
Published as a conference paper at ICLR 2024

VISION-LANGUAGE MODELS ARE ZERO-SHOT
REWARD MODELS FOR REINFORCEMENT LEARNING

Juan Rocamonde†‡
FAR AI

Victoriano Montesinos
Vertebra

Elvis Nava
ETH AI Center

Ethan Perez∗
Anthropic

David Lindner∗‡
ETH Zurich

Figure 1: We use CLIP as a reward model to train a MuJoCo humanoid robot to (1) stand with raised
arms, (2) sit in a lotus position, (3) do the splits, and (4) kneel on the ground (from left to right). We
specify each task using a single sentence text prompt. The prompts are simple (e.g., “a humanoid
robot kneeling”) and none of these tasks required prompt engineering. See Section 4.3 for details on
our experimental setup.

ABSTRACT

Reinforcement learning (RL) requires either manually specifying a reward func-
tion, which is often infeasible, or learning a reward model from a large amount
of human feedback, which is often very expensive. We study a more sample-
efficient alternative: using pretrained vision-language models (VLMs) as zero-
shot reward models (RMs) to specify tasks via natural language. We propose a
natural and general approach to using VLMs as reward models, which we call
VLM-RMs. We use VLM-RMs based on CLIP to train a MuJoCo humanoid
to learn complex tasks without a manually specified reward function, such as
kneeling, doing the splits, and sitting in a lotus position. For each of these
tasks, we only provide a single sentence text prompt describing the desired task
with minimal prompt engineering. We provide videos of the trained agents at:
https://sites.google.com/view/vlm-rm1. We can improve perfor-
mance by providing a second “baseline” prompt and projecting out parts of the
CLIP embedding space irrelevant to distinguish between goal and baseline. Fur-
ther, we find a strong scaling effect for VLM-RMs: larger VLMs trained with
more compute and data are better reward models. The failure modes of VLM-RMs
we encountered are all related to known capability limitations of current VLMs,
such as limited spatial reasoning ability or visually unrealistic environments that
are far off-distribution for the VLM. We find that VLM-RMs are remarkably ro-
bust as long as the VLM is large enough. This suggests that future VLMs will
become more and more useful reward models for a wide range of RL applications.

†Additional affiliation: Vertebra
‡Correspondence to: juancarlosrocamonde@gmail.com, david.lindner@inf.ethz.ch
∗Equal contribution
1Source code available at https://github.com/AlignmentResearch/vlmrm

1

https://sites.google.com/view/vlm-rm
mailto:juancarlosrocamonde@gmail.com
mailto:david.lindner@inf.ethz.ch
https://github.com/AlignmentResearch/vlmrm

Published as a conference paper at ICLR 2024

1 INTRODUCTION

Training reinforcement learning (RL) agents to perform complex tasks in vision-based domains can
be difficult, due to high costs associated with reward specification. Manually specifying reward
functions for real world tasks is often infeasible, and learning a reward model from human feedback
is typically expensive. To make RL more useful in practical applications, it is critical to find a more
sample-efficient and natural way to specify reward functions.

One natural approach is to use pretrained vision-language models (VLMs), such as CLIP (Rad-
ford et al., 2021) and Flamingo (Alayrac et al., 2022), to provide reward signals based on natural
language. However, prior attempts to use VLMs to provide rewards require extensive fine-tuning
VLMs (e.g., Du et al., 2023) or complex ad-hoc procedures to extract rewards from VLMs (e.g.,
Mahmoudieh et al., 2022). In this work, we demonstrate that simple techniques for using VLMs as
zero-shot language-grounded reward models work well, as long as the chosen underlying model is
sufficiently capable. Concretely, we make four key contributions.

First, we propose VLM-RM, a general method for using pre-trained VLMs as a reward model
for vision-based RL tasks (Section 3). We propose a concrete implementation that uses CLIP as a
VLM and cos-similarity between the CLIP embedding of the current environment state and a simple
language prompt as a reward function. We can optionally regularize the reward model by providing
a “baseline prompt” that describes a neutral state of the environment and partially projecting the
representations onto the direction between baseline and target prompts when computing the reward.

Second, we validate our method in the standard CartPole and MountainCar RL bench-
marks (Section 4.2). We observe high correlation between VLM-RMs and the ground truth rewards
of the environments and successfully train policies to solve the tasks using CLIP as a reward model.
Furthermore, we find that the quality of CLIP as a reward model improves if we render the environ-
ment using more realistic textures.

Third, we train a MuJoCo humanoid to learn complex tasks, including raising its arms, sitting in
a lotus position, doing the splits, and kneeling (Figure 1; Section 4.3) using a CLIP reward model
derived from single sentence text prompts (e.g., “a humanoid robot kneeling”).

Fourth, we study how VLM-RMs’ performance scales with the size of the VLM, and find that
VLM scale is strongly correlated to VLM-RM quality (Section 4.4). In particular, we can only learn
the humanoid tasks in Figure 1 with the largest publicly available CLIP model.

Our results indicate that VLMs are powerful zero-shot reward models. While current models, such
as CLIP, have important limitations that persist when used as VLM-RMs, we expect such limitations
to mostly be overcome as larger and more capable VLMs become available. Overall, VLM-RMs are
likely to enable us to train models to perform increasingly sophisticated tasks from human-written
task descriptions.

2 BACKGROUND

Partially observable Markov decision processes. We formulate the problem of training RL
agents in vision-based tasks as a partially observable Markov decision process (POMDP). A
POMDP is a tuple (S,A, θ, R,O, ϕ, γ, d0) where: S is the state space; A is the action space;
θ(s′|s, a) : S × S × A → [0, 1] is the transition function; R(s, a, s′) : S × A × S → R is the
reward function; O is the observation space; ϕ(o|s) : S → ∆(O) is the observation distribution;
and d0(s) : S → [0, 1] is the initial state distribution.

At each point in time, the environment is in a state s ∈ S. In each timestep, the agent takes an
action a ∈ A, causing the environment to transition to state s′ with probability θ(s′|s, a). The agent
then receives an observation o, with probability ϕ(o|s′) and a reward r = R(s, a, s′). A sequence
of states and actions is called a trajectory τ = (s0, a0, s1, a1, . . .), where si ∈ S, and ai ∈ A. The
returns of such a trajectory τ are the discounted sum of rewards g(τ ;R) =

∑
t=0 γ

tR(st, at, st+1).

The agent’s goal is to find a (possibly stochastic) policy π(s|a) that maximizes the expected returns
G(π) = Eτ(π) [g(τ(π);R)]. We only consider finite-horizon trajectories, i.e., |τ | <∞.

