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Abstract

This document provides supplemental materials for the paper “Improving and Evaluating Open Deep Research
Agents” submitted to ICLR 2026. The supplemental materials include detailed implementation specifications, com-
plete system prompts, hyperparameter justifications, additional experimental details, and code availability informa-
tion.

1 Complete Implementation Details

1.1 Original ODR System Architecture

The original Open Deep Research (ODR) system implements a single-pass pipeline with three sequential components:
Web URL Search Module:

* Input: Natural language question from user

* Process: LLM generates single general-purpose search query using fixed prompt
e Qutput: Single search query submitted to search engine

* Implementation: Uses GPT-40-mini

Content Extraction Module:

* Input: Top-ranked URL from search results

* Process: FireCrawl renders webpage and extracts all visible text content
e Qutput: Plain text representation of webpage content

* Implementation: No LLM involvement, direct HTML-to-text conversion
Response Generation Module:

* Input: Extracted content + original user question

* Process: LLM generates natural language answer using fixed prompt

* Output: Free-form natural language response

» Limitations: No citation, confidence scoring, or structured output



1.2 ODR+ System Architecture Details

Question Decomposition Module:
The decomposition process follows a two-stage approach:

1. Constraint Extraction (extractConstraints function):
» Uses prompt P, with GPT-40-mini
¢ Qutput format: JSON array of constraint objects
» Each constraint includes: type, value, specificity_score

2. Sub-question Generation (generateSubQuestions function):

» Uses prompt P, with extracted constraints

 Target: Focused sub-questions from the original query

Iterative Sub-Solution Search Module:
The search loop implements the following control flow:

Listing 1: ODR+ Search Loop Pseudocode

1 |while (depth < D_max AND time < T_max AND subquestions.length > 0):
2 current_subgquestion = subquestions.pop ()

3

4 # Multi-attempt search for stability

5 for attempt in range (N_query) :

6 urls = webSearch (current_subquestion)

7 url_frequency_map.update (urls)

8

9 # Select most frequent URLs

10 top_urls = selectMostFrequent (url_frequency_map, k=3)

1

12 # Extract with constraint-aware prompting

13 extraction_prompt = createExtractionPrompt (P_3, constraints)
14 findings = extractFromUrls (top_urls, extraction_prompt)

15

16 # Analyze evidence and plan next steps

17 analysis = analyzeEvidence (P_4, findings, current_subgquestion)
18

19 if analysis.confidence > threshold:

20 subAnswers.append (analysis.answer)

21

2 if analysis.new_subquestions:

23 subquestions.extend (analysis.new_subquestions)

2

25 if should_terminate (analysis):

26 break

Response Synthesis Module:
Final synthesis implements structured output generation:

1. Evidence Aggregation:

¢ Collects all findings from research state
* Organizes by source and relevance to original question

* Maintains provenance information for citations
2. Constraint Matching:

* Evaluates how well findings satisfy original constraints
 Calculates match percentage for confidence scoring

* Identifies gaps in evidence coverage



3. Structured Output Generation:

» Uses prompt P; for final synthesis
* Enforces BrowseComp output format

* Implements validation and fallback mechanisms

2 Complete System Prompts

Based on the actual implementation code, the ODR+ system uses the following prompts:

2.1 Constraint Extraction Prompt ()

Extract the key identifying constraints from this BrowseComp question: “[question]”
INSTRUCTIONS:

1. Identify the MOST SPECIFIC details that uniquely identify the target
2. Focus on constraints that narrow down the possibilities

3. Include exact numbers, dates, quotes, names, and unique descriptors
4. Ignore generic terms and formatting instructions

5. Prioritize constraints that would be hard to guess or common

Extract constraints as a JSON array of strings:

2.2 Sub-question Generation Prompt (/)

Generate SPECIFIC research subquestions to solve this BrowseComp identification problem:
ORIGINAL QUESTION: “[question]”

[Current findings section if applicable]

SUBQUESTION GENERATION RULES:

1. Each subquestion MUST preserve the most identifying constraints from above
2. Focus on NARROWING DOWN to the specific individual/entity described

3. Combine multiple constraint types to create targeted searches
4

. Progress from broad identification to specific details

Generate subquestions as a JSON array:

2.3 Content Extraction Prompt (F;)

URGENT: Extract ONLY factual data that matches these EXACT constraints from: “[question]”
REQUIRED CONSTRAINT MATCHES: [constraints list with numbered items]

EXTRACTION RULES: - Extract EXACT numbers, dates, names, locations that match constraints
CRITICAL: Extract data in JSON format:

"constraintMatches": {
"[constraintl]": "found value or null",
"[constraint2]": "found value or null"
}I
"entityName": "main entity if identified",
"additionalContext": "relevant supporting details"

}

If no constraint matches found, return: {“constraintMatches™: {}, “entityName”: null}



