
Trust the Model Where It Trusts Itself
Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

Bernd Frauenknecht * 1 Artur Eisele * 1 Devdutt Subhasish 1 Friedrich Solowjow 1 Sebastian Trimpe 1

Abstract
Dyna-style model-based reinforcement learning
(MBRL) combines model-free agents with predic-
tive transition models through model-based roll-
outs. This combination raises a critical question:
“When to trust your model?”; i.e., which rollout
length results in the model providing useful data?
Janner et al. (2019) address this question by grad-
ually increasing rollout lengths throughout the
training. While theoretically tempting, uniform
model accuracy is a fallacy that collapses at the
latest when extrapolating. Instead, we propose
asking the question “Where to trust your model?”.
Using inherent model uncertainty to consider lo-
cal accuracy, we obtain the Model-Based Actor-
Critic with Uncertainty-Aware Rollout Adaption
(MACURA) algorithm. We propose an easy-to-
tune rollout mechanism and demonstrate substan-
tial improvements in data efficiency and perfor-
mance compared to state-of-the-art deep MBRL
methods on the MuJoCo benchmark.

1. Introduction
Deep reinforcement learning (RL) has shown unprecedented
results in challenging domains such as gameplay (Mnih
et al., 2015; OpenAI et al., 2019b) and nonlinear control
(OpenAI et al., 2019a; Wurman et al., 2022). For engineer-
ing problems, however, the data inefficiency of model-free
state-of-the-art approaches (Schulman et al., 2017; Haarnoja
et al., 2018a) remains a substantial challenge (Kostrikov
et al., 2023; Frauenknecht et al., 2023), prompting the need
for more efficient methods (Janner et al., 2019; Chen et al.,
2021). One such method, model-based reinforcement learn-
ing (MBRL), reduces the necessary degree of environment

*Equal contribution 1Institute for Data Science in Mechan-
ical Engineering (DSME), RWTH Aachen University, 52068
Aachen, Germany. Correspondence to: Bernd Frauenknecht
<bernd.frauenknecht@dsme.rwth-aachen.de>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

interaction by inferring information from a learned environ-
ment model. Unfortunately, model errors can lead to faulty
conclusions that severely impact the agent’s performance. It
is therefore critical to ensure the accuracy of these models.

Model-based policy optimization (MBPO) (Janner et al.,
2019) represents the current state-of-the-art in Dyna-style
MBRL (Sutton, 1991), combining a Soft Actor-Critic (SAC)
agent (Haarnoja et al., 2018a;b) with a Probabilistic Ensem-
ble (PE) model (Lakshminarayanan et al., 2017). Janner
et al. (2019) address two distinct learning problems: using
interaction between the agent and the environment to train
the model and, simultaneously, employing model-based roll-
outs to train the agent. The agent queries the model in short
rollouts branched off from states that were observed dur-
ing environment interaction. The length of these rollouts is
gradually increased throughout training, balancing model
usage against the risk of model exploitation.

Janner et al. (2019) answer the question “When to trust
your model?” with time-based arguments. Essentially, uni-
form model accuracy is postulated after sufficiently long
training which motivates to use the model for rollouts of pre-
determined length. However, both the training time and the
rollout lengths are notoriously difficult to preschedule. Fur-
thermore, the assumption of uniform model improvement is
problematic for complex systems.

Instead, we consider model accuracy as a local property,
putting the question “Where to trust your model?” at the
heart of our approach. The inherent uncertainty of PE mod-
els allows for adaptive rollout lengths: wherever the model
is uncertain, rollouts are terminated quickly, while longer
rollouts can be generated where it is certain.

In this paper, we analyze the learning process of Dyna-
style MBRL and present Model-Based Actor-Critic with
Uncertainty-Aware Rollout Adaption (MACURA), an al-
gorithm with an easy-to-tune mechanism for model-based
rollout length scheduling. In particular, we present the fol-
lowing technical contributions:

• We show monotonic improvement by restricting model-
based rollouts to a subset E ⊆ S of the state space S;

• We construct the subset E based on a novel and easy-
to-compute model uncertainty measure; and

1

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

• We outperform state-of-the-art Dyna-style MBRL
methods with regard to data efficiency and asymptotic
performance on the MuJoCo benchmark.

2. Background
In the following, we introduce the fundamental concepts of
MBRL, and Dyna-style architectures in particular.

2.1. Reinforcement Learning

We assume the environment to be represented by a dis-
counted Markov decision process (MDP) defined byM =
(S,A, r, p, γ, ρ0), with S the state and A the action space,
while a dynamics function p(s′ | s, a) describes transitions
between states s ∈ S and actions a ∈ A. Reward r ∈ R is
generated from a reward function r(s, a) and is discounted
by γ ∈ (0, 1). The MDP is initialized from an initial state
distribution ρ0. The RL agent aims to find an optimal policy
π∗ that maximizes the expected discounted sum of rewards,
henceforth referred to as expected return η. Thus,

π∗ = argmax
π

η[π] = argmax
π

Eπ

[∞∑
t=0

γtr (st, at)

]
,

(1)
with s0 ∼ ρ0, at ∼ π(· | st), and st+1 ∼ p(· | st, at). The
Q-function represents η[π] conditioned on specific state-
action pairs and is given by

Qπ(st, at) = Eπ

[∞∑
k=t

γk−tr (sk, ak)

∣∣∣∣st, at
]
. (2)

2.2. Probabilistic Ensemble Models

In MBRL, we learn a dynamics model p̃(s′ | s, a) to ap-
proximate the unknown environment dynamics p(s′ | s, a).
In the following, we consider the particularly effective PE
approach (Lakshminarayanan et al., 2017; Chua et al., 2018)
as the model class for dynamics learning. A PE consists of
E probabilistic neural networks (PNN) with parameters θe,
e ∈ {1, . . . , E}, which are trained on bootstrapped datasets
via a negative log-likelihood loss to approximate the distri-
bution over the next state with a Gaussian distribution

p̃θe(s
′ | s, a) = N (µθe(s, a),Σθe(s, a)). (3)

The PE architecture allows a distinction between aleatoric
uncertainty due to the process noise of the environment
and epistemic uncertainty due to the parametric uncertainty
of the model. While aleatoric uncertainty corresponds to
high individual variance estimates Σθe(s, a), epistemic un-
certainty is measured via model disagreement. Lakshmi-
narayanan et al. (2017) define epistemic uncertainty as the
pairwise Kullback-Leibler (KL) divergence DKL between

Figure 1: Dyna-style MBRL. An agent with policy π inter-
acts with the environmentM. This data is stored in Denv

and used to train a dynamics model p̃ via supervised learn-
ing (SL). Model-based rollouts under π are performed from
start states s0 in Denv and stored in Dmod. The policy is
trained on Dmod via reinforcement learning (RL).

the individual PNN predictions pθe and the Gaussian mix-
ture distribution of the ensemble prediction p̃PE, given by

uKL =

E∑
e=1

DKL(p̃θe(s
′ | s, a)∥p̃PE(s

′ | s, a)), (4)

with

p̃PE(s
′ | s, a) := 1

E

E∑
e=1

p̃θe(s
′ | s, a). (5)

For the following analysis, we assume r(s, a) is known.

2.3. Dyna-Style Model-Based Reinforcement Learning

We focus on Dyna-style MBRL (Sutton, 1991) and MBPO
(Janner et al., 2019) in particular as it represents the current
state-of-the-art approach. A schematic of the architecture
is depicted in Figure 1. In MBPO, a model-free SAC agent
(Haarnoja et al., 2018a;b) with policy π interacts with the
environment. The corresponding agent-environment interac-
tion data are stored in a replay buffer Denv and are used to
train a dynamics model p̃. This model then generates expe-
rience data in branched model-based rollouts that are stored
in a replay buffer Dmod and used to train the model-free
agent. Branched model-based rollouts are thus essential to
Dyna-style MBRL as the accuracy of the generated expe-
rience data determines the performance of the agent. The
mechanism is illustrated in Algorithm 1.

