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Probabilistic Vision-Language Representation for Weakly
Supervised Temporal Action Localization

Anonymous Authors

ABSTRACT
Weakly supervised temporal action localization (WTAL) aims to
detect action instances in untrimmed videos with only video-level
annotations. As many existing works optimize WTAL models based
on action classification labels, they encounter the task discrepancy
problem (i.e., localization-by-classification). To tackle this issue,
recent studies have attempted to utilize action category names as
auxiliary semantic knowledge with vision-language pre-training
(VLP). However, there are still areas where existing research falls
short. Previous approaches primarily focused on leveraging textual
information from language models but overlooked the alignment
of dynamic human action and VLP knowledge in joint space. Fur-
thermore, the deterministic representation employed in previous
studies struggles to capture fine-grained human motion. To address
these problems, we propose a novel framework that aligns human
action knowledge and VLP knowledge in the probabilistic embed-
ding space. Moreover, we propose intra- and inter-distribution
contrastive learning to enhance the probabilistic embedding space
based on statistical similarities. Extensive experiments and abla-
tion studies reveal that our method significantly outperforms all
previous state-of-the-art methods. Our code will be available after
publication.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding.

KEYWORDS
Video Understanding, Human Action Understanding, Vision Lan-
guage Pre-training

1 INTRODUCTION
The development of multimedia services, such as YouTube and
Netflix, has led to increasing interest in the field of computer vision
for analyzing long-form videos. Temporal Action Localization (TAL)
refers to the problem of precisely determining the time intervals in
a lengthy, untrimmed video when human activities occur, which is
of fundamental significance in video understanding [15, 30, 31].

Fully supervised TAL [3, 4, 26, 27, 49, 58, 59] handles this task
based on frame-level, rich annotations. Despite its great success,
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Figure 1: (a) CLIP’s deterministic pre-training with image-
text pairs fails to equip it with the necessary understanding
of fine-grained human motion variations. (b) Earlier stud-
ies have primarily emphasized the direct mapping between
language models and visual input based on deterministic rep-
resentation. (c) The proposed framework with probabilistic
embedding with VLP knowledge alignment.

training a TAL model in dense frame-level annotation poses chal-
lenges in that the cost of annotation is extremely high and its gen-
erality is limited. To address these challenges, weakly supervised
temporal action localization (WTAL) [9, 11, 18, 21, 24, 33, 45], which
only requires video-level categorical labels, has received a lot of
attention. In scenarios where only video-level category supervision
is accessible, existing WTAL methods solve the localization prob-
lem as a classification problem that selects discriminative snippets1
contributing mainly to video-level classification. However, these
classification-based approaches mainly suffer from the task discrep-
ancy problem, which results from a localization-by-classification
framework. To deal with this problem, a lot of research has been

1In our field, a snippet refers to a set of consecutive frames composed of 16 frames.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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done on snippet-level pseudo label approaches [12, 25, 42, 65]. Yet,
these pseudo labels, constrained by video-level annotations, inher-
ently carry noisy proposals and fall short of achieving the desired
accuracy.

Recently, to tackle these problems, some approaches [17, 24]
leveraging action category text information have been proposed to
guide powerful semantic knowledge without incurring extra anno-
tation costs. These approaches establish additional learning cues
by exploiting category text embedding vectors instead of merely
utilizing category information as one-hot vectors. While significant
improvements were achieved through additional semantic infor-
mation, some factors were overlooked in earlier research. First, Li
et al. [24] adopted a language model (e.g., GloVe [38]) pre-trained
on only text modality, which results in an inadequate initializa-
tion state with respect to the alignment with the human action
pre-trained visual feature. Second, Chen et al. [17] proposed an
alternate optimization strategy to introduce an effective distillation
framework. However, the proposed alternate optimization scheme
necessitates manual identification of the optimal settings in accor-
dance with the dataset. Third, most importantly, we observe that
the utilization of deterministic representation in previous studies
for incorporating text information is not suitable for human action
understanding.

To confirm this, we conducted an analysis of the zero-shot clas-
sification with CLIP [39], a prominent study in the domain of VLP.
As shown in Figure 1(a), we compared the similarity response be-
tween the text prompt (i.e., "a frame of [CLS]") representation and
the corresponding frame visual representation. It reveals a high
level of activation even when actual human actions do not occur, as
long as there is visual relevance to the action text category. This is
because CLIP was pretrained, considering only one-to-one match-
ing between a single image and its caption. The previous research
depicted in Figure 1(b) cannot address the aforementioned issue
as it solely relies on deterministic representation via one-to-one
matching, making it challenging to capture fine-grained human
motion. Furthermore, the lack of consideration for direct alignment
with pre-trained human action knowledge results in insufficient
temporal dynamics modeling.

To overcome this issue, we introduce a novel framework, PVLR,
Probabilistic Vision Language Representation for Weakly super-
vised Temporal Action Localization, which integrates VLP knowl-
edge and human action knowledge within the probabilistic em-
bedding space, as shown in Figure 1(c). To begin with, pre-trained
human action knowledge, such as Kinetics [2], is utilized to con-
struct a probabilistic embedding space. In this step, probabilistic
adapters are introduced to estimate parameters for the snippet-level
probability distribution. Subsequently, we transfer the large-scale
VLP knowledge to the estimated probability distribution to create
a joint probabilistic embedding space. To capture the temporal dy-
namics of action, we obtain samples from the estimated probability
distribution to offer diverse perspectives, many-to-one matching,
and then evaluate their similarity with category text embedding
via Monte-Carlo estimation.

