A Full Proof of Propositions and Theorems

A. 1 Proof of Proposition 3.1

Proposition 3.1. $I-\kappa \mathrm{ff}^{\top}$ is an elementary matrix, and its eigen values are $\left\{1,1,1, \ldots, 1-\kappa \mathbf{f}^{\top} \mathbf{f}\right\}$.

Proof. First, the definition of elementary matrix (Horn \& Johnson, 2012) is given: Assume $u, v \in$ $C^{n}, \kappa \in C$, then $E(u, v, \kappa)=I-\kappa u v^{\top}$ is an elementary matrix, where C^{n} is the vector space and C is the set of real numbers.

Then we let $u=\mathbf{f}, v=\mathbf{f}$, obviously $E(\mathbf{f}, \mathbf{f}, \kappa)=I-\kappa \mathbf{f f}^{\top}$ is an elementary matrix.
Regarding eigenvalues, an elementary matrix $E(u, v, \kappa)$ has the following properties (Horn \& Johnson, 2012):
Proposition A.1. The eigenvalues of $E(u, v, \kappa)$ are $\left\{1,1,1, \ldots, 1-\kappa v^{\top} u\right\}$.
Based on A.1. the eigenvalues of $I-\kappa \mathbf{f f}^{\top}$ can be formulated as $\left\{1,1,1, \ldots, 1-\kappa \mathbf{f}^{\top} \mathbf{f}\right\}$.

A. 2 Proof of Theorem 3.2

Theorem 3.2. $D(C) C E$ provides a unique solution to the equilibrium solution problem and the solution exists when $\kappa<\frac{1}{\mathbf{f}^{\top} \mathbf{f}}$.

Proof. When the objective function of the optimization problem is convex quadratic and the constraints are affine, the problem is called quadratic programming, and there is a unique solution to the quadratic programming problem (Boyd \& Vandenberghe, 2004).
The objective function of $\mathrm{D}(\mathrm{C}) \mathrm{CE},-\frac{1}{2} \sigma^{\top}\left(I-\kappa \mathrm{ff}^{\top}\right) \sigma$, is a quadratic. To make it a convex quadratic, the matrix $I-\kappa \mathrm{ff}^{\top}$ must be positive definite. A square matrix is a positive definite matrix if all its eigenvalues are positive (Strang, 2022). Based on Proposition 3.1. if $1-\kappa \mathbf{f}^{\top} \mathbf{f}>0$ or $\kappa<\frac{1}{\mathbf{f}^{\top} \mathbf{f}}$, then all eigenvalues of $I-\kappa \mathbf{f f}^{\dagger}$ are positive. In addition, the constraints of Diverse (C)CE are all linear affine. To sum up, when $\kappa<\frac{1}{\mathbf{f}^{\top} \mathbf{f}}$, there is a unique solution to Diverse CCE.

A. 3 Proof of Theorem 3.3

Theorem 3.3. The closed form solution σ^{*} to $D(C) C E$ is formulated as:

$$
\begin{aligned}
& \text { General support: } \sigma^{*}=F^{-1} C A^{\top} \lambda_{1}^{*}+F^{-1} C \lambda_{2}^{*}-D \\
& \text { Full support: } \sigma^{*}=F^{-1} C A^{\top} \lambda_{1}^{*}-D
\end{aligned}
$$

where $F=I-\kappa \mathbf{f f}^{\top}, F^{-1}=I-\frac{\kappa}{\kappa \mathbf{f}^{\top} \mathbf{f}-1} \mathrm{ff}^{\top}, D^{\top}=\frac{\mathbf{1}^{\top} F^{-1}}{\mathbf{1}^{\top} F^{-1} \mathbf{1}}, C=\mathbf{1} D^{\top}-I$ and $\mathbf{1}$ is a vector of ones.

Proof. We start with the primal Lagrangian form:

$$
L=-\frac{1}{2} \sigma^{\top}\left(I-\kappa \mathrm{ff}^{\top}\right) \sigma+\lambda_{1}^{\top}(A \sigma-\epsilon)-\lambda_{2}^{\top} \sigma+v\left(\mathbf{1}^{\top} \sigma-1\right),
$$

Then we take derivatives with respect to the primal variables σ, and make them equal to zero.

$$
\begin{gathered}
\frac{\partial L}{\partial \sigma}=F \sigma+A^{\top} \lambda_{1}-\lambda_{2}+v \mathbf{1}=0 \Rightarrow \\
\sigma^{*}=-F^{-1}\left(A^{\top} \lambda_{1}-\lambda_{2}+v \mathbf{1}\right)
\end{gathered}
$$

Then σ^{*} can be substituted into the Lagrangian function.

$$
\begin{aligned}
L= & -\frac{1}{2}\left(\lambda_{1}^{\top} A F^{-1} A^{\top} \lambda_{1}-\lambda_{1}^{\top} A F^{-1} \lambda_{2}+\lambda_{1}^{\top} A F^{-1} v \mathbf{1}-\lambda_{2}^{\top} F^{-1} A^{\top} \lambda_{1}\right. \\
& \left.+\lambda_{2}^{\top} F^{-1} \lambda_{2}-\lambda_{2}^{\top} F^{-1} v \mathbf{1}+\mathbf{1}^{\top} v F^{-1} v \mathbf{1}+\mathbf{1}^{\top} v F^{-1} A^{\top} \lambda_{1}-\mathbf{1}^{\top} v F^{-1} \lambda_{2}\right) \\
& -\lambda_{1}^{\top} \epsilon-v
\end{aligned}
$$

