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A FULL PROOF OF PROPOSITIONS AND THEOREMS

A.1 PROOF OF PROPOSITION[3.1]

Proposition 3.1. [ — kff T is an elementary matrix, and its eigen values are {1,1,1,....;1 — xf Tf}.

Proof. First, the definition of elementary matrix (Horn & Johnson, 2012) is given: Assume u,v €
C", Kk € C,then E(u,v,k) = I — kuv' is an elementary matrix, where C" is the vector space and
C is the set of real numbers.

Then we let u = f,v = f, obviously E(f,f, <) = I — xff" is an elementary matrix.

Regarding eigenvalues, an elementary matrix E'(u, v, x) has the following properties (Horn & John-
sonl, [2012):

Proposition A.1. The eigenvalues of E(u,v,r) are {1,1,1,....,1 — kv Tu}.
Based on the eigenvalues of I — xff" can be formulated as {1,1,1,...,1— Iifo}.

A.2 PROOF OF THEOREM[3.2]

Theorem 3.2. D(C)CE provides a unique solution to the equilibrium solution problem and the
solution exists when r < 5.

Proof. When the objective function of the optimization problem is convex quadratic and the con-
straints are affine, the problem is called quadratic programming, and there is a unique solution to the
quadratic programming problem (Boyd & Vandenberghel [2004).

The objective function of D(C)CE, — %O’T (I —kfF 7)o, is a quadratic. To make it a convex quadratic,
the matrix I — «fF T must be positive definite. A square matrix is a positive definite matrix if all its
eigenvalues are positive (Strang,2022). Based on Proposition ifl —kf'£>00rk < f%f, then
all eigenvalues of I — ff' are positive. In addition, the constraints of Diverse (C)CE are all linear

affine. To sum up, when k < f%f, there is a unique solution to Diverse CCE.

A.3 PROOF OF THEOREM [3.3]

Theorem 3.3. The closed form solution o* to D(C)CE is formulated as:

General support: 0* = F1CATA} + F~1ON; — D,

Full support: 0* = F~'CA" Xt — D,

F7,DT = L F_ ¢ —1DT — I and 1is a vector of

where F =1 —sxff T, F1=17 L

ones.

o KfTKf—l
Proof. We start with the primal Lagrangian form:
1
L= —§O'T(I —kff o+ A (Ao —€) = Ao +v(1To - 1),

Then we take derivatives with respect to the primal variables o, and make them equal to zero.

OL
— =Fo+A"\ - +0vl=0=
Oo

of = —F Y AT — Xy +01)
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Then o* can be substituted into the Lagrangian function.

1
L=— §(A1TAF*1AT>\1 —MAF D+ N AF Tl = N F7TAT
A F N = A F Yl +1T0F 01+ 1T0F AT A —1ToF 1))
—Me—w

We take derivatives with respect to v and then make the derivatives equal to zero.

oL 1
5 = —§(A1TAF‘11 A P FTIATN TR 2T F ) -1 =0
v
C1TF AT 1T PN+
1"F-11

vt =

We then substitute v* into the Lagrangian function L.

1 1n'r-t 1TF-1AT ),
L= A AF Y _NATA 4 2
271 Tra DA M+ T
1 1! 1TF-1),
oM P e AT A - 2
P P iy ~ DA - e
11! 1
A AF (e Dy A e —
! =TI Sy

Welet F=1—xkffT,F1=7]— ﬁﬁ'—r, DT = % and C =1DT — . The Lagrangian

function can be simply formulated.

L=t
2

1
+ iA;F’lCAT)\Q — DT

MAFTICATN, + DTAT

1

“MAF'"ON — €N+ ——————
! 2 "o TE 1

Next we substitute v* into o* to get the closed form solution:
o* =—F Y ATA — Ay +071)
=F7'CATX; — F71C)\; - D.

For the case where o has full support, Ao = 0 holds, because any o > 0 constraint has no effect.
Then the closed form solution in full-support cases is

o* =F71CAT X - D.

A.4 PROOF OF THEOREM[3.4]

Theorem 3.4. There is an € such that a full-support D(C)CE solution exists. Specifically, the rela-
tionship between € and types of solutions is:

1. A uniform solution b always exists when max(Ab) < e.

2. The existing solution is non-uniform when ¢ < max(Ab).
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Proof. Recalling the optimization objective —30 " (I — <ff " )0, it is obvious that when o = b, the
optimization objective reaches its maximum value. Additionally, o must satisfy the linear constraint
Ao < e. Therefore, if max(Ab) > ¢, then o cannot be uniform. On the contrary, when max(Ab) <
¢, a uniform solution b must exist.
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