Furthermore, to learn distinctive embedding space, we propose
a distribution contrastive learning scheme to capture the statistical
similarity between distributions. We enhance intra-class compact-
ness by learning the similarity of content (action or background)

within videos and maximize inter-class separability by leveraging
action category information across videos. To enhance the intra-
class compactness, we draw inspiration from snippet mining in
prior work [57] to differentiate a similar snippet distribution among
related content. For inter-class separability, we build a video-level
probabilistic distribution based on Gaussian mixture model (GMM)
and make the mixture distribution separable between different ac-
tion classes. To the best of our knowledge, this is the first attempt
to investigate multimodal probabilistic representations for weakly
supervised temporal action localization.

Our main contributions to this work are summarized as follows:

(1) We introduce a novel framework that aligns VLP knowledge
and action knowledge within a probabilistic space to make
full consideration of temporal dynamics for fine-grained
motion modeling.

(2) We introduce an intra- and inter-distribution contrastive
strategy to construct distinctive probabilistic embedding
space.

(3) We conduct extensive experiments and ablation studies to
reveal the significance of probabilistic embedding and the
proposed method, and our superior performance on two
public benchmarks (THUMOS14 and ActivityNet v1.3).

2 RELATEDWORK
2.1 Weakly Supervised Temporal Action

Localization
Weakly supervised temporal action localization (WTAL) is pro-
posed to alleviate the laborious annotation procedure for Temporal
Action Localization, training with only video-level labels. In the
early stages of research, Multiple Instance Learning (MIL)-based
approaches [10, 14, 21, 22, 33, 37, 46] were proposed, which pre-
tended a video as a bag of multiple action and background instances.
Zhang et al. [57] introduced a snippet contrast loss, refining the
representation of ambiguous instances in the feature space through
snippet mining and contrastive learning. Afterward, several ap-
proaches [12, 25, 42, 65] generate snippet-level pseudo labels to ex-
plicitly guide the model as a localization-by-localization framework.
However, pseudo labels generated based on video-level supervision
were inaccurate and noisy, making it challenging to achieve the
desired performance.

Recently, approaches utilizing the semantic information of ac-
tion category names have emerged to address the fundamental
absence of temporal annotation in WTAL [17, 24]. Li et al. [24]
designed a novel framework with a discriminative objective to en-
large inter-class differences and a generative objective to enhance
intra-class integrity via text information. Chen et al. [17] proposed
a novel distillation and collaboration framework with complemen-
tary Classification Based Pre-training (CBP) and Vision-Language
Pre-training (VLP) branches. While these works distinguish them-
selves with promising performances without additional annotation
costs, there is yet potential for further development. In our frame-
work, we integrate VLP knowledge and human action knowledge
within the probabilistic space previously unexplored in existing
literature, enabling a better understanding of human action.
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2.2 Vision Language Pre-training
Vision language pre-training (VLP) learns a joint representation
through large-scale image-text pair datasets with consistent con-
textual information. A representative work is CLIP [39], mapping
image-text pairs with consistent contextual information into the
visual and textual encoders separately and facilitating the learning
of a joint embedding space through aligned representations. CLIP
has shown great success in many image understanding tasks, in-
cluding image classification [6, 34], semantic segmentation [20, 40],
image generation [7, 43], and visual question answering [35]. Build-
ing upon the success of CLIP in the image domain, some research
efforts [29–31, 54] aiming to leverage the vision-language represen-
tation of CLIP in the video domain have emerged. Our work is also
a contribution to the research aimed at extending VLP knowledge
into the realm of untrimmed video and human action understand-
ing.

2.3 Probabilistic Representation
The main idea of probabilistic embedding is to map inputs to proba-
bility distributions in the embedding space. To achieve this objective,
the desired distributions are estimated by a deep neural network
and optimized to maximize their likelihood. PCME [5] represents
one-to-many relationships in the joint embedding space with un-
certainty estimation and introduces a soft cross-modal contrastive
loss. Park et al. [36] proposed self-supervised video representation
learning that bridges contrastive learning with probabilistic em-
bedding with Gaussian mixture model. ProbVLM [50] utilizes a
probabilistic adapter that, without the requirement of extensive
datasets or intensive computing, estimates probability distributions
for the embeddings of a vision-language pre-trained model through
inter- and intra-modal alignment in a post-hoc manner. The ob-
jective of this study is to transfer the knowledge of a pre-trained
vision-language model into the probabilistic embedding space, with
an explicit objective of strengthening human action understanding.

3 METHOD
In this section, we provide a detailed explanation of the proposed
approach. We first describe our baseline approach in Sec 3.1. We
then introduce the probabilistic embedding space with VLP knowl-
edge for WTAL problem in Sec 3.2 and discuss the proposed intra-
and inter-distribution contrastive learning in Sec 3.3. An illustration
of the overall framework is presented in Figure 2.