We take derivatives with respect to v and then make the derivatives equal to zero.

$$
\begin{gathered}
\frac{\partial L}{\partial v}=-\frac{1}{2}\left(\lambda_{1}^{\top} A F^{-1} \mathbf{1}-\lambda_{2}^{\top} F^{-1} \mathbf{1}+\mathbf{1}^{\top} F^{-1} A^{\top} \lambda_{1}-\mathbf{1}^{\top} F^{-1} \lambda_{2}+2 \mathbf{1}^{\top} F^{-1} \mathbf{1} v\right)-1=0 \Rightarrow \\
v^{*}=-\frac{\mathbf{1}^{\top} F^{-1} A^{\top} \lambda_{1}-\mathbf{1}^{\top} F^{-1} \lambda_{2}+1}{\mathbf{1}^{\top} F^{-1} \mathbf{1}}
\end{gathered}
$$

We then substitute v^{*} into the Lagrangian function L.

$$
\begin{aligned}
L= & \frac{1}{2} \lambda_{1}^{\top} A F^{-1}\left(\frac{\mathbf{1 1}^{\top} F^{-1}}{\mathbf{1}^{\top} F^{-1} \mathbf{1}}-I\right) A^{\top} \lambda_{1}+\frac{\mathbf{1}^{\top} F^{-1} A^{\top} \lambda_{1}}{\mathbf{1}^{\top} F^{-1} \mathbf{1}} \\
& +\frac{1}{2} \lambda_{2}^{\top} F^{-1}\left(\frac{\mathbf{1 1}^{\top} F^{-1}}{\mathbf{1}^{\top} F^{-1} \mathbf{1}}-I\right) A^{\top} \lambda_{2}-\frac{\mathbf{1}^{\top} F^{-1} \lambda_{2}}{\mathbf{1}^{\top} F^{-1} \mathbf{1}} \\
& -\lambda_{1}^{\top} A F^{-1}\left(\frac{\mathbf{1 1}^{\top} F^{-1}}{\mathbf{1}^{\top} F^{-1} \mathbf{1}}-I\right) \lambda_{2}-\lambda_{1}^{\top} \epsilon+\frac{1}{2 \times \mathbf{1}^{\top} F^{-1} \mathbf{1}}
\end{aligned}
$$

We let $F=I-\kappa \mathrm{ff}^{\top}, F^{-1}=I-\frac{\kappa}{\kappa \mathbf{f}^{\top} \mathbf{f}-1} \mathrm{ff}^{\top}, D^{\top}=\frac{\mathbf{1}^{\top} F^{-1}}{\mathbf{1}^{\top} F^{-1} \mathbf{1}}$ and $C=\mathbf{1} D^{\top}-I$. The Lagrangian function can be simply formulated.

$$
\begin{aligned}
L= & \frac{1}{2} \lambda_{1}^{\top} A F^{-1} C A^{\top} \lambda_{1}+D^{\top} A^{\top} \lambda_{1} \\
& +\frac{1}{2} \lambda_{2}^{\top} F^{-1} C A^{\top} \lambda_{2}-D^{\top} \lambda_{2} \\
& -\lambda_{1}^{\top} A F^{-1} C \lambda_{2}-\epsilon^{\top} \lambda_{1}+\frac{1}{2 \times \mathbf{1}^{\top} F^{-1} \mathbf{1}}
\end{aligned}
$$

Next we substitute v^{*} into σ^{*} to get the closed form solution:

$$
\begin{aligned}
\sigma^{*} & =-F^{-1}\left(A^{\top} \lambda_{1}-\lambda_{2}+v^{*} \mathbf{1}\right) \\
& =F^{-1} C A^{\top} \lambda_{1}^{*}-F^{-1} C \lambda_{2}^{*}-D .
\end{aligned}
$$

For the case where σ has full support, $\lambda_{2}=0$ holds, because any $\sigma \geq 0$ constraint has no effect. Then the closed form solution in full-support cases is

$$
\sigma^{*}=F^{-1} C A^{\top} \lambda_{1}^{*}-D
$$

A. 4 Proof of Theorem 3.4

Theorem 3.4. There is an ϵ such that a full-support $D(C) C E$ solution exists. Specifically, the relationship between ϵ and types of solutions is:

1. A uniform solution b always exists when $\max (A b) \leq \epsilon$.
2. The existing solution is non-uniform when $\epsilon<\max (A b)$.

Proof. Recalling the optimization objective $-\frac{1}{2} \sigma^{\top}\left(I-\kappa \mathrm{ff}^{\top}\right) \sigma$, it is obvious that when $\sigma=b$, the optimization objective reaches its maximum value. Additionally, σ must satisfy the linear constraint $A \sigma \leq \epsilon$. Therefore, if $\max (A b)>\epsilon$, then σ cannot be uniform. On the contrary, when $\max (A b) \leq$ ϵ, a uniform solution b must exist.