2

Published as a conference paper at ICLR 2024

Vision-language models. We broadly define vision-language models (VLMs; Zhang et al., 2023)
as models capable of processing sequences of both language inputs l ∈ L≤n and vision inputs
i ∈ I≤m. Here, L is a finite alphabet and L≤n contains strings of length less than or equal to n,
whereas I is the space of 2D RGB images and I≤m contains sequences of images with length less
than or equal to m.

CLIP models. One popular class of VLMs are Contrastive Language-Image Pretraining (CLIP;
Radford et al., 2021) encoders. CLIP models consist of a language encoder CLIPL : L≤n → V and
an image encoder CLIPI : I → V mapping into the same latent space V = Rk. These encoders are
jointly trained via contrastive learning over pairs of images and captions. Commonly CLIP encoders
are trained to minimize the cosine distance between embeddings for semantically matching pairs and
maximize the cosine distance between semantically non-matching pairs.

3 VISION-LANGUAGE MODELS AS REWARD MODELS (VLM-RMS)

This section presents how we can use VLMs as a learning-free (zero-shot) way to specify rewards
from natural language descriptions of tasks. Importantly, VLM-RMs avoid manually engineering a
reward function or collecting expensive data for learning a reward model.

3.1 USING VISION-LANGUAGE MODELS AS REWARDS

Let us consider a POMDP without a reward function (S,A, θ,O, ϕ, γ, d0). We focus on vision-
based RL where the observations o ∈ O are images. For simplicity, we assume a deterministic
observation distribution ϕ(o|s) defined by a mapping ψ(s) : S → O from states to image obser-
vation. We want the agent to perform a task T based on a natural language description l ∈ L≤n.
For example, when controlling a humanoid robot (Section 4.3) T might be the robot kneeling on the
ground and l might be the string “a humanoid robot kneeling”.

To train the agent using RL, we need to first design a reward function. We propose to use a VLM to
provide the reward R(s) as:

RVLM(s) = VLM(l, ψ(s), c) , (1)

where c ∈ L≤n is an optional context, e.g., for defining the reward interactively with a VLM. This
formulation is general enough to encompass the use of several different kinds of VLMs, including
image and video encoders, as reward models.

CLIP as a reward model. In our experiments, we chose a CLIP encoder as the VLM. A very
basic way to use CLIP to define a reward function is to use cosine similarity between a state’s image
representation and the natural language task description:

RCLIP(s) =
CLIPL(l) · CLIPI(ψ(s))
∥CLIPL(l)∥ · ∥CLIPI(ψ(s))∥

. (2)

In this case, we do not require a context c. We will sometimes call the CLIP image encoder a state
encoder, as it encodes an image that is a direct function of the POMDP state, and the CLIP language
encoder a task encoder, as it encodes the language description of the task.

3.2 GOAL-BASELINE REGULARIZATION TO IMPROVE CLIP REWARD MODELS

While in the previous section, we introduced a very basic way of using CLIP to define a task-based
reward function, this section proposes Goal-Baseline Regularization as a way to improve the quality
of the reward by projecting out irrelevant information about the observation.

So far, we assumed we only have a task description l ∈ L≤n. To apply goal-baseline regularization,
we require a second “baseline” description b ∈ L≤n. The baseline b is a natural language description
of the environment setting in its default state, irrespective of the goal. For example, our baseline
description for the humanoid is simply “a humanoid robot,” whereas the task description is, e.g., “a
humanoid robot kneeling.” We obtain the goal-baseline regularized CLIP reward model (RCLIP-Reg)
by projecting our state embedding onto the line spanned by the baseline and task embeddings.

3

Published as a conference paper at ICLR 2024

Definition 1 (Goal-Baseline Regularization). Given a goal task description l and baseline descrip-
tion b, let g = CLIPL(l)

∥CLIPL(l)∥ , b = CLIPL(b)
∥CLIPL(b)∥ , s = CLIPI(ψ(s))

∥CLIPI(ψ(s))∥ be the normalized encodings, and L be
the line spanned by b and g. The goal-baseline regularized reward function is given by

RCLIP-Reg(s) = 1− 1

2
∥α projL s+ (1− α)s− g∥22, (3)

where α is a parameter to control the regularization strength.

In particular, for α = 0, we recover our initial CLIP reward function RCLIP. On the other hand, for
α = 1, the projection removes all components of s orthogonal to g − b.

Intuitively, the direction from b to g captures the change from the environment’s baseline to the tar-
get state. By projecting the reward onto this direction, we directionally remove irrelevant parts of the
CLIP representation. However, we can not be sure that the direction really captures all relevant in-
formation. Therefore, instead of using α = 1, we treat it as a hyperparameter. However, we find the
method to be relatively robust to changes in α with most intermediate values being better than 0 or 1.

3.3 RL WITH CLIP REWARD MODEL

We can now use VLM-RMs as a drop-in replacement for the reward signal in RL. In our implemen-
tation, we use the Deep Q-Network (DQN; Mnih et al., 2015) or Soft Actor-Critic (SAC; Haarnoja
et al., 2018) RL algorithms. Whenever we interact with the environment, we store the observa-
tions in a replay buffer. In regular intervals, we pass a batch of observations from the replay buffer
through a CLIP encoder to obtain the corresponding state embeddings. We can then compute the
reward function as cosine similarity between the state embeddings and the task embedding which we
only need to compute once. Once we have computed the reward for a batch of interactions, we can
use them to perform the standard RL algorithm updates. Appendix C contains more implementation
details and pseudocode for our full algorithm in the case of SAC.

4 EXPERIMENTS

We conduct a variety of experiments to evaluate CLIP as a reward model with and without goal-
baseline regularization. We start with simple control tasks that are popular RL benchmarks:
CartPole and MountainCar (Section 4.2). These environments have a ground truth reward
function and a simple, well-structured state space. We find that our reward models are highly cor-
related with the ground truth reward function, with this correlation being greatest when applying
goal-baseline regularization. Furthermore, we find that the reward model’s outputs can be signifi-
cantly improved by making a simple modification to make the environment’s observation function
more realistic, e.g., by rendering the mountain car over a mountain texture.

We then move on to our main experiment: controlling a simulated humanoid robot (Section 4.3).
We use CLIP reward models to specify tasks from short language prompts; several of these tasks
are challenging to specify manually. We find that these zero-shot CLIP reward models are suffi-
cient for RL algorithms to learn most tasks we attempted with little to no prompt engineering or
hyperparameter tuning.

Finally, we study the scaling properties of the reward models by using CLIP models of different sizes
as reward models in the humanoid environment (Section 4.4). We find that larger CLIP models are
significantly better reward models. In particular, we can only successfully learn the tasks presented
in Figure 1 when using the largest publicly available CLIP model.