Branched model-based rollouts start at random s0 ∼
U(Denv), with U(·) the uniform distribution, and stop at
a maximum rollout length Tmax ∈ N. During the rollout,
the propagating PNN model within the PE is randomly sam-
pled for each time step. Actions and states are sampled from
the respective Gaussians of the policy and the PNN model.

2

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

Algorithm 1 “Vanilla” Branched Model-based Rollouts

Given Denv, Dmod, p̃θ1,...,E , π, and Tmax

s0 ∼ U(Denv)
for t = 0, . . . , Tmax − 1 do

et ∼ U(1, . . . , E)
at ∼ π(· | st)
st+1 ∼ p̃θet (· | st, at)
rt+1 = r(st, at)
Dmod ← Dmod ∪ {(st, at, rt+1, st+1)}

end for

The environment buffer Denv therefore serves two purposes
for model-based branched rollouts. It acts as the training
data set for p̃, determining where the model is accurate, and
it induces the set of start states for model-based rollouts,
influencing the data distribution in Dmod.

A key advantage of branched model-based rollouts is that
they reduce the quantity of environment data necessary for
learning. This advantage stems from two learning mech-
anisms. First, the number of update steps per observed
transition is limited due to instabilities in value function
learning (Chen et al., 2021). The model allows a multitude
of transitions to be generated, mitigating this problem. Sec-
ond, the data distribution in Dmod differs from that of Denv

and can be more informative to the agent. Generalization
capabilities of p̃ allow for a richer set of transitions to be
collected from the model. Further, model-based rollouts are
conducted under the current policy π of the agent. There-
fore, model-based rollouts shift the off-policy distribution in
Denv more towards an on-policy distribution. This generally
puts a stronger emphasis on the effects of the current policy
and interesting areas of S , accelerating policy improvement.
The longer branched model-based rollouts are, the more the
data distributions of Denv and Dmod may differ. Typically,
Tmax is gradually increased throughout training.

Algorithm 3 in Appendix A provides a detailed description
of MBPO. We build on the eminent MBPO method, modi-
fying its core mechanism of branched model-based rollouts.
We develop a method to estimate where to trust the model
and build a new adaptive rollout scheme around it. This
scheme may likewise benefit a multitude of derivatives of
MBPO such as (Zhang et al., 2020; Shen et al., 2020; Lai
et al., 2020; 2021; Morgan et al., 2021; Fröhlich et al., 2022;
Luis et al., 2023b;a; Wang et al., 2022).

3. Where to Trust your Model?
Our key idea is to define a subset Ep̃,k ⊆ S on which the
model p̃ is sufficiently accurate at time k. We refer to this
subset as E for brevity and put it at the heart of our approach.

The main technical problem formulation then becomes:

Figure 2: Where to trust your Model? Denv induces a set
of sufficient model accuracy E ⊆ S . A notion of E allows to
reason whether rollouts are in a region of sufficient model
accuracy. We use this resoning to schedule rollout length.

How can we construct the set E that ensures a desired accu-
racy? In particular, we need to:

i) quantify the notion of sufficiently accurate;
ii) estimate E from a given model p̃; and

iii) expand E quickly via informative data in Denv.

Once we have a suitable E , we obtain a straightforward
yet precise mechanism for branched model-based rollouts.
As long as the rollout stays within E , the benefits of long
rollouts discussed in Section 2.3 outweigh the risk of model
exploitation, while the opposite is the case once it leaves E .

Such a distinction is vital as model-based rollouts are per-
formed from random start states of Denv, as depicted in
Figure 2. Depending on the rollout policy, these start states
can either lead to rollouts staying in E for a long time with-
out the necessity to terminate quickly, or leaving it early,
where a careful rollout length adaption is crucial. A fixed
rollout length based on training time (Janner et al., 2019)
cannot account for local differences in model accuracy.

4. Monotonic Improvement under
Dynamics Misalignment on E
Following the insights set out in Section 3, we provide a
formal justification of our approach. We analyze the effect
of dynamics mismatch on the expected return, which will
be instrumental for formally defining E ⊆ S in Section 5
that will be used to schedule rollout length.

4.1. Formulation of Monotonic Improvement

In the context of branched model-based rollouts, we define
two MDPs, M̂ and M̃, on the same S, A, r(s, a), γ and
start state distribution ρBR. Here, M̂ represents the MDP
for branched rollouts under the environment dynamics p(s′ |
s, a), whereas M̃ is the MDP for branched model-based
rollouts following model dynamics p̃(s′ | s, a). Both, M̂

3

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

and M̃, have identical start states sM̂0 = sM̃0 ∈ E .

The MDPs are coupled through the following stopping times
(which are random variables and thus measurable functions
T : Ω→ N as indicated by the argument T (ω)):

T (ω) := min{TM̂, TM̃} − 1, (6)

TM̂(ω) = min{t ∈ N | sM̂t ∈ EC}, (7)

TM̃(ω) = min{t ∈ N | sM̃t ∈ EC}, (8)

with EC the complement of E . The stopping times (7) and
(8) denote the first time a rollout under M̂ and M̃ leaves
E , respectively. Thus, restricting the rollout length to T (ω)
enforces that branched rollouts remain in E .

We show a monotonic improvement similar to (Luo et al.,
2018; Janner et al., 2019; Pan et al., 2020)

η[π] ≥ η̃[π]− C, (9)

where η[π] corresponds to the expected return of the policy
π in M̂, while η̃[π] denotes the expected return of π under
M̃. As long as the agent improves by more than C in M̃,
we can guarantee improvement in M̂.

Theorem 4.1. Suppose the expected return following pol-
icy π under M̂ is denoted by η[π] and η̃[π] describes the
expected return following π under M̃, then we can define a
lower bound for η[π] on E ⊆ S of the form

η[π] ≥ η̃[π]− 2rmax

T (ω)∑
t=0

γt
t∑

τ=0

∆pE [π], (10)

with

∆pE [π] := sup
s∈E,a∼π

DTV (p (s′ | s, a) ∥p̃ (s′ | s, a)) . (11)

Proof. See Appendix B, Theorem B.4.

We define

C := 2rmax

T (ω)∑
t=0

γt
t∑

τ=0

∆pE [π], (12)

which intuitively represents the accumulated worst-case
dynamics misalignment. The choice of E thus influences
the bound C since the supremum in (11) is taken over E and
T (ω) directly depends on E .

4.2. Interpretation of the Result

In contrast to improvement bounds in previous work (Luo
et al., 2018; Janner et al., 2019; Pan et al., 2020), Theorem
4.1 closely resembles branched model-based rollouts and
allows a practical mechanism to be inferred directly.

Rollouts under M̃ represent the data generated in the prac-
tical MBRL algorithm, while M̂ captures the true envi-
ronment behavior. Both share ρBR = U(Denv), the start
state distribution of model-based rollouts introduced in Al-
gorithm 1, where we assume all states in Denv to be within
E as depicted in Figure 2. Theorem 4.1 thus bounds the
difference in expected return between using the model MDP
M̃ for generating branched model rollouts as compared to
performing these rollouts under the environment MDP M̂.
Thus, Theorem 4.1 specifically considers model exploitation
in branched model-based rollouts that are the predominant
data-generating process for training the agent.

By construction, both processes start from identical start
states and deviate from each other based on dynamic mis-
alignment upper bounded by ∆pE [π] until T (ω) is reached.
Unfortunately, the result of Theorem 4.1 is not directly
amenable for algorithmic use, as the process M̂ is unknown
in practice. Specifically, we are unable to detect when M̂
leaves E as indicated by TM̂(ω) in (7) and need an approxi-
mation to obtain a practical algorithm. Assuming trajecto-
ries under M̂ and M̃ stay sufficiently close to each other
and replacing T (ω) with TM̃(ω)−1, we obtain an effective
approximation that works well in practice.

5. Constructing E from Model Uncertainty
In the following, we define E such that it represents parts
of the state space with high model accuracy. There, we can
trust our model and learn efficiently.