2.4 Evidence Analysis Prompt (F;)

You are analyzing research findings for this BrowseComp identification question: “[question]”
Current findings ([number] sources): [findings with sources]
[Previous subquestion answers if available]

ANALYSIS INSTRUCTIONS:

1. Determine if we can identify the specific individual/entity described

2. Check if we have enough constraint matches to answer the original question

3. If you already found a candidate answer build subsequent subquestions around VERIFYING that candidate
4

. Generate NEW subquestions that:
* BUILD ON existing findings - if you found a specific name/entity, include it in new subquestions
* Preserve the most identifying constraints from the original question
* VERIFY the candidate found rather than starting over with generic searches
* Combine multiple constraint types for precise identification
* Progress toward answering the specific question asked
* Are NOT generic - must include specific details that uniquely identify the target

CRITICAL: - Subquestions must NOT be generic - If you found a candidate answer, BUILD ON IT in subsequent
subquestions - Include specific details from the original question that uniquely identify the target - VERIFY existing
findings rather than starting over

CONFIDENCE ASSESSMENT: - HIGH: Multiple sources confirm same individual/entity with exact constraint
matches - MEDIUM: Good constraint matches but need verification of specific detail asked - LOW: Found relevant
information but constraints don’t uniquely identify target

ANSWER STRATEGY: - If you found a specific candidate answer in earlier findings, note it as a potential answer -
Continue searching to see if you can find better verification or alternative candidates - If no better answers emerge after
additional searches, use the best candidate found so far - Don’t discard good candidates just because all constraints
aren’t perfectly verified

Respond with ONLY a JSON object (NO backticks, NO markdown):

"summary": "brief summary focusing on constraint matching progress",

"hasAnswer": false,

"confidence": "low|medium|high",

"gaps": ["specific missing constraints or verification needs"],

"shouldContinue": true,

"subquestions": ["constraint-preserving subquestion 1", "constraint-preserving subquestion 2"]
"subAnswer": "answer to the subquestion just attempted (if determinable from findings)",
"lastQuery": "[last queryl",

"nextSearchTopic": "constraint-aware search terms for missing piece",

"strategy": "how to use constraints to narrow down further"

Time remaining: [time] minutes

2.5 Response Synthesis Prompt (Fs)

Answer this BrowseComp question: “[question]”

KEY IDENTIFYING CONSTRAINTS: [numbered constraints list]
CONSTRAINT COVERAGE ANALYSIS: [constraint coverage with source counts]
RESEARCH FINDINGS ([number] sources): [findings organized by source]
ANALYSIS STRATEGY:

1. For each potential answer, count how many KEY CONSTRAINTS it satisfies



2. Calculate match percentage: (matched constraints / total constraints) x 100
3. Prioritize answers with highest constraint match percentage
4. Use source frequency and quality as tiebreakers

5. Only use “Unknown” if no answer matches >40% of key constraints

CONSTRAINT SCORING EXAMPLES: - Answer matches 4/5 constraints = 80% confidence - Answer matches
2/6 constraints = 33% confidence - Perfect matches of specific numbers/names worth more than partial matches

The answer with the HIGHEST constraint match percentage is most likely correct.

FORMAT: Explanation: [Which constraints were matched, what percentage, and why this answer scored highest]
Exact Answer: [The answer with best constraint coverage] Confidence: [Percentage based on constraint matching
and source quality]

3 Hyperparameter Justification and Sensitivity Analysis

3.1 Core Hyperparameters

Maximum Search Depth (D, = 6):
» Rationale: Based on analysis of BrowseComp training questions requiring 3-5 information hops
* Sensitivity: Performance plateaus after depth 5-6 in training experiments
* Computational trade-off: Each additional depth level increases runtime ~35 seconds
Time Limit (7,,,, = 210 seconds):
 Rationale: Balances thoroughness with computational constraints
* Analysis: 90% of successful training answers found within 180 seconds
Top-k URLs (k = 3):
» Rationale: Empirical testing showed diminishing returns beyond 3 URLSs per search
* Resource constraint: FireCrawl extraction time scales linearly with URL count
* Quality consideration: Top 3 URLs generally contain highest-relevance information
Search Retries (Ngyery = 3):
» Rationale: Reduces search result variability observed in preliminary experiments

* Validation: Standard deviation of URL rankings decreased by 40% with 3 retries

4 Detailed Experimental Methodology

4.1 BrowseComp-Small Construction
Selection Criteria:
* Random sampling from full BrowseComp dataset

» Stratified by topic distribution: 25% entertainment, 20% science, 20% history, 15% politics, 10% geography,
10% other

* Difficulty validation: Each question verified unsolvable by GPT-4 without web access

¢ Answer verification: Ground truth answers confirmed findable via web search



Train/Test Split:

* 60 questions for development (used for prompt engineering and hyperparameter tuning)
* 60 questions for evaluation (held out during ODR+ development)