Experiment setup. We extend the implementation of the DQN and SAC algorithm from the
stable-baselines3 library (Raffin et al., 2021) to compute rewards from CLIP reward models
instead of from the environment. As shown in Algorithm 1 for SAC, we alternate between envi-
ronment steps, computing the CLIP reward, and RL algorithm updates. We run the RL algorithm
updates on a single NVIDIA RTX A6000 GPU. The environment simulation runs on CPU, but we
perform rendering and CLIP inference distributed over 4 NVIDIA RTX A6000 GPUs.

We provide the code to reproduce our experiments in the supplementary material. We dis-
cuss hyperparameter choices in Appendix C, but we mostly use standard parameters from

4

Published as a conference paper at ICLR 2024

stable-baselines3. Appendix C also contains a table with a full list of prompts for our
experiments, including both goal and baseline prompts when using goal-baseline regularization.

4.1 HOW CAN WE EVALUATE VLM-RMS?

Evaluating reward models can be difficult, particularly for tasks for which we do not have a ground
truth reward function. In our experiments, we use 3 types of evaluation: (i) evaluating policies using
ground truth reward; (ii) comparing reward functions using EPIC distance; (iii) human evaluation.

Evaluating policies using ground truth reward. If we have a ground truth reward function for a
task such as for the CarPole and MountainCar, we can use it to evaluate policies. For example,
we can train a policy using a VLM-RM and evaluate it using the ground truth reward. This is the
most popular way to evaluate reward models in the literature and we use it for environments where
we have a ground-truth reward available.

Comparing reward functions using EPIC distance. The “Equivalent Policy-Invariant Compar-
ison” (EPIC; Gleave et al., 2021) distance compares two reward functions without requiring the
expensive policy training step. EPIC distance is provably invariant on the equivalence class of re-
ward functions that induce the same optimal policy. We consider only goal-based tasks, for which
the EPIC is distance particularly easy to compute. In particular, a low EPIC distance between the
CLIP reward model and the ground truth reward implies that the CLIP reward model successfully
separates goal states from non-goal states. Appendix A discusses in more detail how we compute
the EPIC distance in our case, and how we can intuitively interpret it for goal-based tasks.

Human evaluation. For tasks without a ground truth reward function, such as all humanoid tasks
in Figure 1, we need to perform human evaluations to decide whether our agent is successful. We
define “success rate” as the percentage of trajectories in which the agent successfully performs the
task in at least 50% of the timesteps. For each trajectory, we have a single rater2 label how many
timesteps were spent successfully performing the goal task, and use this to compute the success
rate. However, human evaluations can also be expensive, particularly if we want to evaluate many
different policies, e.g., to perform ablations. For such cases, we additionally collect a dataset of
human-labelled states for each task, including goal states and non-goal states. We can then compute
the EPIC distance with these binary human labels. Empirically, we find this to be a useful proxy for
the reward model quality which correlates well with the performance of a policy trained using the
reward model.

For more details on our human evaluation protocol, we refer to Appendix B. Our human evaluation
protocol is very basic and might be biased. Therefore, we additionally provide videos of our trained
agents at https://sites.google.com/view/vlm-rm.

4.2 CAN VLM-RMS SOLVE CLASSIC CONTROL BENCHMARKS?

As an initial validation of our methods, we consider two classic control environments: CartPole
and MountainCar, implemented in OpenAI Gym (Brockman et al., 2016). In addition to the
default MountainCar environment, we also consider a version with a modified rendering method
that adds textures to the mountain and the car so that it resembles the setting of “a car at the peak
of a mountain” more closely (see Figure 2). This environment allows us to test whether VLM-RMs
work better in visually “more realistic” environments.

To understand the rewards our CLIP reward models provide, we first analyse plots of their reward
landscape. In order to obtain a simple and interpretable visualization figure, we plot CLIP rewards
against a one-dimensional state space parameter, that is directly related to the completion of the task.
For the CartPole (Figure 2a) we plot CLIP rewards against the angle of the pole, where the ideal
position is at angle 0. For the (untextured and textured) MountainCar environments Figures 2b
and 2c, we plot CLIP rewards against the position of the car along the horizontal axis, with the goal
location being around x = 0.5.

2One of the authors.

5

https://sites.google.com/view/vlm-rm

Published as a conference paper at ICLR 2024

−0.25 0.00 0.25
Pole angle (radians)

0.0

0.5

1.0

re
w

ar
d

(r
es

ca
le

d)

(a) CartPole

−1.0 −0.5 0.0 0.5
x position

0.0

0.5

1.0

re
w

ar
d

(r
es

ca
le

d)
(b) MountainCar (original)

−1.0 −0.5 0.0 0.5
x position

0.0

0.5

1.0

re
w

ar
d

(r
es

ca
le

d)

(c) MountainCar (textured)

0.00

0.25

0.50

0.75

1.00

α
(r

eg
ul

ar
iz

at
io

n
st

re
ng

th
)

Figure 2: We study the CLIP reward landscape in two classic control environments: CartPole and
MountainCar. We plot the CLIP reward as a function of the pole angle for the CartPole (a)
and as a function of the x position for the MountainCar (b,c). We mark the respective goal states
with a vertical line. The line color encodes different regularization strengths α. For the CartPole,
the maximum reward is always when balancing the pole and the regularization has little effect. For
the MountainCar, the agent obtains the maximum reward on top of the mountain. But, the reward
landscape is much more well-behaved when the environment has textures and we add goal-baseline
regularization – this is consistent with our results when training policies.

Figure 2a shows that CLIP rewards are well-shaped around the goal state for the CartPole envi-
ronment, whereas Figure 2b shows that CLIP rewards for the default MountainCar environment
are poorly shaped, and might be difficult to learn from, despite still having roughly the right maxi-
mum.

We conjecture that zero-shot VLM-based rewards work better in environments that are more “pho-
torealistic” because they are closer to the training distribution of the underlying VLM. Figure 2c
shows that if, as described earlier, we apply custom textures to the MountainCar environment,
the CLIP rewards become well-shaped when used in concert with the goal-baseline regularization
technique. For larger regularization strength α, the reward shape resembles the slope of the hill from
the environment itself – an encouraging result.

We then train agents using the CLIP rewards and goal-baseline regularization in all three envi-
ronments, and achieve 100% task success rate in both environments (CartPole and textured
MountainCar) for most α regularization strengths. Without the custom textures, we are not
able to successfully train an agent on the mountain car task, which supports our hypothesis that
the environment visualization is too abstract.

The results show that both and regularized CLIP rewards are effective in the toy RL task domain,
with the important caveat that CLIP rewards are only meaningful and well-shaped for environments
that are photorealistic enough for the CLIP visual encoder to interpret correctly.