5.1. Defining E in Practice

Following Theorem 4.1, ideally we would define

E∗ := {s ∈ S |DTV (p (s′ | s, a) ∥p̃ (s′ | s, a)) ≤ κ,

a ∼ π(· | s)}
(13)

such that dynamics misalignment is upper-bounded by a
threshold κ. This definition of E yields ∆pE [π] ≤ κ in
(11) and thus allows C in (12) to be influenced by choosing
κ. Estimating the ideal set E∗ is intractable. Instead, we
leverage these insights and consider a slightly different refor-
mulation that yields a computationally efficient, numerically
well-behaved, and meaningful definition of E .

Assuming that the individual PNNs of the PE model have
sufficient representational capacity to model p(s′|s, a) ac-
curately makes epistemic uncertainty uPE an expressive
quantity for dynamics misalignment. One option to deter-
mine epistemic uncertainty would be using the formulation
in (4) and setting uPE = uKL. If all ensemble members
agree sufficiently well on a subset of S ×A, the PE model
approximates the environment dynamics to a sufficient de-
gree of accuracy. Following this reasoning, we construct

EPE := {s ∈ S | uPE(s, a) < κ, a ∼ π(· | s)} (14)

4

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

(a) Denv (b) DTV(p(s
′|s, a)∥p̃(s′|s, a)) (c) uGJS (d) E with uGJS < κ

Figure 3: Constructing E on a toy example. (a) Data to train the PE model. (b) Dynamics misalignment. (c) Proposed
measure for model uncertainty (15). (d) Set of sufficient model accuracy to perform branched model-based rollouts (20) .

such that some uncertainty uPE under the rollout policy π
is upper bounded by a threshold κ.

5.2. Efficient Measure for Model Uncertainty

In an algorithmic implementation, efficient computation
of uPE is vital as uncertainty is queried for every model-
based transition. The original formulation in (4) has no
closed-form solution, rendering it unsuitable for this pur-
pose. Instead, we propose an estimate based on the geomet-
ric Jensen-Shannon (GJS) divergence (Nielsen, 2019)

uGJS(s, a) =
2

E(E − 1)

E∑
e=1

e−1∑
f=1

DGJS (Ne∥Nf) , (15)

with
Ni =: N (µθi(s, a),Σθi(s, a)). (16)

The Jensen-Shannon divergence is a symmetrized version
of the KL divergence but has no closed-form solution for
Gaussian distributions. While losing some of the properties
of the Jensen-Shannon divergence, the GJS divergence

DGJS (Ne∥Nf) =
1

2
DKL (Ne∥Nef) +

1

2
DKL (Nf∥Nef)

(17)
with

Σef =

(
1

2
(Σθe(s, a))

−1
+

1

2

(
Σθf (s, a)

)−1
)−1

(18)

and

µef = Σef

(
1

2
(Σθe(s, a))

−1
µθe(s, a)

+
1

2

(
Σθf (s, a)

)−1
µθf (s, a)

) (19)

recovers a closed-form solution for Gaussian distributions.
This allows us to compute model uncertainty in a closed

form replacing the comparison to the Gaussian mixture
distribution in (4) with a pairwise comparison between PNN
predictions. Exploiting the symmetry of the GJS divergence
allows to reduce the number of pairwise comparisons.

Thus, uGJS yields an efficient-to-compute uncertainty mea-
sure, leading to a practical definition of

E := {s ∈ S | uGJS(s, a) < κ, a ∼ π(· | s)} (20)

that is directly applicable to algorithmic use.

5.3. Illustrative Example

As an illustrative example, we use a pendulum with known
dynamics and a two-dimensional state. Figure 3 visualizes
the construction of E according to (20) for this system. An
in-depth description is provided in Appendix C.

We create a Denv with a characteristic spiral form by per-
forming rollouts with a feedback controller πFL as depicted
in Figure 3a, and use the data to train a PE dynamics model.
In the following, dynamic misalignment and uncertainty of
this model under πFL are analyzed over S using heat maps.

Dynamics misalignment as used in (13) is depicted in Figure
3b, where a clear trend can be observed: dynamic misalign-
ment is low, indicated in yellow, close to data in Denv but
grows further away, where blue corresponds to high mis-
alignment. For approximations of the total variation distance
we use the common upper bound (31) in Appendix C.4.

Figure 3c shows the proposed model uncertainty uGJS used
in (20). We observe a smooth behavior of the uncertainty
estimate and rediscover the data distribution in Denv for the
lowest uncertainty values indicated in bright yellow. Most
importantly, areas of low uncertainty coincide with areas of
low dynamics misalignment in Figure 3b.

As depicted in Figure 3d, choosing a suitable threshold κ
allows E to be defined such that a considerable portion of
S can be explored in model-based rollouts while avoiding

5

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

areas of high dynamics misalignment. Here E is visualized
in yellow, while blue regions indicate EC.

6. MACURA: Model-Based Actor-Critic with
Uncertainty-Aware Rollout Adaption

Combining the insights into how to choose a set E to enforce
monotonic improvement, discussed in Section 4, with those
into how to construct E using model uncertainty, detailed in
Section 5, we present an uncertainty-aware adaption scheme
for model-based rollouts. We further discuss expanding E by
efficiently exploring the environment. These building blocks
lead to the Model-Based Actor-Critic with Uncertainty-
Aware Rollout Adaption (MACURA) algorithm.

6.1. Uncertainty-Based Rollout Adaption

The set E depends on the uncertainty threshold κ (20). Thus,
an appropriate choice of κ is critical in algorithmic design.
We propose an adaptive mechanism for determining κ that
transfers to different applications and stages of training.

In the algorithm, M branched model-based rollouts are
performed in parallel. As these start from states in Denv, we
evaluate the model uncertainty after the first prediction step
to update κ proportionally to the current model uncertainty.

We therefore define the base uncertainty ûGJS,k to be the ζ
quantile of the M uncertainty measures after the first predic-
tion step at the kth round of model-based rollouts. We use
this heuristic as an upper bound on what can be considered
certain. Further, we introduce ξ ∈ R+ as a tunable scaling
factor, which allows E to be increased or shrunk by scaling
ûGJS up or down. To stabilize κ over iterations, we define
it to be the average scaled base uncertainty:

κ =
ξ

K

K∑
k=1

ûGJS,k, (21)

with K the rounds of rollouts performed thus far.

Theorem 4.1 indicates that the difference in expected return
accumulates over the rollout length, even with bounded
dynamics misalignment. Since we only provide a pointwise
bound for each transition step, we still need to enforce a
maximum rollout length Tmax, larger than the typical length
of adapted rollouts, to avoid extensive error accumulation.

During the experimental evaluation in Section 7, we see
that predefined values of Tmax = 10 and ζ = 95% perform
well across different applications, requiring no environment-
specific tuning. Thus, ξ is a single, interpretable hyper-
parameter defining the rollout scheme. This makes the
proposed uncertainty-aware rollout adaption mechanism for-
mulated in Algorithm 2 considerably easier to tune than
those in existing work (Janner et al., 2019; Pan et al., 2020).

Algorithm 2 Uncertainty-Aware Adapted Branched Model-
Based Rollouts

Given Denv, Dmod, p̃θ1,...,E , π, ζ, ξ, and Tmax

s0 ∼ U(Denv)
for t = 0, . . . , Tmax − 1 do
et ∼ U(1, . . . , E)
at ∼ π(· | st)
st+1 ∼ p̃θet (· | st, at)
rt+1 = r(st, at)
uGJS(st, at) according to (15)
if t = 0 then

update κ according to (21)
end if
if uGJS(st, at) < κ then
Dmod ← Dmod ∪ {(st, at, rt+1, st+1)}

else
break

end if
end for

Due to its variable rollout length, the proposed model-based
rollout scheme produces varying amounts of data to train
the model-free agent. As the update-to-data ratio plays a
crucial role in the stability of model-free RL (Chen et al.,
2021), we adapt the number of update steps

G =
⌊
Gmax

|Dmod|
|Dmod|max

⌉
(22)

to the SAC agent according to the amount of data in the
model buffer |Dmod| compared to its capacity |Dmod|max.
We use this ratio to scale the maximum number of update
steps Gmax and round the result to the nearest integer. An
empirical analysis of how the update-to-data ratio interacts
with varying rollout lengths is provided in Appendix D.5.