3.1 Base Approach
3.1.1 Problem Definition. In the WTAL problem setting, a set of
untrimmed videos {𝑉𝑖 }𝑁𝑖=1 and their corresponding video-level cat-
egory labels {y𝑖 }𝑁𝑖=1 are given. Specifically, the video-level category
label is a multi-hot vector y𝑖 ∈ {0, 1}𝐶+1, where 𝐶 is the number
of action classes. Since all untrimmed videos have various back-
ground regions, we add an auxiliary class to model the background.
Due to the computational memory limit, we split each video into
multi-frame, non-overlapping snippets and sample a fixed number
𝑇 of snippets to address the large variations in the video length.
WTAL aims to predict a sequence of actions {𝑐𝑖 , 𝑠𝑖 , 𝑒𝑖 , 𝑝𝑖 }𝑀𝑖=1 for an
input video𝑉𝑛 , where𝑀 is the number of proposals, 𝑐𝑖 is the action

category, 𝑠𝑖 and 𝑒𝑖 are the start and end time of each proposal, and
𝑝𝑖 is confidence score.

3.1.2 Base method. Following prior works [10, 21, 57], it is com-
mon practice to use a pre-trained extractor for snippet representa-
tion. We extract the RGB features X𝑅 =

{
x𝑟𝑡
}𝑇
𝑡=1 and Optical Flow

features X𝑂 =
{
x𝑜𝑡

}𝑇
𝑡=1, which allows us to model temporal dynam-

ics efficiently when embedding 𝐷-dimensional features x𝑟𝑡 ∈ R𝐷
and x𝑜𝑡 ∈ R𝐷 for each snippet. Afterwards, we concatenate features
from each modality [X𝑅 ;X𝑂 ] ∈ R𝑇×2𝐷 and feed into base WTAL
head 𝑓𝑏𝑎𝑠𝑒 to generate base feature X𝐵 ∈ R𝑇×2𝐷 , written as:

X𝐵 = 𝑓𝑏𝑎𝑠𝑒 ( [X𝑅 ;X𝑂 ];𝜙𝑏𝑎𝑠𝑒 ) ∈ R𝑇×2𝐷 , (1)

where 𝑓𝑏𝑎𝑠𝑒 is mainly implemented with a series of temporal con-
volution with ReLU activation. In addition, an attention weight
a ∈ R𝑇×1 is generated to differentiate between the foreground and
the background region:

a =
A(X𝑅,X𝑂 ) + A(X𝑂 ,X𝑅)

2
∈ R𝑇×1, (2)

where A(·) is an attention branch consisting of several temporal
convolutional layers. Following the MIL framework, we feed the
base feature X𝐵 to classification head 𝑓𝑐𝑙𝑠 to generate the base class
activation sequence (CAS) is defined as:

S𝑏𝑎𝑠𝑒 = 𝑓𝑐𝑙𝑠 (X𝐵 ;𝜙𝑐𝑙𝑠 ) ∈ R𝑇×(𝐶+1) . (3)

Then we aggregate snippet-level activation scores, to obtain
video-level class prediction p𝑏𝑎𝑠𝑒 = K(S𝑏𝑎𝑠𝑒 ) ∈ R𝐶+1, where K(·)
denotes the top-k average pooling along the temporal axis. After
obtaining the video-level category prediction, we can build a loss
function L𝑏𝑎𝑠𝑒 with cross-entropy loss as follows:

L𝑏𝑎𝑠𝑒 = −
𝐶+1∑︁
𝑐=1

y𝑏𝑎𝑠𝑒 log (p𝑏𝑎𝑠𝑒𝑐 ), (4)

where y𝑏𝑎𝑠𝑒 = [𝑦1, · · · , 𝑦𝐶 , 1] ∈ R𝐶+1 is the video-level label with
an auxiliary background class. Meanwhile, background suppressed
CAS is acquired by multiplying the attention weight S𝑠𝑢𝑝𝑝 = a ⊗
S𝑏𝑎𝑠𝑒 . We can also build a loss function L𝑠𝑢𝑝𝑝 with background
suppressed video-level class score p𝑠𝑢𝑝𝑝 = K(S𝑠𝑢𝑝𝑝 ) ∈ R𝐶+1 as
follows:

L𝑠𝑢𝑝𝑝 = −
𝐶+1∑︁
𝑐=1

y𝑠𝑢𝑝𝑝 log (p𝑠𝑢𝑝𝑝𝑐 ), (5)

where y𝑠𝑢𝑝𝑝 = [𝑦1, · · · , 𝑦𝐶 , 0] ∈ R𝐶+1 is the video-level label with-
out a background class. By optimizing L𝑐𝑙𝑠 = L𝑏𝑎𝑠𝑒 + L𝑠𝑢𝑝𝑝 , the
model learns to distinguish snippets that contribute significantly to
video-level action classification. Moreover, we also utilized L𝑜𝑝𝑝𝑜 ,
L𝑛𝑜𝑟𝑚 , L𝑔𝑢𝑖𝑑𝑒 . Since these losses have been proposed in previous
works [14, 21, 22, 32, 37], we do not claim our contribution in this
part. The overall objective of baseline approach L𝑣𝑖𝑑 is as follows:

L𝑣𝑖𝑑 = 𝜆1L𝑐𝑙𝑠 + 𝜆2L𝑜𝑝𝑝𝑜 + 𝜆3L𝑛𝑜𝑟𝑚 + 𝜆4L𝑔𝑢𝑖𝑑𝑒 . (6)

3.2 Probabilistic Class Activation Sequence
In this section, we reformulate CAS as a probabilistic class ac-
tivation sequence (P-CAS) designed to effectively leverage VLP
knowledge within a probabilistic embedding space. To achieve this,
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Figure 2: Overview of the proposed PVLR. (a) Probabilistic Class Activation Sequence: For the probabilistic embedding,
probabilistic adapters are augmented to facilitate the estimation of probabilistic distributions for individual snippets. (b)
Vision-Language Pre-training: Leveraging VLP knowledge, we estimate probabilistic distributions and guide the model with
semantic textual information corresponding to action categories. (c) Distribution Contrastive Learning: By training statistical
similarities from probabilistic distribution, we aim to build distinctive embedding space.

we model the probabilistic distribution 𝑝z |x (z|𝜃 ) and estimate the
parameters 𝜃 , optimizing neural networks via human action and
VLP knowledge.