4.3 CAN VLM-RMS LEARN COMPLEX, NOVEL TASKS IN A HUMANOID ROBOT?

Our primary goal in using VLM-RMs is to learn tasks for which it is difficult to specify a reward
function manually. To study such tasks, we consider the Humanoid-v4 environment implemented
in the MuJoCo simulator (Todorov et al., 2012).

The standard task in this environment is for the humanoid robot to stand up. For this task, the
environment provides a reward function based on the vertical position of the robot’s center of mass.
We consider a range of additional tasks for which no ground truth reward function is available,
including kneeling, sitting in a lotus position, and doing the splits. For a full list of tasks we tested,
see Table 1. Appendix C presents more detailed task descriptions and the full prompts we used.

6

Published as a conference paper at ICLR 2024

Task Success
Rate

Kneeling 100%
Lotus position 100%
Standing up 100%
Arms raised 100%
Doing splits 100%
Hands on hips 64%
Standing on one leg 0%
Arms crossed 0%

Table 1: We successfully learned 5 out of 8 tasks we tried
for the humanoid robot (cf. Figure 1). For each task, we
evaluate the checkpoint with the highest CLIP reward over 4
random seeds. We show a human evaluator 100 trajectories
from the agent and ask them to label how many timesteps
were spent successfully performing the goal task. Then, we
label an episode as a success if the agent is in the goal state
at least 50% of the timesteps. The success rate is the frac-
tion of trajectories labelled as successful. We provide more de-
tails on the evaluation as well as more fine-grained human la-
bels in Appendix B and videos of the agents’ performance at
https://sites.google.com/view/vlm-rm.

Camera
Angle Textures Success

Rate

Original Original 36%
Original Modified 91%
Modified Modified 100%

(a) Original (b) Modified textures (c) Modified textures
& camera angle

Figure 3: We test the effect of our modifications to the standard Humanoid-v4 environment on
the kneeling task. We compare the original environment (a) to modifying the textures (b) and the
camera angle (c). We find that modifying the textures to be more realistic is crucial to making the
CLIP reward model work. Moving the camera to give a better view of the humanoid helps too, but
is less critical in this task.

We make two modifications to the default Humanoid-v4 environment to make it better suited for
our experiments. (1) We change the colors of the humanoid texture and the environment background
to be more realistic (based on our results in Section 4.2 that suggest this should improve the CLIP
encoder). (2) We move the camera to a fixed position pointing at the agent slightly angled down
because the original camera position that moves with the agent can make some of our tasks impos-
sible to evaluate. We ablate these changes in Figure 3, finding the texture change is critical and
repositioning the camera provides a modest improvement.

Table 1 shows the human-evaluated success rate for all tasks we tested. We solve 5 out of 8 tasks
we tried with minimal prompt engineering and tuning. For the remaining 3 tasks, we did not get
major performance improvements with additional prompt engineering and hyperparameter tuning,
and we hypothesize these failures are related to capability limitations in the CLIP model we use. We
invite the reader to evaluate the performance of the trained agents themselves by viewing videos at
https://sites.google.com/view/vlm-rm.

The three tasks that the agent does not obtain perfect performance for are “hands on hips”, “standing
on one leg”, and “arms crossed”. We hypothesize that “standing on one leg” is very hard to learn or
might even be impossible in the MuJoCo physics simulation because the humanoid’s feet are round.
The goal state for “hands on hips” and “arms crossed” is visually similar to a humanoid standing
and we conjecture the current generation of CLIP models are unable to discriminate between such
subtle differences in body pose.

While the experiments in Table 1 use no goal-baseline regularization (i.e., α = 0), we separately
evaluate goal-baseline regularization for the kneeling task. Figure 4a shows that α ̸= 0 improves the
reward model’s EPIC distance to human labels, suggesting that it would also improve performance
on the final task, we might need a more fine-grained evaluation criterion to see that.

7

https://sites.google.com/view/vlm-rm
https://sites.google.com/view/vlm-rm

Published as a conference paper at ICLR 2024

RN50 ViT-L-14 ViT-H-14 ViT-bigG-14

0.0 0.5 1.0
α

0.3

0.4

0.5

0.6

0.7
E

PI
C

(a) Goal-baseline regularization for
different model sizes.

8.0 8.5 9.0
log10 of number of parameters

0.4

0.5

0.6

E
PI

C

RN50

ViT-L-14

ViT-H-14

ViT-bigG-14

(b) Reward model performance by
VLM training compute (α = 0).

Model Success
Rate

RN50 0%
ViT-L-14 0%
ViT-H-14 0%
ViT-bigG-14 100%

(c) Human-evaluated suc-
cess rate (over 2 seeds).

Figure 4: VLMs become better reward models with VLM model scale. We evaluate the humanoid
kneeling task for different VLM model sizes. We evaluate the EPIC distance between the CLIP
rewards and human labels (a and b) and the human-evaluated success rate of an agent trained using
differently sized CLIP reward models (c). We see a strong positive effect of model scale on VLM-
RM quality. In particular, (c) shows we are only able to learn the kneeling task using the largest
CLIP model publically available, whereas (b) shows there is a smooth improvement in EPIC distance
compared to human labels. (a) shows that goal-baseline regularization improves the reward model
across model sizes but it is more impactful for small models.

4.4 HOW DO VLM-RMS SCALE WITH VLM MODEL SIZE?

Finally, we investigate the effect of the scale of the pre-trained VLM on its quality as a reward
model. We focus on the “kneeling” task and consider 4 different large CLIP models: the original
CLIP RN50 (Radford et al., 2021), and the ViT-L-14, ViT-H-14, and ViT-bigG-14 from
OpenCLIP (Cherti et al., 2023) trained on the LAION-5B dataset (Schuhmann et al., 2022).

In Figure 4a we evaluate the EPIC distance to human labels of CLIP reward models for the four
model scales and different values of α, and we evaluate the success rate of agents trained using the
four models. The results clearly show that VLM model scale is a key factor in obtaining good reward
models. We detect a clear positive trend between model scale, and the EPIC distance of the reward
model from human labels. On the models we evaluate, we find the EPIC distance to human labels is
close to log-linear in the size of the CLIP model (Figure 4b).

This improvement in EPIC distance translates into an improvement in success rate. In particular,
we observe a sharp phase transition between the ViT-H-14 and VIT-bigG-14 CLIP models:
we can only learn the kneeling task successfully when using the VIT-bigG-14 model and obtain
0% success rate for all smaller models (Figure 4c). Notably, the reward model improves smoothly
and predictably with model scale as measured by EPIC distance. However, predicting the exact
point where the RL agent can successfully learn the task is difficult. This is a common pattern in
evaluating large foundation models, as observed by Ganguli et al. (2022).