6.2. Expanding E through Environment Exploration

Through the notion of E , MACURA has a reliable estimate
of where to trust the model p̃ that is trained on Denv. In line
with common understanding in system identification (Ljung,
1998), more informative data yields a better model. Thus,
employing effective exploration mechanisms to generate a
meaningful Denv will improve the model and thus expand
E , increasing the effectiveness of model-based rollouts.

Although we do not place a strong focus on different ex-
ploration mechanisms for Dyna-style MBRL in this work,
we tested different approaches. As we discuss in Section
7, we see MACURA perform particularly well with pink
exploration noise (Eberhard et al., 2023), which introduces a
certain degree of temporal correlation between consecutive
actions blending white noise and Brownian motion.

We combine the mechanisms discussed above in MACURA.
Pseudocode is provided in Algorithm 4 of Appendix A.

6

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

100 200 300 400
1e3

5

10

15
Re

tu
rn

1e3 Halfcheetah

50 100 150 200
1e3

2

4

6

1e3 Walker

25 50 75 100 120
1e3

2

4 1e3 Hopper

100 200 300
Steps 1e3

2

4

6

8

10

Re
tu

rn

1e3 Humanoid

100 200 300
Steps 1e3

2

4

6

1e3 Ant

MACURA

MBPO

M2AC

SAC

SAC(asymptotic performance)

Figure 4: Performance on the MuJoCo Benchmark. MACURA shows substantial improvements in data efficiency and
asymptotic performance over state-of-the-art Dyna-style MBRL approaches (MBPO, M2AC) in most tasks. Most noticeably,
MACURA is on par with or outperforms the asymptotic performance of the model-free SAC baseline.

7. Experiments and Discussion
Next, we evaluate MACURA on the MuJoCo (Todorov
et al., 2012) benchmark. A direct comparison to state-of-
the-art Dyna-style methods reveals a substantial improve-
ment in data efficiency and asymptotic performance. In
an ablation study, we investigate the influence of different
exploration schemes on Dyna-style approaches and show
that MACURA with pink noise exploration yields the best
overall results. We further discuss how to tune the scaling
parameter ξ of MACURA and show its robustness to a wide
range of values, substantially reducing the tuning effort as
compared to prior work in Dyna-style MBRL.

7.1. Experimental Setup

We compare MACURA to model-based MBPO (Janner
et al., 2019) and M2AC (Pan et al., 2020) approaches as
well as the SAC (Haarnoja et al., 2018b) algorithm, which
represents the model-free learner in all of the methods above.
All implementations1 are based on the recent mbrl-lib li-
brary (Pineda et al., 2021). A detailed description of the
experimental setup is provided in Appendix D.1.

7.2. Performance Evaluation

The results on the MuJoCo benchmark are depicted in Fig-
ure 4. We see that MACURA learns substantially faster
than MBPO and M2AC, especially in high-dimensional en-
vironments such as Humanoid and Ant. MACURA further

1The code is available online: https://github.com/
Data-Science-in-Mechanical-Engineering/
macura

100 200
Steps 1e3

2

4

6

8

10

Re
tu

rn

1e3
MACURA(D)

MACURA(WN)

MACURA(PN)

MBPO(D)

MBPO(WN)

MBPO(PN)

Figure 5: Exploration Schemes on MACURA and MBPO.
Impact of deterministic (D), white noise (WN), and pink
noise (PN) exploration on algorithmic performance.

shows considerably stronger asymptotic performance than
other model-based approaches . Remarkably, MACURA fre-
quently even outperforms SAC. All model-based methods
learn substantially faster than SAC. MBPO with fine-tuned
rollout schedules can compete with M2AC.

7.3. The Importance of Environment Exploration

Following the state-of-the-art implementation (Pineda et al.,
2021), the agent interacts deterministically with the envi-
ronment in MBPO and M2AC, while we choose pink noise
exploration for MACURA in Figure 4. The impact of ex-
ploration on MACURA and MBPO is illustrated in Figure
5 for the Humanoid task. We observe a general trend that
is discussed in more detail in Appendix D.3. For both al-
gorithms, deterministic interaction yields limited yet stable
performance. Classic white noise exploration, where actions
are sampled independently, has the potential of strong per-
formance, as can be seen in MACURA, while introducing

7

https://github.com/Data-Science-in-Mechanical-Engineering/macura
https://github.com/Data-Science-in-Mechanical-Engineering/macura
https://github.com/Data-Science-in-Mechanical-Engineering/macura

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

100 200
Steps 1e3

2

4

6

8

10

Re
tu

rn
1e3

MACURA(ξ=1)

MACURA(ξ=3)

MACURA(ξ=5)

MACURA(ξ=10)

MACURA(ξ=20)

Figure 6: Tuning scaling parameter ξ. MACURA performs
well for intermediate ξ. Too large values of ξ lead to model
exploitation, too small values lead to overfitting of the agent.

the risk of destabilizing learning, as in the case of MBPO.
Pink noise exploration, instead, shows an intermediate, over-
all best behavior, combining high performance with stable
learning. The strongest gains from environment interaction
can be observed for MACURA, underscoring the effective-
ness of the notion of E for model usage.

7.4. Tuning the Uncertainty-Aware Adaption Scheme

The uncertainty-aware rollout adaption scheme comprises
three hyperparameters. We set Tmax = 10 and ζ = 95% for
all tasks and never tune them any further 2. However, the
scaling factor ξ requires application-specific tuning.

Figure 6 shows the influence of different choices of ξ on the
performance on Humanoid. While we see that MACURA
performs well for intermediate values for ξ, learning destabi-
lizes for both high and low choices. This is expected for high
values of ξ as they enforce model exploitation. However,
that low values of ξ also destabilize training is more sur-
prising. We assume that the on-policy nature of Dyna-style
MBRL, discussed in Section 2.3, in combination with the
effective rollout adaption mechanism of MACURA leads to
narrow data distributions in Dmod when restricting model
uncertainty too harshly. Consequently, the Q-functions of
the model-free agent overfit, which destabilizes learning. A
practical guide on tuning ξ is provided in Appendix D.2.

7.5. Ablation and Further Results

Finally, we provide an ablation study on the building blocks
of MACURA on the Humanoid task in Figure 7. The analy-
sis reveals that the performance gain of MACURA mostly
stems from the combination of a threshold-based rollout
length adaption mechanism, the self-tuning threshold κ, and
the reliable GJS uncertainty estimate.

Replacing the threshold-based rollout adaption of
MACURA with the rank-based heuristic proposed in
(Pan et al., 2020) substantially reduces performance. The

2While potential performance gains are possible tuning Tmax

and ζ, our focus is to underscore the ease of tuning MACURA.

100 200 300
Steps 1e3

2

4

6

8

10

Re
tu

rn

1e3
MACURA

MACURA rank-based

MACURA OvR

MACURA κ = 300

MACURA κ = 150

MACURA G = 20

Figure 7: Ablation on MACURA building blocks. The rank-
based rollout mechanism with a stable uncertainty estimate
(15) and adaptive threshold (21) yields strong performance.

100 200 300
Steps 1e3

100

200

300

400

Figure 8: Uncertainty threshold κ. MACURA initially keeps
κ comparatively high and reduces κ over time as more
precise information is required to refine the policy.

threshold-based mechanism, however, requires a reliable
uncertainty estimate as in (15) and an adaptive threshold κ
as presented in (21) for stable learning.

Replacing the GJS uncertainty estimate with One-vs-Rest
(OvR) uncertainty (Pan et al., 2020) leads to divergence.
We assume this is attributed to the brittleness of the OvR
uncertainty estimate as illustrated in Appendix C.4. Thus,
faulty predictions are frequently used for training.

