intended to handle online data batches without adversar-
ial perturbation, raising concerns about the robustness-utility trade-off in deploying adversarially
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Table 7: (% Error) comparison on MobileNet architectures.

Dataset Attack Method TTA Method
TeBN TENT EATA SAR SoTTA

CIFAR10-C

w/o Attack 21.04 21.55 23.94 20.93 19.91
DIA 35.54 35.11 35.56 34.44 34.48
DIA (PL) 22.07 22.64 24.87 21.55 21.03
TePA 22.44 22.61 24.81 21.63 21.15
FCA 39.33 38.34 40.01 38.07 38.09

CIFAR100-C

w/o Attack 45.55 44.81 45.83 44.63 43.84
DIA 57.13 55.45 57.03 56.14 55.93
DIA (PL) 46.67 46.55 47.03 46.41 45.59
TePA 46.74 46.51 46.98 46.55 45.71
FCA 56.88 55.19 57.21 56.04 55.45

ImageNet-C

w/o Attack 54.2 52.97 53.78 52.83 51.29
DIA 71.56 70.37 70.45 70.87 68.55
DIA (PL) 57.5 56.44 56.29 55.31 54.92
FCA 71.44 70.01 70.31 70.15 70.22

Table 8: (% Error) comparison on adversarially trained models.

Dataset Evaluation Setup TTA Method
TeBN TENT EATA SAR SoTTA

CIFAR10-C

Unattacked(Standard) 17.14 16.98 19.21 16.88 16.42
Unattacked(Adv trained) 19.21 16.22 18.44 17.91 15.40
FCA (ϵ∞ = 8/255) 21.44 18.01 20.25 19.83 17.17
FCA (ϵ2 = 0.5) 23.45 20.14 22.03 21.55 19.03

CIFAR100-C

Unattacked(Standard) 31.27 30.91 31.87 30.9 29.3
Unattacked(Adv trained) 42.04 41.59 42.14 41.51 41.04
FCA (ϵ∞ = 8/255) 43.01 42.57 20.25 42.79 41.85
FCA (ϵ2 = 0.5) 46.44 45.22 44.55 45.01 44.76

trained DNNs. Additionally, adversarial training is known to reduce accuracy on clean data Zhang
et al. (2019); Tsipras et al. (2018). Thus, further scrutiny is required to develop computationally
lightweight test-time defenses that are effective against FCA without impairing TTA performance
on clean or benign samples from different domains.

Table 9: (% Error) comparison on robust models

Dataset Evaluation Setup TTA Method
TeBN TENT EATA SAR SoTTA

CIFAR10-C Unattacked(AugMix) 15.37 14.81 16.47 14.53 14.11
FCA (ϵ∞ = 8/255 24.33 23.21 24.98 23.05 22.87

CIFAR100-C Unattacked(AugMix) 29.34 28.77 30.21 28.55 27.87
FCA 36.41 35.22 37.02 34.75 34.28

A4 PERFORMANCE EVALUATION FOR ROBUST MODELS

To further understand how the robustness of the source DNN influences FCA, we analyzed the per-
formance of FCA against source DNNs known for their robustness to distribution shifts. Specifically,
we utilized the WideResNet-28 model trained with AugMix Hendrycks et al. (2019) from Robust-
bench Croce et al. (2020), and the evaluation results are presented in Table 9. While AugMix-trained
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models are effective in enhancing robustness against various distribution shifts, they remain highly
vulnerable to FCA when deployed for TTA.
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