5 RELATED WORK

Foundation models (Bommasani et al., 2021) trained on large scale data can learn remarkably gen-
eral and transferable representations of images, language, and other kinds of data, which makes them
useful for a large variety of downstream tasks. For example, pre-trained vision-language encoders,
such as CLIP (Radford et al., 2021), have been used far beyond their original scope, e.g., for image
generation (Ramesh et al., 2022; Patashnik et al., 2021; Nichol et al., 2021), robot control (Shridhar
et al., 2022; Khandelwal et al., 2022), or story evaluation (Matiana et al., 2021).

Reinforcement learning from human feedback (RLHF; Christiano et al., 2017) is a critical step in
making foundation models more useful (Ouyang et al., 2022). However, collecting human feedback
is expensive. Therefore, using pre-trained foundation models themselves to obtain reward signals
for RL finetuning has recently emerged as a key paradigm in work on large language models (Bai

8

Published as a conference paper at ICLR 2024

et al., 2022). Some approaches only require a small amount of natural language feedback instead
of a whole dataset of human preferences (Scheurer et al., 2022; 2023; Chen et al., 2023). However,
similar techniques have yet to be adopted by the broader RL community.

While some work uses language models to compute a reward function from a structured environ-
ment representation (Xie et al., 2023; Ma et al., 2023), many RL tasks are visual and require using
VLMs instead. Sumers et al. (2023) use generative VLMs to relabel the goal of agent trajectories
for hindsight experience replay, but not for specifying rewards. Cui et al. (2022) use CLIP to pro-
vide rewards for robotic manipulation tasks given a goal image. However, they only show limited
success when using natural language descriptions to define goals, which is the focus of our work.
Mahmoudieh et al. (2022) are the first to successfully use CLIP encoders as a reward model con-
ditioned on language task descriptions in robotic manipulation tasks. However, to achieve this, the
authors need to explicitly fine-tune the CLIP image encoder on a carefully crafted dataset for a
robotics task. Instead, we focus on leveraging CLIP’s zero-shot ability to specify reward functions,
which is significantly more sample-efficient and practical. Fan et al. (2022) train a CLIP model
to provide a reward signal in Minecraft environments. But, that approach requires a lot of labeled,
environment-specific data. Du et al. (2023) finetune a Flamingo VLM (Alayrac et al., 2022) to act as
a “success detector” for vision-based RL tasks tasks. However, they do not train RL policies using
these success detectors, leaving open the question of how robust they are under optimization pres-
sure. Concurrently to our work, Sontakke et al. (2023) successfully use a VLM to provide reward
signals for RL agents in robotics settings. However, they focus on specifying the reward with video
demonstrations and only show basic results with natural language task descriptions.

In contrast to these works, we do not require any finetuning to use CLIP as a reward model, and we
successfully train RL policies to achieve a range of complex tasks that do not have an easily-specified
ground truth reward function.

6 CONCLUSION

We introduced a method to use vision-language models (VLMs) as reward models for reinforcement
learning (RL), and implemented it using CLIP as a reward model and standard RL algorithms. We
used VLM-RMs to solve classic RL benchmarks and to learn to perform complicated tasks using a
simulated humanoid robot. We observed a strong scaling trend with model size, which suggests that
future VLMs are likely to be useful as reward models in an even broader range of tasks.

Limitations. Fundamentally, our approach relies on the reward model generalizing from a text
description to a reward function that captures what a human intends the agent to do. Although
the concrete failure cases we observed are likely specific to the CLIP models we used and may
be solved by more capable models, some problems will persist. The resulting reward model will
be misspecified if the text description does not contain enough information about what the human
intends or the VLM generalizes poorly. While we expect future VLMs to generalize better, the risk
of the reward model being misspecified grows for more complex tasks, that are difficult to specify
in a single language prompt. Therefore, when using VLM-RMs in practice it will be crucial to
use independent monitoring to ensure agents trained from automated feedback act as intended. For
complex tasks, it will be prudent to use a multi-step reward specification, e.g., by using a VLM
capable of having a dialogue with the user about specifying the task.

Future Work. There are many possible extensions of our approach that may improve performance
but were not necessary in our tasks. For example, finetuning VLMs for specific environments is a
natural next step to make them more useful as reward models. To move beyond goal-based supervi-
sion, future VLM-RMs could encode videos instead of images. To move towards specifying more
complex tasks, future VLM-RMs could use dialogue-enabled VLMs.

For practical applications, it will be important to ensure robustness and safety of the reward model.
Our work can serve as a basis for studying the safety implications of VLM-RMs. For instance, future
work could investigate the robustness of VLM-RMs against optimization pressure by RL agents.

More broadly, we believe VLM-RMs open up exciting avenues for future research to build useful
agents on top of pre-trained models, such as building language model agents and real world robotic
controllers for tasks where we do not have a reward function available.

9

Published as a conference paper at ICLR 2024

AUTHOR CONTRIBUTIONS

Juan Rocamonde designed and implemented the experimental infrastructure, ran most experiments,
analyzed results, and wrote large parts of the paper.

Victoriano Montesinos implemented parallelized rendering and training to enable using larger
CLIP models, implemented and ran many experiments, and performed the human evaluations.

Elvis Nava advised on experiment design, implemented and ran some of the experiments, and wrote
large parts of the paper.

Ethan Perez proposed the original project and advised on research direction and experiment design.

David Lindner implemented and ran early experiments with the humanoid robot, wrote large parts
of the paper, and led the project.

ACKNOWLEDGMENTS

We thank Adam Gleave for valuable discussions throughout the project and detailed feedback on
early drafts, Jérémy Scheurer and Nora Belrose for helpful feedback early on, Adrià Garriga-Alonso
for help with running experiments, and Xander Balwit for help with editing the paper.

We are grateful for funding received by Open Philanthropy, Manifund, the ETH AI Center, Swiss
National Science Foundation (B.F.G. CRSII5-173721 and 315230 189251), ETH project funding
(B.F.G. ETH-20 19-01), and the Human Frontiers Science Program (RGY0072/2019).

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, et al. Flamingo: A visual language
model for few-shot learning. In Advances in Neural Information Processing Systems, 2022.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional AI:
Harmlessness from AI feedback. arXiv preprint arXiv:2212.08073, 2022.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gy. arXiv preprint arXiv:1606.01540, 2016.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos, Jun Shern Chan, Samuel R.
Bowman, Kyunghyun Cho, and Ethan Perez. Improving code generation by training with natural
language feedback, 2023.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2818–2829, 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in Neural Information Processing
Systems, 2017.