Figure 8 depicts the adaption of κ according to (21) for
the standard MACURA runs in Figure 7. Following our
intuition, κ is comparatively high in the early stages of train-
ing, as uncertain data is sufficient to learn an initial policy.
Throughout training, κ decreases as more precise informa-
tion is required to further improve the policy. Keeping κ
fixed at 300 and 150, respectively, destabilizes learning at
different stages of training due to model exploitation.

Replacing the gradient step adaption in (22) with a fixed
number of gradient steps G = 20 yields moderate perfor-
mance reduction on Humanoid, while deterministic envi-
ronment interaction hinders an effective expansion of E and
thus substantially reduces performance.

We provide further experimental results in Appendix D. Per-
formance in tasks with process noise is presented inD.4, D.5
provides detailed results for rollout length and update step
adaption, D.6 discusses the impact of different uncertainty
estimates, and D.7 provides results for long experiments.

8

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

8. Related Work
The selection of the model class for dynamics approximation
is an important design decision in MBRL. Early works focus
on local linear models (Levine & Koltun, 2013; Gu et al.,
2016) and Gaussian processes (Deisenroth & Rasmussen,
2011). Transferring MBRL to more complex problems,
however, requires models with higher capacity, such as neu-
ral networks (NN) (Nagabandi et al., 2018; Williams et al.,
2017). As deterministic NNs bear the risk of overfitting,
probabilistic NN architectures (Gal et al., 2016; Buckman
et al., 2018; Kurutach et al., 2018; Depeweg et al., 2017)
have proven a suitable model class for MBRL. The PE
model (Lakshminarayanan et al., 2017) is a particularly
successful architecture in this domain and has led to sev-
eral breakthroughs in MBRL (Chua et al., 2018; Janner
et al., 2019; Yu et al., 2020). While world models (Ha &
Schmidhuber, 2018; Hafner et al., 2019) represent the cur-
rent state-of-the-art in vision-based MBRL, the PE model is
considered state-of-the-art when learning from the physics
state of a system. As we are concerned with the latter, we
focus on uncertainty quantification of the PE model.

Different approaches have been adopted to combine the RL
objective (1) with information from a model. Analytic gra-
dient methods (Deisenroth & Rasmussen, 2011; Levine &
Koltun, 2013; Hafner et al., 2020) optimize a policy propa-
gating through model-based experience, while model-based
planning algorithms (Williams et al., 2017; Nagabandi et al.,
2018; Chua et al., 2018) use the model for receding horizon
control. Other methods combine model-free RL approaches
with a model. In value expansion approaches (Feinberg
et al., 2018; Buckman et al., 2018) the model is used to
stabilize update targets of the Q-function, whereas in Dyna-
style approaches (Sutton, 1991; Kalweit & Boedecker, 2017;
Janner et al., 2019) the model generates data to train the
model-free agent. In vision-based MBRL, analytic gradient
methods (Hafner et al., 2020; 2021; 2023) represent the
state-of-the-art, while Dyna-style approaches yield state-of-
the-art results in terms of data efficiency and asymptotic
performance for MBRL with compact state representations.

A variety of improvements to the general idea of deep Dyna-
style MBRL (Janner et al., 2019) have been proposed. These
comprise online parameter tuning (Lai et al., 2021), reduc-
tion of model error during model-based rollouts (Fröhlich
et al., 2022; Lai et al., 2020; Shen et al., 2020), improved
exploration in the model (Morgan et al., 2021; Zhang et al.,
2020), model learning (Ji et al., 2022; Wang et al., 2023;
Wu et al., 2022), and consideration of model uncertainty in
the model-free Q-function (Luis et al., 2023b;a; Wang et al.,
2022). All the above are orthogonal to our method.

Using uncertainty in the model or the RL agent to control
model usage is a common technique in MBRL. One ap-
proach is to use model data where the agent is uncertain

(Kalweit & Boedecker, 2017; Nguyen et al., 2018). Model-
based offline RL methods (Yu et al., 2020; Zhai et al., 2024;
Jeong et al., 2023) often construct a pessimistic MDP that pe-
nalizes model uncertainty in the value function. Zhang et al.
(2021) adapt rollout length in a multi-agent setting based on
the error in the policy model of opponent agents. In value
expansion methods, rollout steps are frequently reweighted
based on model uncertainty (Buckman et al., 2018; Jeong
et al., 2023; Vuong & Tran, 2019). Further, Abbas et al.
(2020) address uncertainty due to model inadequacy.

Despite the importance of reliable model-based rollouts in
Dyna-style MBRL, the idea of adapting rollouts based on
model accuracy has received little attention. An exception
is the M2AC algorithm (Pan et al., 2020), which is closest
to this work. M2AC schedules rollout lengths using a rank-
based filtering heuristic depending on model uncertainty.
They introduce a reward penalty for model uncertainty simi-
lar to offline MBRL approaches, which can, however, hinder
the expansion of the known subset of S in an online setting.
Further, the uncertainty estimate of M2AC is comparatively
brittle as presented in Appendix C.5. The proposed rollout
scheme of MACURA, instead, takes a strictly spatial per-
spective on rollout length which is conceptually different
from M2AC and generally new in Dyna-style MBRL.

9. Conclusion
Learning predictive dynamics models to tame data require-
ments of RL is an established concept, leading to state-of-
the-art MBRL approaches like MBPO that achieve high data
efficiency and asymptotic performance. This work builds
on the successful MBPO architecture, addressing the criti-
cal question of adapting the length of model-based rollouts.
While it is common knowledge that models are only helpful
where they are accurate, and they are accurate only where
they have seen data, only few works in MBRL address
model accuracy in general, and its spatial nature in particu-
lar. We make the consideration of model accuracy as a local
property a fundamental building block of our theoretical
analysis of Dyna-style MBRL, which provides us with an
effective mechanism for model usage. Combining this mech-
anism with an easy-to-compute and expressive estimate for
model accuracy, we propose the Model-Based Actor-Critic
with Uncertainty-Aware Rollout Adpation (MACURA) algo-
rithm. Benchmarking on MuJoCo, we show that MACURA
outperforms the current state-of-the-art substantially con-
cerning data efficiency and asymptotic performance. Finally,
the rollout mechanism of MACURA solely introduces one
essential hyperparameter, making it considerably easier to
tune than competitor approaches.

9

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

Acknowledgements
ZF Friedrichshafen AG partially funded this research. Fur-
thermore, the research was in part supported by the Ger-
man Federal Ministry for Economic Affairs and Climate
Action (BMWK) through the project EEMotion. Computa-
tions were performed with computing resources granted
by RWTH Aachen University under projects rwth1428,
rwth1472, and rwth1552.

Impact Statement
We present the MACURA algorithm that substantially im-
proves data efficiency and asymptotic performance of Dyna-
style MBRL, while considerably reducing tuning effort.
Thus, it addresses two major issues of RL applications in the
real world; data inefficiency and laborious hyperparameter
tuning. Therefore, MACURA contributes to the general
applicability of RL approaches.

There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.

References
Abbas, Z., Sokota, S., Talvitie, E. J., and White, M. Selec-

tive Dyna-style Planning Under Limited Model Capacity.
arXiv, July 2020. doi: 10.48550/arXiv.2007.02418.

Adamy, J. Nonlinear Systems and Controls. Springer, Berlin,
Germany, 2022. ISBN 978-3-662-65633-4.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee,
H. Sample-efficient reinforcement learning with stochas-
tic ensemble value expansion. In Int. Conf. on Neural
Information Processing Systems. 2018.

Chen, X., Wang, C., Zhou, Z., and Ross, K. Randomized
Ensembled Double Q-Learning: Learning Fast Without a
Model. Int. Conf. on Learning Representations, 2021.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep
Reinforcement Learning in a Handful of Trials using
Probabilistic Dynamics Models. Adv. in Neural Informa-
tion Processing Systems, 2018.

Deisenroth, M. P. and Rasmussen, C. E. PILCO: a model-
based and data-efficient approach to policy search. In Int.
Conf. on Machine Learning. 2011.

