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A FULL PROOF OF PROPOSITIONS AND THEOREMS

A.1 PROOF OF PROPOSITION 3.1

Proposition 3.1. I − κff⊤ is an elementary matrix, and its eigen values are {1, 1, 1, ..., 1− κf⊤f}.

Proof. First, the definition of elementary matrix (Horn & Johnson, 2012) is given: Assume u, v ∈
Cn, κ ∈ C, then E(u, v, κ) = I − κuv⊤ is an elementary matrix, where Cn is the vector space and
C is the set of real numbers.

Then we let u = f, v = f, obviously E(f, f, κ) = I − κff⊤ is an elementary matrix.

Regarding eigenvalues, an elementary matrix E(u, v, κ) has the following properties (Horn & John-
son, 2012):

Proposition A.1. The eigenvalues of E(u, v, κ) are {1, 1, 1, ..., 1− κv⊤u}.

Based on A.1, the eigenvalues of I − κff⊤ can be formulated as {1, 1, 1, ..., 1− κf⊤f}.

A.2 PROOF OF THEOREM 3.2

Theorem 3.2. D(C)CE provides a unique solution to the equilibrium solution problem and the
solution exists when κ < 1

f⊤f
.

Proof. When the objective function of the optimization problem is convex quadratic and the con-
straints are affine, the problem is called quadratic programming, and there is a unique solution to the
quadratic programming problem (Boyd & Vandenberghe, 2004).

The objective function of D(C)CE,− 1
2σ

⊤(I−κff⊤)σ, is a quadratic. To make it a convex quadratic,
the matrix I − κff⊤ must be positive definite. A square matrix is a positive definite matrix if all its
eigenvalues are positive (Strang, 2022). Based on Proposition 3.1, if 1− κf⊤f > 0 or κ < 1

f⊤f , then
all eigenvalues of I − κff⊤ are positive. In addition, the constraints of Diverse (C)CE are all linear
affine. To sum up, when κ < 1

f⊤f , there is a unique solution to Diverse CCE.

A.3 PROOF OF THEOREM 3.3

Theorem 3.3. The closed form solution σ∗ to D(C)CE is formulated as:

General support: σ∗ = F−1CA⊤λ∗
1 + F−1Cλ∗

2 −D,

Full support: σ∗ = F−1CA⊤λ∗
1 −D,

where F = I − κff⊤, F−1 = I − κ
κf⊤f−1

ff⊤, D⊤ = 1⊤F−1

1⊤F−11
, C = 1D⊤ − I and 1 is a vector of

ones.

Proof. We start with the primal Lagrangian form:

L = −1

2
σ⊤(I − κff⊤)σ + λ⊤

1 (Aσ − ϵ)− λ⊤
2 σ + υ(1⊤σ − 1),

Then we take derivatives with respect to the primal variables σ, and make them equal to zero.

∂L

∂σ
= Fσ +A⊤λ1 − λ2 + v1 = 0⇒

σ∗ = −F−1(A⊤λ1 − λ2 + v1)
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Then σ∗ can be substituted into the Lagrangian function.

L =− 1

2
(λ⊤

1 AF−1A⊤λ1 − λ⊤
1 AF−1λ2 + λ⊤

1 AF−1v1− λ⊤
2 F

−1A⊤λ1

+ λ⊤
2 F

−1λ2 − λ⊤
2 F

−1v1 + 1⊤vF−1v1 + 1⊤vF−1A⊤λ1 − 1⊤vF−1λ2)

− λ⊤
1 ϵ− v

We take derivatives with respect to v and then make the derivatives equal to zero.

∂L

∂v
= −1

2
(λ⊤

1 AF−11− λ⊤
2 F

−11 + 1⊤F−1A⊤λ1 − 1⊤F−1λ2 + 21⊤F−11v)− 1 = 0⇒

v∗ = −1⊤F−1A⊤λ1 − 1⊤F−1λ2 + 1

1⊤F−11

We then substitute v∗ into the Lagrangian function L.

L =
1

2
λ⊤
1 AF−1(

11⊤F−1

1⊤F−11
− I)A⊤λ1 +

1⊤F−1A⊤λ1

1⊤F−11

+
1

2
λ⊤
2 F

−1(
11⊤F−1

1⊤F−11
− I)A⊤λ2 −

1⊤F−1λ2

1⊤F−11

− λ⊤
1 AF−1(

11⊤F−1

1⊤F−11
− I)λ2 − λ⊤

1 ϵ+
1

2× 1⊤F−11

We let F = I − κff⊤, F−1 = I − κ
κf⊤f−1

ff⊤, D⊤ = 1⊤F−1

1⊤F−11
and C = 1D⊤− I . The Lagrangian

function can be simply formulated.

L =
1

2
λ⊤
1 AF

−1CA⊤λ1 +D⊤A⊤λ1

+
1

2
λ⊤
2 F

−1CA⊤λ2 −D⊤λ2

− λ⊤
1 AF

−1Cλ2 − ϵ⊤λ1 +
1

2× 1⊤F−11

Next we substitute v∗ into σ∗ to get the closed form solution:

σ∗ =− F−1(A⊤λ1 − λ2 + v∗1)

=F−1CA⊤λ∗
1 − F−1Cλ∗

2 −D.

For the case where σ has full support, λ2 = 0 holds, because any σ ≥ 0 constraint has no effect.
Then the closed form solution in full-support cases is

σ∗ =F−1CA⊤λ∗
1 −D.

A.4 PROOF OF THEOREM 3.4

Theorem 3.4. There is an ϵ such that a full-support D(C)CE solution exists. Specifically, the rela-
tionship between ϵ and types of solutions is:

1. A uniform solution b always exists when max(Ab) ≤ ϵ.

2. The existing solution is non-uniform when ϵ < max(Ab).
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Proof. Recalling the optimization objective − 1
2σ

⊤(I − κff⊤)σ, it is obvious that when σ = b, the
optimization objective reaches its maximum value. Additionally, σ must satisfy the linear constraint
Aσ ≤ ϵ. Therefore, if max(Ab) > ϵ, then σ cannot be uniform. On the contrary, when max(Ab) ≤
ϵ, a uniform solution b must exist.
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