* No overlap between splits

 Similar topic distribution maintained in both splits

4.2 Baseline System Evaluation
ODR Evaluation:
* 10 attempts per question to account for search variability
* Timeout: 300 seconds per question
* Success criteria: Exact match with BrowseComp ground truth using official evaluator
Proprietary System Evaluation:
¢ Claude Deep Research: Accessed via Anthropic API with default settings
* Gemini Deep Research: Accessed via Google Al Studio with standard configuration
* Both systems evaluated with same questions and timeout limits

¢ Manual verification of answers against ground truth due to format differences

4.3 Evaluation Metrics and Protocols
Primary Metric: Exact Match Accuracy
* Evaluated using official BrowseComp evaluator
* GPT-40-based semantic comparison with ground truth
* Binary scoring: 1 for correct, O for incorrect
* No partial credit awarded
Secondary Metrics:
* Average runtime per question

 Search efficiency (measured as the proportion of queries that fully completed without breaking out)

S Ablation Study Details

5.1 Ablation Configurations
No Sub-question Decomposition:
* Modification: Bypass constraint extraction and sub-question generation
* Behavior: Use original question directly as single search query
* Expected impact: Reduced performance on multi-hop questions requiring information synthesis
No Iterative Planning:

* Modification: Remove research state management and adaptive search



* Behavior: Process sub-questions sequentially without feedback loops

» Expected impact: Inability to refine search strategy based on interim findings
No Structured Synthesis:

* Modification: Replace structured output with free-text generation

* Behavior: Generate natural language response without format constraints

» Expected impact: Format incompatibility with BrowseComp evaluator

5.2 Ablation Results Analysis
Statistical Analysis:
» Sample size: 20 questions randomly selected from test set
e Multiple runs: 3 runs per configuration to account for variability
Performance Breakdown:
 Full ODR+: 25% accuracy (5/20 questions)
* No structured synthesis: 0% accuracy (format rejection by evaluator)
* No sub-question decomposition: 5% accuracy (1/20 questions)
* No iterative planning: 5% accuracy (1/20 questions)
Component Contribution Analysis:
* Structured synthesis: Enables evaluability (critical for assessment)
¢ Sub-question decomposition: +20% performance improvement
¢ [terative planning: +20% performance improvement

* Combined effect: Synergistic rather than additive

6 Error Analysis and Failure Cases

6.1 Common Failure Modes

Search Query Formulation Errors:
* Sub-questions too broad, returning generic information
* Sub-questions too narrow, missing relevant sources
» Constraint preservation failures in query generation
Time and Depth Limitations:
* Complex questions requiring >6 search hops
» Slow web page loading affecting time budget
 Search engine rate limiting interrupting research flow
Ground Truth Issues:
¢ Questions with outdated or inaccessible information online
* Ambiguous ground truth answers

* Information findable but requiring specialized domain knowledge



6.2 Comparison with Proprietary Systems

Claude Deep Research Failure Analysis:
* Generated comprehensive reports but missed exact answers
 Strong analytical capability but poor answer extraction
» Format incompatibility with BrowseComp evaluation protocol
Gemini Deep Research Failure Analysis:
 Similar pattern of verbose responses without exact answers
* Good information gathering but weak synthesis

» Tendency to hedge rather than provide definitive responses

7 Code Availability and Reproducibility

7.1 Open Source Implementation

ODR+ Repository:
* Complete implementation available at: [URL to be provided upon publication]
¢ Includes all prompt templates, system configurations, and evaluation scripts
* Dependencies: Python 3.8+, OpenAl API, FireCrawl API

¢ License: MIT License for academic and commercial use

7.2 Experimental Reproducibility
Random Seed Management:
* Fixed seeds for all random sampling operations
Environment Specifications:
* Hardware requirements: 8GB RAM, standard CPU (no GPU required)
* API dependencies: OpenAl API key, FireCrawl API key

8 Research State Management Implementation

The ODR+ system maintains a structured internal state object throughout the iterative research process:

Listing 2: Research State Structure

1 | const researchState = {

2 findings: [], // Array of {text, source} objects
3 summaries: [], // Intermediate analysis summaries
4 nextSearchTopic: ’', // Topic for next search iteration
5 currentDepth: 0, // Current search depth

6 failedAttempts: O, // Count of failed search attempts
7 maxFailedAttempts: 3, // Threshold for termination

8 processedUrls: new Set (), // URLs already processed

9 subquestions: [], // Queue of pending sub-questions

10 answeredSubquestions: [], // Completed sub-questions

1 subAnswers: [], // Partial answers to sub-questions
12 urlFrequencyMap: new Map() // URL frequency tracking

13|}




This structured memory enables the system to:

* Avoid repeated queries and URL processing

* Recover from failed searches with adaptive planning
* Prioritize frequently appearing sources for extraction
* Organize retrieved evidence for final synthesis

* Maintain coherent reasoning across multiple search iterations