3.2.1 Probabilistic Embedding. Initially, we establish probabilis-
tic embedding space by leveraging the human action pre-trained
knowledge on Kinetics [2]. From the base feature X𝐵 = {x𝑡 }𝑇𝑡=1 ∈
R𝑇×2𝐷 , we formulate a snippet-level probability distribution 𝑝 (z|x𝑡 )
as a multivariate Gaussian distribution with a mean vector and a
diagonal covariance matrix to model the probabilistic embedding
space:

𝑝 (z|x𝑡 ) ≈ N (𝑔𝜇 (x𝑡 ), diag(𝑔Σ (x𝑡 ))), (7)

where 𝑔𝜇 is an embedding layer that estimates the mean vector
𝑔𝜇 (x𝑡 ) ∈ R𝐷 and 𝑔Σ is an embedding layer that estimates covari-
ance matrix 𝑔Σ (x𝑡 ) ∈ R𝐷 of targeted Gaussian. With the estimated
𝑝 (z|x𝑡 ), we can sample 𝐾 random embeddings z(𝑘 ) ∈ R𝐷 that can
represent the estimated distribution following [19]:

z(𝑘 )𝑡 = 𝑔𝜇 (x𝑡 ) + 𝜖 (𝑘 ) · 𝑔Σ (x𝑡 ) ∈ R𝐷 , (8)

where 𝜖 (𝑘 ) ∈ R𝐷 are independently and identically sampled from a
𝐷-dimensional unit Gaussian. Our goal is to utilize 𝐾 embeddings
sampled from the estimated probability distribution for each snippet
to capture the human action from a more diverse range of perspec-
tives. Also, for textual information, we transform action category
names into pre-trained embeddings. For this, we freeze the CLIP
text transformer ΨC (·) and extract the embeddings XC = {x𝑐 }𝐶𝑐=1:

x𝑐 = ΨC ( [L𝑠 ;Ψ𝑒𝑚𝑏 (𝑡𝑐 ); L𝑒 ]) ∈ R𝐷 , (9)

where L𝑠 , L𝑒 are learnable tokens, 𝑡𝑐 refers to action category, and
Ψ𝑒𝑚𝑏 is word embedding layer. Then, P-CAS can be defined by de-
termining the action confidence score along the temporal axis with
the estimated probability distribution and action category represen-
tation. Specifically, to measure the confidence score between the
estimated distribution and category representation, we formulate
P-CAS as S𝑝𝑟𝑜𝑏 ∈ R𝑇×(𝐶+1) via Monte-Carlo estimation:

𝑠𝑝𝑟𝑜𝑏 (𝑡, 𝑐) ≈
1
𝐾

𝐾∑︁
𝑘=1

sim(x𝑐 , z(𝑘 )𝑡 )/𝜏, (10)

where sim(·) means cosine similarity and 𝜏 is temperature parame-
ter. Besides, to avoid ambiguity among action categories, we design
an orthogonal lossL𝑜𝑟𝑡ℎ𝑜 ensuring the uniqueness of each category
representation as:

L𝑜𝑟𝑡ℎ𝑜 =




XC (XC)T − I



2
F
, (11)

where I is the identity matrix and ∥·∥2F is the Frobenius norm of a
matrix.

3.2.2 VLP Knowledge Distillation. Nevertheless, during the estima-
tion of the present probability distribution, only the textual infor-
mation from VLP is utilized, overlooking the alignment between
human action knowledge and the visual representation provided
by VLP. Therefore, we aim to integrate VLP visual knowledge into
the estimation process of the probability distribution.

Due to deterministic pre-training of CLIP, estimating the entire
distribution can be challenging, but large-scale pre-trained repre-
sentation can offer a generalized point approximation (e.g., mean
vector) for the desired distribution. To achieve this, our probabilistic
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embedding utilizes the CLIP’s deterministic representations as esti-
mates for the mean, 𝑔𝜇 (x𝑡 ) of the targeted distribution. To transfer
VLP knowledge into probabilistic embedding space, we first sam-
ple a set of frames {𝑓𝑡 }𝑇𝑡=1 within a fixed temporal stride from the
video. Next, we freeze the CLIP Image Encoder ΨI (·) and extract
the embeddings XI = {ΨI (𝑓𝑡 )}𝑇𝑡=1 ∈ R𝑇×𝐷 . For a pair of snippet
feature and CLIP image feature (x𝑏𝑡 , x𝑖𝑡 ), the distillation loss L𝑘𝑑 is
defined as:

L𝑘𝑑 = − 1
𝑇

𝑇∑︁
𝑡=1

log( 1
2
(
𝑔𝜇 (x𝑡 ) · x𝑖𝑡

𝑔𝜇 (x𝑡 )

 

x𝑖𝑡 

 + 1)) . (12)

We utilize the rescaled cosine similarity between the estimated
mean 𝑔𝜇 (x𝑏𝑡 ) and CLIP image representation x𝑖𝑡 as the matching
score. The objective of L𝑘𝑑 is to align the estimated mean 𝑔𝜇 (x𝑏𝑡 )
with the generalized fixed point x𝑖𝑡 of CLIP embedding for trans-
ferring pre-trained CLIP knowledge into the desired probability
distribution.