Depeweg, S., Hernández-Lobato, J. M., Doshi-Velez, F.,
and Udluft, S. Learning and Policy Search in Stochastic
Dynamical Systems with Bayesian Neural Networks. Int.
Conf. on Learning Representations, 2017.

Eberhard, O., Hollenstein, J., Pinneri, C., and Martius, G.
Pink noise is all you need: Colored noise exploration in

deep reinforcement learning. In Int. Conf. on Learning
Representations, 2023.

Feinberg, V., Wan, A., Stoica, I., Jordan, M. I., Gonzalez,
J. E., and Levine, S. Model-Based Value Estimation for
Efficient Model-Free Reinforcement Learning. Int. Conf.
on Machine Learning, 2018.

Frauenknecht, B., Ehlgen, T., and Trimpe, S. Data-efficient
deep reinforcement learning for vehicle trajectory control.
IEEE Int. Conf. on Intelligent Transportation Systems,
2023.

Fröhlich, L. P., Lefarov, M., Zeilinger, M. N., and
Berkenkamp, F. On-Policy Model Errors in Reinforce-
ment Learning. Int. Conf. on Learning Representations,
2022.

Gal, Y., McAllister, R., and Rasmussen, C. E. Improving
PILCO with Bayesian neural network dynamics models.
In Int. Conf. on Machine Learning, 2016.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. Continuous
Deep Q-Learning with Model-based Acceleration. In Int.
Conf. on Machine Learning. PMLR, 2016.

Ha, D. and Schmidhuber, J. World Models. Int. Conf. on
Neural Processing Systems, March 2018. doi: 10.5281/
zenodo.1207631.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor. In Int. Conf.
on Machine Learning. 2018a.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S.,
Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and
Levine, S. Soft Actor-Critic Algorithms and Applications.
arXiv, 2018b.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning Latent Dynamics for
Planning from Pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, May 2019.
URL https://proceedings.mlr.press/v97/
hafner19a.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream
to Control: Learning Behaviors by Latent Imagina-
tion. In Int. Conf. on Learning Representations, April
2020. URL https://iclr.cc/virtual_2020/
poster_S1lOTC4tDS.html. [Online; accessed 12.
May 2024].

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mastering
Atari with Discrete World Models. Int. Conf. on Learning
Representations, October 2021. doi: 10.48550/arXiv.
2010.02193.

10

https://proceedings.mlr.press/v97/hafner19a
https://proceedings.mlr.press/v97/hafner19a
https://iclr.cc/virtual_2020/poster_S1lOTC4tDS.html
https://iclr.cc/virtual_2020/poster_S1lOTC4tDS.html

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering
Diverse Domains through World Models. Int. Conf. on
Learning Representations, January 2023. doi: 10.48550/
arXiv.2301.04104.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: model-based policy optimization. In Int.
Conf. on Neural Information Processing Systems. Curran
Associates Inc., 2019.

Jeong, J., Wang, X., Gimelfarb, M., Kim, H., Abdulhai,
B., and Sanner, S. Conservative Bayesian Model-Based
Value Expansion for Offline Policy Optimization. Int.
Conf. on Learning Representations, October 2023. doi:
10.48550/arXiv.2210.03802.

Ji, T., Luo, Y., Sun, F., Jing, M., He, F., and Huang, W.
When to update your model: constrained model-based re-
inforcement learning. In Int. Conf. on Neural Information
Processing Systems, pp. 23150–23163. Curran Associates
Inc., Red Hook, NY, USA, November 2022. ISBN 978-
1-71387108-8. doi: 10.5555/3600270.3601952.

Kalweit, G. and Boedecker, J. Uncertainty-driven Imagina-
tion for Continuous Deep Reinforcement Learning. In
Conf. on Robot Learning. 2017.

Kostrikov, I., Smith, L. M., and Levine, S. Demonstrating A
Walk in the Park: Learning to Walk in 20 Minutes With
Model-Free Reinforcement Learning, 2023.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel,
P. Model-Ensemble Trust-Region Policy Optimization.
Int. Conf. on Learning Representations, 2018.

Lai, H., Shen, J., Zhang, W., and Yu, Y. Bidirectional Model-
based Policy Optimization. In Int. Conf. on Machine
Learning. PMLR, 2020.

Lai, H., Shen, J., Zhang, W., Huang, Y., Zhang, X., Tang,
R., Yu, Y., and Li, Z. On Effective Scheduling of Model-
based Reinforcement Learning. Int. Conf. on Neural
Information Processing Systems, 2021.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Sim-
ple and scalable predictive uncertainty estimation using
deep ensembles. In Int. Conf. on Neural Information
Processing Systems. 2017.

Levine, S. and Koltun, V. Guided Policy Search. In Int.
Conf. on Machine Learning. 2013.

Ljung, L. System Identification. In Signal Analysis and
Prediction. Birkhäuser, Boston, MA, 1998.

Lu, C., Ball, P. J., Parker-Holder, J., Osborne, M. A., and
Roberts, S. J. Revisiting Design Choices in Offline Model-
Based Reinforcement Learning. arXiv, October 2021. doi:
10.48550/arXiv.2110.04135.

Luis, C. E., Bottero, A. G., Vinogradska, J., Berkenkamp, F.,
and Peters, J. Model-Based Epistemic Variance of Values
for Risk-Aware Policy Optimization. arXiv, 2023a.

Luis, C. E., Bottero, A. G., Vinogradska, J., Berkenkamp, F.,
and Peters, J. Model-Based Uncertainty in Value Func-
tions. Int. Conf. on Artificial Intelligence and Statistics,
2023b.

Luo, Y., Xu, H., Li, Y., Tian, Y., Darrell, T., and Ma, T. Algo-
rithmic Framework for Model-based Deep Reinforcement
Learning with Theoretical Guarantees. arXiv, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D. Human-level control through
deep reinforcement learning. Nature, 2015.

Morgan, A. S., Nandha, D., Chalvatzaki, G., D’Eramo, C.,
Dollar, A. M., and Peters, J. Model Predictive Actor-
Critic: Accelerating Robot Skill Acquisition with Deep
Reinforcement Learning. In IEEE Int. Conf. on Robotics
and Automation. IEEE Press, 2021.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S.
Neural Network Dynamics for Model-Based Deep Re-
inforcement Learning with Model-Free Fine-Tuning. In
IEEE Int. Conf. on Robotics and Automation. 2018.

Nguyen, N. M., Singh, A., and Tran, K. Improving model-
based rl with adaptive rollout using uncertainty estimation.
2018.

Nielsen, F. On the Jensen–Shannon Symmetrization of
Distances Relying on Abstract Means. Entropy, 2019.

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M.,
Litwin, M., McGrew, B., Petron, A., Paino, A., Plap-
pert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N.,
Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba,
W., and Zhang, L. Solving rubik’s cube with a robot hand.
arXiv preprint, 2019a.

OpenAI, Berner, C., Brockman, G., Chan, B., Cheung, V.,
Debiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme,
S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pa-
chocki, J., Petrov, M., de Oliveira Pinto, H. P., Raiman,
J., Salimans, T., Schlatter, J., Schneider, J., Sidor, S.,
Sutskever, I., Tang, J., Wolski, F., and Zhang, S. Dota 2
with large scale deep reinforcement learning. 2019b.

Pan, F., He, J., Tu, D., and He, Q. Trust the model when
it is confident: masked model-based actor-critic. In Int.
Conf. on Neural Information Processing Systems. 2020.

11

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

Pineda, L., Amos, B., Zhang, A., Lambert, N. O., and Calan-
dra, R. MBRL-Lib: A Modular Library for Model-based
Reinforcement Learning. arXiv, 2021.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal Policy Optimization Algorithms.
ArXiv, 2017.

Shen, J., Zhao, H., Zhang, W., and Yu, Y. Model-based
policy optimization with unsupervised model adaptation.
In Int. Conf. on Neural Information Processing Systems.
2020.

Sutton, R. S. Dyna, an integrated architecture for learning,
planning, and reacting. SIGART Bull., 1991.