Yuchen Cui, Scott Niekum, Abhinav Gupta, Vikash Kumar, and Aravind Rajeswaran. Can foun-
dation models perform zero-shot task specification for robot manipulation? In Learning for
Dynamics and Control Conference, 2022.

Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica Landon, Felix Hill, Nando
de Freitas, and Serkan Cabi. Vision-language models as success detectors. arXiv preprint
arXiv:2303.07280, 2023.

10

Published as a conference paper at ICLR 2024

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In Advances in Neural Information Processing Systems,
2022.

Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom
Conerly, Nova Dassarma, Dawn Drain, Nelson Elhage, et al. Predictability and surprise in large
generative models. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and
Transparency, pp. 1747–1764, 2022.

Adam Gleave, Michael D Dennis, Shane Legg, Stuart Russell, and Jan Leike. Quantifying differ-
ences in reward functions. In International Conference on Learning Representations, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, 2018.

Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and Aniruddha Kembhavi. Simple but ef-
fective: CLIP embeddings for embodied AI. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Parsa Mahmoudieh, Deepak Pathak, and Trevor Darrell. Zero-shot reward specification via
grounded natural language. In International Conference on Machine Learning, 2022.

Shahbuland Matiana, JR Smith, Ryan Teehan, Louis Castricato, Stella Biderman, Leo Gao,
and Spencer Frazier. Cut the carp: Fishing for zero-shot story evaluation. arXiv preprint
arXiv:2110.03111, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 2022.

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. StyleCLIP: Text-
driven manipulation of StyleGAN imagery. In IEEE/CVF International Conference on Computer
Vision, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
2021.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125, 2022.

Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica Chen, Kyunghyun
Cho, and Ethan Perez. Training language models with language feedback at scale. arXiv preprint
arXiv:2303.16755, 2023.

11

Published as a conference paper at ICLR 2024

Jérémy Scheurer, Jon Ander Campos, Jun Shern Chan, Angelica Chen, Kyunghyun Cho, and Ethan
Perez. Training language models with language feedback, 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. LAION-
5B: An open large-scale dataset for training next generation image-text models. In Advances in
Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. CLIPort: What and where pathways for robotic
manipulation. In Conference on Robot Learning, 2022.

Sumedh A Sontakke, Jesse Zhang, Sébastien MR Arnold, Karl Pertsch, Erdem Bıyık, Dorsa Sadigh,
Chelsea Finn, and Laurent Itti. Roboclip: One demonstration is enough to learn robot policies. In
Advances in Neural Information Processing Systems, 2023.

Theodore Sumers, Kenneth Marino, Arun Ahuja, Rob Fergus, and Ishita Dasgupta. Distilling
internet-scale vision-language models into embodied agents. January 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and
Tao Yu. Text2Reward: Automated dense reward function generation for reinforcement learning.
arXiv preprint arXiv:2309.11489, 2023.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks:
A survey. arXiv preprint arXiv:2304.00685, 2023.

12

Published as a conference paper at ICLR 2024

A COMPUTING AND INTERPRETING EPIC DISTANCE

Our experiments all have goal-based ground truth reward functions, i.e., they give high reward if
a goal state is reached and low reward if not. This section discusses how this helps to estimate
EPIC distance between reward functions more easily. As a side-effect, this gives us an intuitive
understanding of EPIC distance in our context. First, let us define EPIC distance.
Definition 2 (EPIC distance; Gleave et al. (2021)). The Equivalent-Policy Invariant Comparison
(EPIC) distance between reward functions R1 and R2 is:

DEPIC =
1√
2

√
1− ρ(C(R1), C(R2)) (4)

where ρ(·, ·) is the Pearson correlation w.r.t a given distribution over transitions, and C(R) is the
canonically shaped reward, defined as:

C(R)(s, a, s′) = R(s, a, s′) + E[γR(s′, A, S′)−R(s, a, S′)− γR(S,A, S′)].

For goal-based tasks, we have a reward function R(s, a, s′) = R(s′) = 1ST (s
′), which assigns a

reward of 1 to “goal” states and 0 to “non-goal” states based on the task T . In our experiments, we
focus on goal-based tasks because they are most straightforward to specify using image-text encoder
VLMs. We expect future models to be able to provide rewards for a more general class of tasks, e.g.,
using video encoders. For goal-based tasks computing the EPIC distance is particularly convenient.
Lemma 1 (EPIC distance for CLIP reward model). Let (CLIPI ,CLIPL) be a pair of state and task
encoders as defined in Section 3.1. Let RCLIP be the CLIP reward function as defined in eq. (2),
and R(s) = 1ST (s) be the ground truth reward function, where ST is the set of goal states for our
task l. Let µ be a probability measure in the state space, let ρ(·, ·) be the Pearson correlation under
measure µ and Var(·) the variance under measure µ. Then, we can compute the EPIC distance of a
CLIP reward model and the ground truth reward as:

DEPIC =
1√
2

√
1− ρ(RCLIP, R),

ρ(RCLIP, R) =

√
Var(R)√

Var(RCLIP)

(
CLIPL(l) ·

(∫
ST

CLIPI(ψ(s))dµ(s)−
∫
SC
T

CLIPI(ψ(s))dµ(s)
))

,

where SCT = S \ ST .

Proof. First, note that for reward functions where the reward of a transition (s, a, s′) only depends
on s′, the canonically-shaped reward simplifies to:

C(R)(s′) = R(s′) + γE[R(S′)]− E[R(S′)]− γE[R(S′)]

= R(s′)− E[R(S′)].

Hence, because the Pearson correlation is location-invariant, we have

ρ(C(R1), C(R2)) = ρ(R1, R2).

Let p = P(Y = 1) and recall that Var[Y] = p(1−p). Then, we can simplify the Pearson correlation
between continuous variable X and Bernoulli random variable Y as:

ρ(X,Y) :=
Cov[X,Y]√

Var[X]
√
Var[Y]

=
E[XY]− E[X]E[Y]√

Var[X]
√

Var[Y]
=

E[X|Y = 1]p− E[X]p√
Var[X]

√
Var[Y]

=
E[X|Y = 1]p− E[X|Y = 1]p2 − E[X|Y = 0](1− p)p√

Var[X]
√
Var[Y]

=
E[X|Y = 1]p(1− p)− E[X|Y = 0](1− p)p√

Var[X]
√
Var[Y]

=

√
Var[Y]√
Var[X]

(E[X|Y = 1]− E[X|Y = 0]) .