3.3 Distribution Contrastive Learning
We defined a probabilistic embedding space by aligning human
action knowledge and VLP knowledge. However the crucial factor
of distributional similarity remained unexplored. The distributions
corresponding to human actions should exhibit similarities amongst
themselves while contrasting with background distributions. To
address these objectives, we aim to enhance the completeness of the
probabilistic embedding space through probabilistic representation
learning based on statistical distances.

3.3.1 Intra-Distribution Contrastive Learning. We begin by consid-
ering contrastive learning between distributions within the video.
In the video, the distributions of actions are expected to share dis-
tributional similarities internally while being separate from the
background. To achieve these objectives, we adopt the snippet min-
ing algorithm of zhang et al. [57], which uses attention weight
a ∈ R𝑇×1 to differentiate action and background snippet within the
video. Firstly, to mine the action and background snippet, we thresh-
old the attention weight (1 or 0 indicates the action or background,
respectively):

b(𝑡 ) =

{
1 if a(𝑡 ) > 𝜃𝑏
0 otherwise

, (13)

where 𝜃𝑏 is the threshold value.
We utilize the same strategy performing, cascaded dilation or

erosion operations to identify challenging samples (hard to differ-
entiate) at the action/background boundaries.

R𝑖𝑛𝑛𝑒𝑟 = (b;𝑚)− − (b;M)− (14)

R𝑜𝑢𝑡𝑒𝑟 = (b;M)+ − (b;𝑚)+, (15)

where (·)− and (·)+ represent the binary erosion and dilation op-
erations with mask respectively. Following earlier work [57], we
consider the inner regions as hard action snippet sets, and the outer
regions are considered as hard background snippet sets. Here, we
define hard actions as having a positive relation P𝑎𝑐𝑡 with easy
actions (top-k). Similarly, we define hard backgrounds as having a
positive relation P𝑏𝑘𝑔 with easy backgrounds (bottom-k). Note that
we do not claim technical contribution over snippet mining. Instead,

our main contribution is to develop effective intra-distribution con-
trastive learning for probabilistic embedding space. After snippet
mining, we utilize KL divergence as a statistical metric for mea-
suring the similarity of snippet distributions. The KL divergence
between multivariate Gaussian is defined as:

KL(N𝑃 ∥ N𝑄 ) =
1
2
(tr(Σ−1𝑄 Σ𝑃 )+

(𝜇𝑄 − 𝜇𝑃 )TΣ−1𝑄 (𝜇𝑄 − 𝜇𝑃 ) + ln(
det Σ𝑄
det Σ𝑃

) − 𝐷). (16)

For intra-class compactness of embedding space, we propose an
intra-contrastive loss L𝑖𝑛𝑡𝑟𝑎 to refine the snippet-level distribution
similarity. Finally, the intra-contrastive loss L𝑖𝑛𝑡𝑟𝑎 is formulated
as:

L𝑖𝑛𝑡𝑟𝑎 =

{
− log(1 − 𝑝 (N)) if (N𝑃 ,N𝑄 ) ∈ P
− log(𝑝 (N)) otherwise

. (17)

For the matching probability 𝑝 (N), we simply formulated as the
Jensen-Shannon divergence JSD(N𝑃 ,N𝑄 ) to decrease the diver-
gence of distributions corresponding for the positive pairs and
maximize the divergence for the negative pairs.

3.3.2 Inter-Distribution Contrastive Learning. We further introduce
inter-distribution contrastive learning utilizing action category la-
bels to ensure inter-class separability. Here, we represent the whole
video distribution 𝑝 (z|𝑉 ) as a Gaussian mixture model (GMM) to
measure video-level similarity,

𝑝 (z|𝑉 ) ≈
𝑇∑︁
𝑡=1

a𝑡 · N (𝑔𝜇 (x𝑡 ), diag(𝑔Σ (x𝑡 ))) . (18)

For estimating 𝑝 (z|𝑉 ), we adopt the attention weight a ∈ R𝑇 as
a mixing coefficient to appropriately mix distributions based on
the actionness score. Given video-level category labels, we for-
mulate a self-similarity map H ∈ R𝑁×𝑁 (1 for the same class, 0
for different) to characterize relationships between videos. Similar
to intra-contrastive learning, we compute the matching probabili-
ties between 𝑁 videos within a mini-batch across mixture models,
then enhance inter-video representation by comparing them with
the self-similarity map. Finally, the inter-contrastive loss L𝑖𝑛𝑡𝑒𝑟 is
formulated as:

L𝑖𝑛𝑡𝑒𝑟 = − 1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

LBCE (H(𝑖, 𝑗), 𝑝 (N)), (19)

where LBCE is a binary cross entroy loss.
Beyond aligning with VLP knowledge and the probabilistic em-

bedding space, our proposed contrastive learning framework poses
constraints on the suggested probabilistic representation to ensure
compliance with both intra-compactness and inter-separability.