Todorov, E., Erez, T., and Tassa, Y. MuJoCo: A physics en-
gine for model-based control. In Int. Conf. on Intelligent
Robots and Systems. IEEE, 2012.

Vuong, T.-L. and Tran, K. Uncertainty-aware Model-based
Policy Optimization. arXiv, June 2019. doi: 10.48550/
arXiv.1906.10717.

Wang, X., Wongkamjan, W., Jia, R., and Huang, F. Live
in the Moment: Learning Dynamics Model Adapted to
Evolving Policy. In Int. Conf. on Machine Learning,
pp. 36470–36493. PMLR, July 2023. URL https://
proceedings.mlr.press/v202/wang23an.

Wang, Z., Wang, J., Zhou, Q., Li, B., and Li, H.
Sample-Efficient Reinforcement Learning via Conserva-
tive Model-Based Actor-Critic. AAAI Conf. on Artificial
Intelligence, 2022.

Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg,
J. M., Boots, B., and Theodorou, E. A. Information
theoretic MPC for model-based reinforcement learning.
In IEEE Int. Conf. on Robotics and Automation. IEEE,
2017.

Wu, Z., Yu, C., Chen, C., Hao, J., and Zhuo, H. H. Plan
to predict: learning an uncertainty-foreseeing model for
model-based reinforcement learning. In Int. Conf. on Neu-
ral Information Processing Systems, pp. 15849–15861.
Curran Associates Inc., Red Hook, NY, USA, November
2022. ISBN 978-1-71387108-8. doi: 10.5555/3600270.
3601423.

Wurman, P., Barrett, S., Kawamoto, K., MacGlashan, J.,
Subramanian, K., T. J., W., Capobianco, R., Devlic, A.,
Eckert, F., Fuchs, F., Gilpin, L., Khandelwal, P., Kom-
pella, V., Lin, H., MacAlpine, P., Oller, D., Seno, T.,
Sherstan, C., M. D., T., Aghabozorgi, H., Barrett, L.,
Douglas, R., Whitehead, D., Dürr, P., Stone, P., Spranger,
M., and Kitano, H. Outracing champion Gran Turismo
drivers with deep reinforcement learning. Nature, 2022.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S.,
Finn, C., and Ma, T. Mopo: Model-based offline policy
optimization. In Adv. in Neural Information Processing
Systems, 2020.

Zhai, Y., Li, Y., Gao, Z., Gong, X., Xu, K., Feng, D., Bo, D.,
and Wang, H. Optimistic Model Rollouts for Pessimistic
Offline Policy Optimization. arXiv, 2024.

Zhang, C., Kuppannagari, S. R., and Prasanna, V. K. Maxi-
mum Entropy Model Rollouts: Fast Model Based Policy
Optimization without Compounding Errors. arXiv, 2020.

Zhang, W., Wang, X., Shen, J., and Zhou, M. Model-
based Multi-agent Policy Optimization with Adaptive
Opponent-wise Rollouts. ResearchGate, pp. 3384–3391,
August 2021. doi: 10.24963/ijcai.2021/466.

12

https://proceedings.mlr.press/v202/wang23an
https://proceedings.mlr.press/v202/wang23an

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

A. Pseudocode Algorithms

Algorithm 3 “Vanilla” Dyna-style Deep Model-based Reinforcement Learning

Initialize: dynamics model p̃θ, RL policy π, environment replay buffer Denv ← ∅, model replay buffer Dmod ← ∅ ,
rollout length schedule for Tmax, steps before retraining R, number of model-based rollouts M , RL update steps G.
for each iteration do
s0 ∼ ρ0(s)
for each environment step do
at ∼ π(· | st)
st+1 ∼ p(· | st, at)
rt+1 = r(st, at)
Denv ← Denv ∪ {(st, at, rt+1, st+1)}
if mod (environment step, R) = 0 then

for each epoch do
Train p̃θ on Denv

end for
Evict old data from Dmod

for m ∈M model rollouts do
sm0 ∼ U(Denv)
for t = 0, . . . , Tmax − 1 do
emt ∼ U(1, . . . , E)
amt ∼ π(· | smt)
smt+1 ∼ p̃θemt

(· | smt , amt),

rmt+1 = r(smt , amt)
Dmod ← Dmod ∪ {(smt , amt , rmt+1, s

m
t+1)}

end for
end for

end if
for G gradient steps do

Train π on Dmod ∪ Denv

end for
end for

end for

13

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

Algorithm 4 Model-based Actor-Critic with Uncertainty-aware Rollout Adaption (MACURA)

Initialize: dynamics model p̃θ, RL policy π, environment replay buffer Denv ← ∅, model replay buffer Dmod ← ∅ , steps
before retraining R, number of model-based rollouts M , maximum RL update steps Gmax.
Initialize p̃θ, π,Denv ← ∅, Dmod ← ∅, fixed Tmax, ζ
for each iteration do
s0 ∼ ρ0(s)
for each environment step do
at ∼ π(· | st) with correlated exploration noise (Eberhard et al., 2023)
st+1 ∼ p(· | st, at)
rt+1 = r(st, at)
Denv ← Denv ∪ {(st, at, rt+1, st+1)}
if mod (environment step, R) = 0 then

K ← K + 1
k ← K
for each epoch do

Train p̃θ on Denv

end for
Evict old data from Dmod

for m ∈M model rollouts do
sm0 ∼ U(Denv)
em0 ∼ U(1, . . . , E)
am0 ∼ π(· | sm0)
sm1 ∼ p̃θem0

(· | sm0 , am0)

rm1 = r(sm0 , am0)
uGJS(s

m
0 , am0) according to (15)

if uGJS(s
m
0 , am0) < κ then

Dmod ← Dmod ∪ {(sm0 , am0 , rm1 , sm1)}
else

stop rollout m and discard data
end if

end for
ûGJS,k = inf

{
uGJS(s0, a0) ∈

{
uGJS(s

1
0, a

1
0), . . . , uGJS(s

M
0 , aM0)

}
: ζ ≤ CDFk(uGJS(s0, a0))

}
3

κ← ξ
K

∑K
k=1 ûGJS,k

for t = 1, . . . , Tmax − 1 do
for m ∈M model rollouts do
emt ∼ U(1, . . . , E)
amt ∼ π(· | smt)
smt+1 ∼ p̃θemt

(· | smt , amt),

rmt+1 = r(smt , amt)
uGJS(s

m
t , amt) according to (15)

if uGJS(s
m
t , amt) < κ then

Dmod ← Dmod ∪ {(smt , amt , rmt+1, s
m
t+1)}

else
stop rollout m and discard data

end if
end for

end for
end if
for G =

⌊
Gmax

|Dmod|
|Dmod|max

⌉
gradient steps do

Update π on Dmod ∪ Denv

end for
end for

end for

14

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

B. Proofs
Lemma B.1 (Return mismatch with respect to state distribution shift). Be the expected return following policy π in M̂

Es∼M̂,a∼π

T (ω)∑
t=0

γtrM̂t+1

 := η[π]

and the expected return following the same policy in M̃

E
s∼M̃,a∼π

T (ω)∑
t=0

γtrM̃t+1

 := η̃[π],

then

|η[π]− η̃[π]| ≤ 2rmax
4
T (ω)∑
t=0

γtDTV

(
pt(s)∥p̃t(s)

)
5.

Proof.
|η[π]− η̃[π]|

=

∣∣∣∣∣∣Es∼M̂,a∼π

T (ω)∑
t=0

γtrM̂t+1

− E
s∼M̃,a∼π

T (ω)∑
t=0

γtrM̃t+1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
E

∫
A

T (ω)∑
t=0

γt
(
pt(s, a)− p̃t(s, a)

) r(s, a) da ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
T (ω)∑
t=0

∫
E

∫
A
γt

(
pt(s, a)− p̃t(s, a)

)
r(s, a) da ds

∣∣∣∣∣∣
≤

T (ω)∑
t=0

∫
E

∫
A
γt

∣∣pt(s, a)− p̃t(s, a)
∣∣ r(s, a) da ds

≤ rmax

T (ω)∑
t=0

∫
E

∫
A
γt

∣∣pt(s, a)− p̃t(s, a)
∣∣ da ds

= rmax

T (ω)∑
t=0

∫
E

∫
A
γt

∣∣(pt(s)− p̃t(s)
)
π(a | s)

∣∣ da ds

= rmax

T (ω)∑
t=0

γt

∫
E

∣∣pt(s)− p̃t(s)
∣∣ ds

= 2rmax

T (ω)∑
t=0

γtDTV

(
pt(s)∥p̃t(s)

)

3CDFk(uGJS(s0, a0)) denotes the cumulative distribution function of GJS uncertainty estimates at time step 0 at the kth round of
model-based rollouts.