13

Published as a conference paper at ICLR 2024

Combining both results, we obtain that:

ρ(C(RCLIP), C(R)) =
√

Var(R)√
Var(RCLIP)

(
EST [RCLIP]− ESC

T
[RCLIP]

)

If our ground truth reward function is of the form R(s) = 1ST (s) and we denote π∗
R as the optimal

policy for reward function R, then the quality of π∗
RCLIP

depends entirely on the Pearson correlation
ρ(RCLIP, R). If ρ(RCLIP, R) is positive, the cosine similarity of the task embedding with embeddings
for goal states s ∈ ST is higher than that with embeddings for non-goal states s ∈ SCT . Intuitively,
ρ(RCLIP, R) is a measure of how well CLIP separates goal states from non-goal states.

In practice, we use Lemma 1 to evaluate EPIC distance between a CLIP reward model and a ground
truth reward function.

Note that the EPIC distance depends on a state distribution µ (see Gleave et al. (2021) for further
discussion). In our experiment, we use either a uniform distribution over states (for the toy RL
environments) or the state distribution induced by a pre-trained expert policy (for the humanoid
experiments). More details on how we collected the dataset for evaluating EPIC distances can be
found in the Appendix B.

B HUMAN EVALUATION

Evaluation on tasks for which we do not have a reward function was done manually by one of the
authors, depending on the amount of time the agent met the criteria listed in Table 2. See Figures 5
and 6 for the raw labels obtained about the agent performance.

We further evaluated the impact of goal-baseline regularization on the humanoid tasks that did not
succeed in our experiments with α = 0, cf. Figure 8. In these cases, goal baseline regulariza-
tion does not improve performance. Together with the results in Figure 4a, this could suggest that
goal-baseline regularization is more useful for smaller CLIP models than for larger CLIP models.
Alternatively, it is possible that the improvements to the reward model obtained by goal-baseline
regularization are too small to lead to noticeable performance increases in the trained agents for the
failing humanoid tasks. Unfortunately, a more thorough study of this was infeasible due to the cost
associated with human evaluations.

Our second type of human evaluation is to compute the EPIC distance of a reward model to a pre-
labelled set of states. To create a dataset for these evaluations, we select all checkpoints from the
training run with the highest VLM-RM reward of the largest and most capable VLM we used. We
then collect rollouts from each checkpoint and collect the images across all timesteps and rollouts
into a single dataset. We then have a human labeller (again an author of this paper) label each image
according to whether it represents the goal state or not, using the same criteria from Table 2. We
use such a dataset for Figure 4. Figure 7 shows a more detailed breakdown of the EPIC distance for
different model scales.

C IMPLEMENTATION DETAILS & HYPERPARAMETER CHOICES

In this section, we describe implementation details for both our toy RL environment experiments and
the humanoid experiments, going into further detail on the experiment design, any modifications we
make to the simulated environments, and the hyperparameters we choose for the RL algorithms we
use.

Algorithm 1 shows pseudocode of how we integrate computing CLIP rewards with a batched RL
algorithm, in this case SAC.

C.1 CLASSIC CONTROL ENVIRONMENTS

Environments. We use the standard CartPole and MountainCar environments implemented
in Gym, but remove the termination conditions. Instead the agent receives a negative reward

14

Published as a conference paper at ICLR 2024

Task Condition

Kneeling Agent must be kneeling with both knees touching the floor.
Agent must not be losing balance nor kneeling in the air.

Lotus position Agent seated down in the lotus position. Both knees are on the
floor and facing outwards, while feet must be facing inwards.

Standing up Agent standing up without falling.
Arms raised Agent standing up with both arms raised.
Doing splits Agent on the floor doing the side splits. Legs are stretched on the

floor.
Hands on hips Agent standing up with both hands on the base of the hips. Hands

must not be on the chest.
Arms crossed Agent standing up with its arms crossed. If the agent has its hands

just touching but not crossing, it is not considered valid.
Standing on one leg Agent standing up touching the floor only with one leg and with-

out losing balance. Agent must not be touching the floor with
both feet.

Table 2: Criteria used to evaluate videos of rollouts generated by the policies trained using CLIP
rewards on the humanoid environment. A rollout is considered a success if the agent satisfies the
condition for the task at least 50% of the timesteps, and a failure otherwise.

0 25 50 75 100
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
of

E
pi

so
de

s

Kneeling

0 25 50 75 100
0%

20%

40%

60%

80%

100%
Lotus position

0 25 50 75 100
0%

20%

40%

60%

80%

100%
Standing up

0 25 50 75 100
0%

20%

40%

60%

80%

100%
Arms raised

0 25 50 75 100
Successful Steps per Episode

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
of

E
pi

so
de

s

Arms crossed

0 25 50 75 100
Successful Steps per Episode

0%

20%

40%

60%

80%

100%
Hands on hips

0 25 50 75 100
Successful Steps per Episode

0%

20%

40%

60%

80%

100%
On one leg

0 25 50 75 100
Successful Steps per Episode

0%

20%

40%

60%

80%

100%
Doing splits

Figure 5: Raw results of our human evaluations. Each histogram is over 100 trajectories sampled
from the final policy. One human rater labeled each trajectory in one of five buckets according to
whether the agent performs the task correctly 0, 25, 50, 75, or 100 steps out of an episode length
of 100. To compute the success rate in the main paper, we consider all values above 50 steps as a
“success”.

15

Published as a conference paper at ICLR 2024

0 25 50 75 100
Successful Steps per Episode

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
of

E
pi

so
de

s

RN50

0 25 50 75 100
Successful Steps per Episode

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
of

E
pi

so
de

s

ViT-L-14

0 25 50 75 100
Successful Steps per Episode

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
of

E
pi

so
de

s

ViT-H-14

0 25 50 75 100
Successful Steps per Episode

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
of

E
pi

so
de

s

ViT-bigG-14

Figure 6: Raw results of our human evaluations for the model scaling experiments. The histograms
are computed the same way as in Figure 5, but the agents were trained for differently sized CLIP
models on the humanoid “kneeling” task. As the aggregated results in Figure 4c in the main paper
suggest, there is a stark difference between the agent trained using the ViT-H-14 model and the
ViT-bigG-14 model.

−2 0 2
Standardized Reward

0

100

200

Fr
eq

ue
nc

y

RN50

goal state not goal state goal state (mean) not goal state (mean)

−2 0 2
Standardized Reward

0

100

200

Fr
eq

ue
nc

y

ViT-L-14

−2 0 2
Standardized Reward

0

100

200

Fr
eq

ue
nc

y
ViT-H-14

−2 0 2
Standardized Reward

0

100

200

Fr
eq

ue
nc

y

ViT-bigG-14

Figure 7: The rewards distributions of (human labelled) goal states vs. non-goal states become
more separated with the scale of the VLM. We show histograms of the CLIP rewards for differently
labelled states in the humanoid “kneeling” task. The separation between the dotted lines, showing
the average of each distribution, is the Pearson correlation described in Appendix A. This provides
a clear visual representation of the VLM’s capability.