3.3.3 Total Objectives. Given all the previously mentioned objec-
tives, the total objective L𝑡𝑜𝑡𝑎𝑙 of the entire framework is deter-
mined as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑣𝑖𝑑 + 𝛼L𝑘𝑑 + 𝛽L𝑜𝑟𝑡ℎ𝑜 + 𝛾L𝑝𝑟𝑜𝑏 , (20)

where 𝛼, 𝛽,𝛾 are the hyper-parameters to balance these loss terms
and L𝑝𝑟𝑜𝑏 = L𝑖𝑛𝑡𝑟𝑎 + L𝑖𝑛𝑡𝑒𝑟 .
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Table 1: Comparison with previous state-of-the-art methods on THUMOS14. 0.1:0.7 and 0.1:0.5 represent the average mAP
under IoU thresholds of 0.1:0.7 and 0.1:0.5.

Supervision Method Venue
mAP@IoU (%) AVG

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1:0.7 0.1:0.5

Fully
supervised

TAL-Net [3] CVPR 2018 59.8 57.1 53.2 48.5 42.8 33.8 20.8 45.1 52.3
P-GCN [56] CVPR 2019 69.5 67.8 63.6 57.8 49.1 - - - 61.6
BUMR [62] ECCV 2020 - - 53.9 50.7 45.4 38.0 28.5 - -

Weakly
supervised

CoLA [57] CVPR 2021 66.2 59.5 51.5 41.9 32.2 22.0 13.1 40.9 50.3
CO2-Net [10] MM 2021 70.1 63.6 54.5 45.7 38.3 26.4 13.4 44.6 54.4

Xu et al. [53] TPAMI 2023 73.1 66.9 58.3 48.8 36.5 24.4 13.4 45.9 56.7
Li et al. [24] CVPR 2023 71.1 65.0 56.2 47.8 39.3 27.5 15.2 46.0 55.9
ASCN [63] TMM 2023 71.4 65.6 57.0 48.2 39.8 26.8 14.4 46.2 56.4
Wang et al. [52] CVPR 2023 73.0 68.2 60.0 47.9 37.1 24.4 12.7 46.2 57.2
SMEN [47] TCSVT 2023 74.0 68.5 60.1 49.4 36.9 23.6 12.9 46.5 57.8
Li et al. [23] TNNLS 2023 71.7 66.9 57.2 48.0 40.4 27.5 14.4 46.6 56.8
Zhang et al. [60] TCSVT 2023 72.6 67.1 59.5 49.3 39.4 26.5 13.4 46.8 57.6
P-MIL [41] CVPR 2023 71.8 67.5 58.9 49.0 40.0 27.1 15.1 47.0 57.4
LPR [11] TCSVT 2023 71.9 66.7 57.4 48.4 40.3 28.5 15.8 47.0 56.9
AHLM [51] ICCV 2023 75.1 68.9 60.2 48.9 38.3 26.8 14.7 47.2 58.3
DDG-Net [48] ICCV 2023 72.5 67.7 58.2 49.0 41.4 27.6 14.8 47.3 57.8
STCL-Net [8] TPAMI 2023 72.7 67.1 58.2 49.7 41.8 28.7 16.0 47.7 57.9
GauFuse [65] CVPR 2023 74.0 69.4 60.7 51.8 42.7 26.2 13.1 48.3 59.7
Ju et al. [17] CVPR 2023 73.5 68.8 61.5 53.8 42.0 29.4 16.8 49.4 60.0

Zhang et al. [61] TMM 2024 71.1 65.0 56.4 46.6 38.0 26.1 13.0 45.2 55.4
SPCC-Net [44] TMM 2024 72.6 67.3 59.4 48.7 38.3 25.6 13.4 46.5 57.3
Yun et al. [55] AAAI 2024 72.4 66.9 58.4 49.7 41.8 25.5 12.8 46.8 57.8
SRHN [64] TCSVT 2024 73.1 67.1 58.3 49.6 40.8 28.2 14.1 47.3 57.8

PVLR (Ours) - 74.9 69.9 61.4 53.1 45.1 30.5 17.1 50.3 60.9

4 EXPERIMENTS
4.1 Experimental Settings
We conduct experiments on two popular WTAL benchmarks: THU-
MOS14 [13] and ActivityNet v1.3 [1]. THUMOS14 is a widely used
benchmark for theWTAL problem. It contains 200 validation videos
and 213 test videos for 20 sports categories. Following previous
works [10, 42, 57], we use 200 validation videos to train our frame-
work and use 213 test videos for evaluation. In WTAL, THUMOS14
is the most challenging dataset because of the motion blur, signif-
icant intra-class varieties, and extremely short action instances.
ActivityNet v1.3 has 10,024 training videos, 4,926 validation videos,
and 5,044 testing videos from 200 action categories. Since annota-
tions for the testing set are not released, we train on the training
set and test on the validation set. Challenges in ActivityNet usually
lie in numerous action categories. Following the standard evalua-
tion metrics, we evaluate our method with mean Average Precision
(mAP) under different Intersection over Union (IoU) thresholds
on the temporal axis. We adopt the same evaluation code from
previous works [10, 14] for fair comparisons. Furthermore, in the
inference phase, we computed the action confidence score using the
estimated mean without utilizing the reparameterization strategy.

4.2 Implementation Details
To conduct experiments on the THUMOS14 dataset and Activi-
tyNet v1.3 dataset, we first divide each video into non-overlapping
segments consisting of 16 frames. Subsequently, we extract the
1024-dimensional RGB and optical flow features from the I3D net-
work [2] pre-trained on the Kinetics400 dataset. We utilized the
TV-L1 algorithm to extract the flow features. The fixed number of
segments 𝑇 is set to 320 and 60 for THUMOS14 and ActivityNet
v1.3, respectively. For the base WTAL model, it can be any existing
WTAL method and we use the CO2-Net [10] as the base head for
its simple framework. We adopt ResNet-50 as a backbone network
for the CLIP image encoder ΨI . It is worth noting that the I3D
network and the CLIP encoders are not fine-tuned during training.
For CLIP image feature, we divide the video as described above and
the middle frame of each snippet is fed into ΨI . For the probabilistic
adapter, 𝑔𝜇 indicates a single linear layer, while 𝑔Σ is a separate net-
work with a linear layer followed by the ReLU function, to ensure
the Σ remains positive definite. Similar to previous work [16], we
prepend and append 4 prompt vectors to word embeddingΨ𝑒𝑚𝑏 (𝑡𝑐 ),
which is initialized withN(0, 0.01). In P-CAS, we used the learnable
vector to model the background class, which is hard to characterize.
Our experiments are conducted on an NVIDIA Tesla V100 GPU.



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Probabilistic Vision-Language Representation for Weakly Supervised Temporal Action Localization ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Results on ActivityNet v1.3. 0.5:0.95 indicates the
average mAP at IoU thresholds of 0.5:0.95.

Method Venue
mAP@IoU (%) AVG

0.5 0.75 0.95 0.5:0.95

DCC [25] CVPR 2022 38.8 24.2 5.7 24.3
RSKP [12] CVPR 2022 40.6 24.6 5.9 25.0
ASM-Loc [9] CVPR 2022 41.0 24.9 6.2 25.1

STCL-Net [8] TPAMI 2023 40.6 24.0 6.0 24.7
Zhang et al. [60] TCSVT 2023 41.6 25.1 6.5 25.3
LPR [11] TCSVT 2023 41.4 25.3 6.2 25.4
P-MIL [41] CVPR 2023 41.8 25.4 5.2 25.5
AHLM [51] ICCV 2023 42.3 24.8 6.9 25.9
Li et al. [24] CVPR 2023 41.8 26.0 6.0 26.0
Wang et al. [52] CVPR 2023 41.8 25.7 6.5 26.3
Li et al. [23] TNNLS 2023 42.3 26.4 6.1 26.4
CASE [29] ICCV 2023 43.2 26.2 6.7 26.8

Yun et al. [55] AAAI 2024 39.4 25.8 6.4 25.8
SRHN [64] TCSVT 2024 41.7 26.1 6.1 26.2
Liu et al. [28] ICASSP 2024 42.8 26.8 6.0 26.4

PVLR (Ours) - 43.6 27.4 6.5 27.4

4.3 Comparison With State-Of-The-Art Methods
In this section, we compare our proposed PVLR with previous
state-of-the-art methods. For the THUMOS14 [13], it is evident that
the proposed PVLR outperforms the performance of all previous
state-of-the-art methods as shown in Table 1. Especially in the
WTAL scenarios, where performance under high IoU(0.5-0.7) is of
particular importance, our proposed method distinguishes itself by
surpassing the performance of all existing methodologies. In direct
comparison to prior studies [17, 24] that also incorporate textual
information, our approach exhibits superior performance, with a
margin ranging from 0.9% to 4.3% when it comes to the important
criterion of average mAP (0.1:0.7). Additionally, our approach was
shown to either outperform or reach similar performance levels as
recent fully supervised methods. In Table 2, results for the larger
dataset ActivityNet v1.3 are presented. Similarly, our proposed
PVLR demonstrates superior performance compared to existing
weakly supervised state-of-the-art methods.

4.4 Ablation Study
To demonstrate the effectiveness of our model components, we
analyze the impact of each component in this section with THU-
MOS14 [13]. Table 3 presents the effect of the proposed components
in comparison to the baseline approach [10]. The VLP knowledge
distillation module serves as a pivotal step within our framework,
marking the inception of our approach. By conducting feature align-
ment in a probabilistic space, PVLR introduces a fundamental basis
that was previously overlooked in earlier literature. By integrating
VLP knowledge, we realized a performance boost of 2.4% through
the implementation of a probabilistic class activation sequence (P-
CAS). Also, refinement of our probabilistic embedding space, which
benefited from the introduction of distribution contrastive learning,
led to a 2.0% improvement in efficacy. Finally, an evident gain of

Table 3: Component-wise ablation study on THUMOS14.

Method
mAP@IoU AVG

0.3 0.5 0.7 0.3:0.7

Baseline [10] 54.5 38.3 13.4 35.7

+Distillation from VLP knowledge 58.1 40.3 15.3 38.1
+Intra-contrastive 59.4 42.3 15.9 39.5
+Inter-contrastive 59.6 43.7 16.9 40.1

+Orthogonalization of text prompts 61.4 45.1 17.1 41.4

Table 4: Further analysis for probabilistic representation.

Metric
mAP@IoU AVG

0.3 0.5 0.7 0.3:0.7

Deterministic CAS 57.5 41.0 15.8 38.3

Mahalanonis Distance 60.1 44.0 17.3 40.7
Bhattacharyya Distance 60.8 44.0 17.3 40.9

Kullback–Leibler Divergence 61.4 45.1 17.1 41.4

1.3% can be obtained by introducing the orthogonalization of text
embedding which enhances the discriminative capacity between
text category embeddings. We have ultimately demonstrated the
effectiveness of our proposed module by achieving a performance
improvement of 5.7%, a level that has been difficult to find in previ-
ous research.