Task Goal Prompt Baseline Prompt

CartPole “pole vertically upright on top of the cart” “pole and cart”

MountainCar “a car at the peak of the mountain, next to
the yellow flag”

“a car in the mountain”

H
u
m
a
n
o
i
d

Kneeling “a humanoid robot kneeling” “a humanoid robot”
Lotus position “a humanoid robot seated down, meditat-

ing in the lotus position”
“a humanoid robot”

Standing up “a humanoid robot standing up” “a humanoid robot”
Arms raised “a humanoid robot standing up, with both

arms raised”
“a humanoid robot”

Doing splits “a humanoid robot practicing gymnastics,
doing the side splits”

“a humanoid robot”

Hands on hips “a humanoid robot standing up with hands
on hips”

“a humanoid robot”

Arms crossed “a humanoid robot standing up, with its
arms crossed”

“a humanoid robot”

Standing on one leg “a humanoid robot standing up on one leg” “a humanoid robot”

Table 3: Goal and baseline prompts for each environment and task. Note that we did not perform
prompt engineering, these are the first prompts we tried for every task.

16

Published as a conference paper at ICLR 2024

0 25 50 75 100
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

α = 0.0

Arms crossed

0 25 50 75 100
0%

20%

40%

60%

80%

100%
α = 0.0

Hands on hips

0 25 50 75 100
0%

20%

40%

60%

80%

100%
α = 0.0

Standing on one leg

0 25 50 75 100
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

α = 0.2

0 25 50 75 100
0%

20%

40%

60%

80%

100%
α = 0.2

0 25 50 75 100
0%

20%

40%

60%

80%

100%
α = 0.2

0 25 50 75 100
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

α = 0.4

0 25 50 75 100
0%

20%

40%

60%

80%

100%
α = 0.4

0 25 50 75 100
0%

20%

40%

60%

80%

100%
α = 0.4

0 25 50 75 100
Successful Steps per Episode

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

α = 0.6

0 25 50 75 100
Successful Steps per Episode

0%

20%

40%

60%

80%

100%
α = 0.6

0 25 50 75 100
Successful Steps per Episode

0%

20%

40%

60%

80%

100%
α = 0.6

Figure 8: Human evaluations for evaluating goal-baseline regularization in humanoid tasks. The his-
tograms are computed the same way as in Figure 5. We show the humanoid “arms crossed”, “hands
on hips”, and “standing on one leg” tasks that failed in our experiments with α = 0. Each column
shows one of the tasks and the rows show regularization strength values α = 0.0, 0.2, 0.4, 0.6. The
performance for α = 0 and α = 0.2 seems comparable and larger values for α degrade performance.
Overall, we don’t find goal-baseline regularization leads to better performance on these tasks.

17

Published as a conference paper at ICLR 2024

Algorithm 1 SAC with CLIP reward model.

Require: Task description l, encoders CLIPL and CLIPI , batchsize B
Initialize SAC algorithm
xl ← CLIPL(l) ▷ Precompute task embedding
B ← [], D ← [] ▷ Initialize buffers
repeat

Sample transition (st, at, st+1) using current policy
Append (st, at, st+1) to unlabelled buffer B
if |B| ≥ |B| then

for (st, at, st+1) in B do ▷ In practice this loop is batched
xs ← CLIPI(ψ(s)) ▷ Compute state embedding
RCLIPt ← xl · xs/ (∥xl∥ · ∥xs∥) ▷ Compute CLIP reward
Optionally apply goal-baseline regularization (Definition 1)
Remove (st, at, st+1) from unlabelled buffer B
Append (st, at, RCLIPt, st+1) to labelled buffer D

Perform standard SAC gradient step using replay buffer D
until convergence

for dropping the pole in CartPole and a positive reward for reaching the goal position in
MountainCar. We make this change because the termination leaks information about the task
completion such that without removing the termination, for example, any positive reward function
will lead to the agent solving the CartPole task. As a result of removing early termination condi-
tions, we make the goal state in the MountainCar an absorbing state of the Markov process. This
is to ensure that the estimated returns are not affected by anything a policy might do after reaching
the goal state. Otherwise, this could, in particular, change the optimal policy or make evaluations
much noisier.

RL Algorithms. We use DQN (Mnih et al., 2015) for CartPole, our only environment with a
discrete action space, and SAC (Haarnoja et al., 2018), which is designed for continuous environ-
ments, for MountainCar. For both algorithms, we use a standard implementation provided by
stable-baselines3 (Raffin et al., 2021).

DQN Hyperparameters. We train for 3 million steps with a fixed episode length of 200 steps,
where we start the training after collecting 75000 steps. Every 200 steps, we perform 200 DQN
updates with a learning rate of 2.3e − 3. We save a model checkpoint every 64000 steps. The
Q-networks are represented by a 2 layer MLP of width 256.

SAC Hyperparameters. We train for 3 million steps using SAC parameters τ = 0.01, γ =
0.9999, learning rate 10−4 and entropy coefficient 0.1. The policy is represented by a 2 layer MLP
of width 64. All other parameters have the default value provided by stable-baselines3.

We chose these hyperparameters in preliminary experiments with minimal tuning.

C.2 HUMANOID ENVIRONMENT

For all humanoid experiments, we use SAC with the same set of hyperparameters tuned on prelimi-
nary experiments with the kneeling task. We train for 10 million steps with an episode length of 100
steps. Learning starts after 50000 initial steps and we do 100 SAC updates every 100 environment
steps. We use SAC parameters τ = 0.005, γ = 0.95, and learning rate 6 · 10−4. We save a model
checkpoint every 128000 steps. For our final evaluation, we always evaluate the checkpoint with the
highest training reward. We parallelize rendering over 4 GPUs, and also use batch size B = 3200
for evaluating the CLIP rewards.

18

	Introduction
	Background
	Vision-Language Models as Reward Models (VLM-RMs)
	Using Vision-Language Models as Rewards
	Goal-Baseline Regularization to Improve CLIP Reward Models
	RL with CLIP Reward Model

	Experiments
	How can we Evaluate VLM-RMs?
	Can VLM-RMs Solve Classic Control Benchmarks?
	Can VLM-RMs Learn Complex, Novel Tasks in a Humanoid Robot?
	How do VLM-RMs Scale with VLM Model Size?

	Related Work
	Conclusion
	Computing and Interpreting EPIC Distance
	Human Evaluation
	Implementation Details & Hyperparameter Choices
	Classic Control Environments
	Humanoid Environment