4.5 Discussion
To provide deeper insights into the design aspect of our proposed
framework, we conducted several experiments in this section.

4.5.1 Probabilistic Representation. As the initiative procedure in
our framework, the probabilistic representation is of great impor-
tance. However, to compare its significance, we developed a simple
baseline using deterministic representation. For the deterministic
baseline, we conducted experiments utilizing one-to-one match-
ing between human action knowledge and text embedding with-
out probabilistic adapter. In Table 4, the first row "Deterministic
CAS" indicates the deterministic baseline. Quantitatively compar-
ing, there is a performance decrease of about 3.1% compared to
the proposed probabilistic approach in Table 4. Also, we compare
qualitative visualization results of selected videos from the THU-
MOS14 dataset. Figure 3 illustrates that the deterministic approach
frequently produces predictions beyond the ground truth bound-
aries, struggling to capture subtle variations in human action. In
contrast, the probabilistic method effectively models temporal dy-
namics, focusing its predictions on the segments where real actions
unfold. In Figure 3(a), the probabilistic approach appears to strug-
gle with completely filling the GT segment, yet this specific area,
characterized by an absence of motion change, is designated for
future exploration. From Table 4, besides the KL divergence, other
statistical metrics are also suitable for our contrastive learning. Ta-
ble 4 reveals that metrics capable of assessing inter-distributional
similarity exhibit relatively consistent performance with minimal
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Figure 3: Qualitative Results on THUMOS14. We compared
the class activation sequence (CAS) of deterministic and prob-
abilistic approaches. In this case, the red box is for the back-
ground, and the blue box is for the action.

variation. By not relying on a specific distance metric, it can be
considered that a well-generalized probability distribution has been
estimated, leading to the successful modeling of a probabilistic
embedding space. Finally, the marginal superiority of KL diver-
gence led to its utilization for the proposed distribution contrastive
learning.

4.5.2 Number of 𝐾 samples. During the generation of P-CAS, we
reparameterized 𝐾 samples of the estimated snippet distribution
to compute the similarity between the estimated distribution and
the action category text embedding. To analyze the impact of the
number of samples, we compared the performances under different
values of 𝐾 , as shown in Table 5. As observed, a small value for 𝐾
leads to suboptimal performance, resulting in a lack of representa-
tion of the estimated distribution. Here, we denoted the previously
described deterministic baseline as 𝐾 = 0. Considering that larger
values of 𝐾 capture the entire distribution of the snippet through
Monte-Carlo estimation, performance improves with an increase in
𝐾 . Nevertheless, an increased value for 𝐾 results in higher compu-
tational demands. Calculating the confidence score for composing a
P-CAS requires computations on the order of O(𝐾) for each snippet
and action category. Considering the computational overhead, we
decided on 𝐾 = 20.

4.6 Generalization Study
In Table 6, we demonstrate the generality of our contributions by
integrating them into previous works in a plug-and-play manner.

Table 5: Number of 𝐾 ablation study on THUMOS14.

# of samples
mAP@IoU AVG

0.3 0.5 0.7 0.3:0.7

Baseline [10] 54.5 38.3 13.4 35.7

𝐾 = 0 57.5 41.0 15.8 38.3
𝐾 = 5 59.8 41.4 15.5 38.9
𝐾 = 10 60.1 43.8 16.9 40.5
𝐾 = 20 61.4 45.1 17.1 41.4

Table 6: Framework generalization results on THUMOS14.

Method
mAP@IoU AVG

0.3 0.5 0.7 0.3:0.7

BaS-Net [21] 44.6 26.6 10.0 27.0
BaS-Net+Ours 50.1 29.2 10.7 30.2

CoLA [57] 51.8 34.0 12.5 32.9
CoLA+Ours 56.2 35.5 13.3 35.1

To achieve this, we conducted comparative experiments by sub-
stituting the base WTAL head with previous works [21, 57]. The
additional training modules exclusively considered the proposed
probabilistic adapter for probabilistic embedding. Furthermore, we
reformulated the classification objective using probabilistic class ac-
tivation sequences (P-CAS). The results show that our framework
enhances their performance by an average mAP increase rang-
ing from 2% to 3%, indicating robust generalization across various
methods and model architecture designs.

5 CONCLUSION AND FUTUREWORKS
In this work, we present a novel framework that leverages large-
scale vision-language pre-training (VLP) to address weakly su-
pervised temporal action localization (WTAL). Our motivation
stemmed from the observation that the deterministic represen-
tation with VLP may not be optimal for WTAL. Furthermore, we
noticed that previous studies did not consider the alignment be-
tween human action and VLP knowledge. To address these con-
cerns, we introduce a probabilistic embedding framework aligned
with human action and VLP knowledge, enhanced by distribution
contrastive learning. Our method significantly outperforms previ-
ous approaches on two prominent datasets, revealing the efficacy
of probabilistic embedding within the VLP representation. How-
ever, the exploration of probabilistic embedding for text data solely
represented by action category names remains unexplored. For
future work, we will explore leveraging the recently acclaimed
large-language model (LLM) to generate attributes for each ac-
tion category and subsequently integrate them with probabilistic
embeddings. We believe that the probabilistic embedding with a
vision-language pretrained model will be a promising direction for
various weakly supervised and unsupervised learning tasks.
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