4Dynamics mismatch is especially an issue in high-rewarding areas of the state-action space. In this work, however, we will neglect the
dynamics-reward coupling and instead, only focus on the dynamics mismatch. Thus, we consider the conservative upper bound of rmax.

5We follow the common abuse of notation introduced in (Janner et al., 2019), formulating the TV distance with respect to the
probability densities rather than the stochastic process as would be formally correct.

15

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

Lemma B.2 (Recursive Formulation). Be DTV (pt(ι)∥p̃t(ι)) := ϵt for an arbitrary ι and by construction ϵ0 = 0. Further
be Es∼p̃t−1 [DTV (p (s′ | s) ∥p̃ (s′ | s))] := δt and δ0 = ϵ0 = 0. Then we can bound ϵt by

ϵt ≤
t∑

τ=0

δτ

Proof.

ϵt = DTV

(
pt(s′)∥p̃t(s′)

)
=

1

2

∫
E

∣∣pt(s′)− p̃t(s′)
∣∣ ds′

=
1

2

∫
E

∣∣∣∣∫
E
p(s′ | s)pt−1(s)− p̃(s′ | s)p̃t−1(s) ds

∣∣∣∣ ds′
≤ 1

2

∫
E

∫
E

∣∣p(s′ | s)pt−1(s)− p̃(s′ | s)p̃t−1(s)
∣∣ ds ds′

=
1

2

∫
E

∫
E

∣∣p(s′ | s)pt−1(s)− p(s′ | s)p̃t−1(s) + p(s′ | s)p̃t−1(s)− p̃(s′ | s)p̃t−1(s)
∣∣ ds ds′

≤ 1

2

∫
E

∫
E
p̃t−1(s) |p(s′ | s)− p̃(s′ | s)| ds ds′ +

1

2

∫
S

∫
E
p(s′ | s)

∣∣pt−1(s)− p̃t−1(s)
∣∣ ds ds′

= Es∼p̃t−1

[
1

2

∫
E
|p(s′ | s)− p̃(s′ | s)| ds′

]
+

1

2

∫
E

∣∣pt−1(s)− p̃t−1(s)
∣∣ ds

= Es∼p̃t−1 [DTV (p(s′ | s)∥p̃(s′ | s))] +DTV

(
pt−1(s)∥p̃t−1(s)

)
= δt + ϵt−1 = δt + δt−1 + ϵt−2 = . . . =

= ϵ0 +

t∑
τ=1

δτ = δ0 +

t∑
τ=1

δτ =

t∑
τ=0

δτ

Lemma B.3 (Dependency on dynamics mismatch). Be

∆pE [π] := sup
s∈E,a∼π

{DTV (p (s′ | s, a) ∥p̃ (s′ | s, a))}

then
Es∼p̃t−1 [DTV (p (s′ | s) ∥p̃ (s′ | s))] ≤ ∆pE [π]

Proof.
Es∼p̃t−1 [DTV (p (s′ | s) ∥p̃ (s′ | s))]

=
1

2

∫
E

∫
E
p̃t−1 (s) |p (s′ | s)− p̃ (s′ | s)| ds ds′

=
1

2

∫
E

∫
E
p̃t−1 (s)

∣∣∣∣∫
A
(p (s′ | s, a)− p̃ (s′ | s, a))π(a | s) da

∣∣∣∣ ds ds′

≤ 1

2

∫
E

∫
E

∫
A
p̃t−1 (s)π (a | s) |p (s′ | s, a)− p̃ (s′ | s, a)| da ds ds′

= Es∼p̃t−1,a∼π

[
1

2

∫
E
|p (s′ | s, a)− p̃ (s′ | s, a)| ds′

]
= Es∼p̃t−1,a∼π [DTV (p (s′ | s, a) ∥p (s′ | s, a))]
≤ ∆pE [π]

16

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

Theorem B.4 (Monotonic Improvement under Dynamics Misalignment on E ⊆ S). We define two MDPs M̂ and M̃ with a
common state space S , action space A and reward function r : S ×A → R+ 6. M̂ has dynamics p(s′ | s, a) : S ×A → S ,
while M̃ has dynamics p̃(s′ | s, a) : S ×A → S. For both MDPs, we define probability densities

P[sM̂t ∈ B] =
∫
B
pt(s) ds

P[sM̂t ∈ B, aM̂t ∈ C] =
∫
B

∫
C
pt(s, a) da ds

as well as a dynamics function

p(s′ | s) =
∫
A
p(s′ | s, a)π(a | s) da

and equivalently,

P[sM̃t ∈ B] =
∫
B
p̃t(s) ds

P[sM̃t ∈ B, aM̃t ∈ C] =
∫
B

∫
C
p̃t(s, a) da ds

p̃(s′ | s) =
∫
A
p̃(s′ | s, a)π(a | s) da

for all Borel-measuarble sets B ⊆ S, C ⊆ A and conditional probability densities π(a | s) : S → A.

Further, we define a coupling between M̂ and M̃ via a random stopping time

TM̂(ω) := min{t ∈ N | sM̂t (ω) ∈ EC}, TM̃(ω) := min{t ∈ N | sM̃t (ω) ∈ EC}, T (ω) := min{TM̂, TM̃} − 1,

where st is a trajectory with respect to the MDPs M̂ or M̃ respectively and regarded as a random variable, E ⊆ S, and
EC the compliment of E .

as well as identical start states sM̃0 = sM̂0 ∈ E .

Suppose the expected return following policy π in M̂ is denoted by

Es∼M̂,a∼π

T (ω)∑
t=0

γtrM̂t+1

 := η[π]

and η̃[π] describes the expected return following the same policy in M̃

E
s∼M̃,a∼π

T (ω)∑
t=0

γtrM̃t+1

 := η̃[π],

then we can define a lower bound for η[π] of the form

η[π] ≥ η̃[π]− 2rmax

T (ω)∑
t=0

γt
t∑

τ=0

∆pE [π].

Proof.
η[π] ≥ η̃[π]− |η[π]− η̃[π]|

6We assume rewards to be strictly positive. An equivalent reward function can be trivially constructed from any bounded reward
function r(s, a) ∈ [rmin, rmax]∀s ∈ S, a ∈ A

17

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

Using Lemma B.1

η[π] ≥ η̃[π]− 2rmax

T (ω)∑
t=0

γtDTV

(
pt(s)∥p̃t(s)

)
Using Lemma B.2

η[π] ≥ η̃[π]− 2rmax

T (ω)∑
t=0

γt
t∑

τ=0

Es∼p̃τ−1 [DTV (p (s′ | s) ∥p̃ (s′ | s))]

Using Lemma B.3

η[π] ≥ η̃[π]− 2rmax

T (ω)∑
t=0

γt
t∑

τ=0

∆pE [π]

18

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

C. Toy Example
In order to test the proposed uncertainty measure uGJS (15), we use a two-dimensional toy example of a pendulum. We
discuss the dynamics of the pendulum in Section C.1, the feedback controller used as policy in Section C.2, and the
experimental setup leading to Figure 3 in Section C.3. We further compare our uncertainty estimate to the one proposed in
(Pan et al., 2020) and show a substantially more reliable behavior of the uGJS measure in Section C.5.

C.1. Pendulum Dynamics

Figure 9 shows a free-body diagram of the pendulum near the upper fixed point. We can write the equation of motion for
such a pendulum as

ml2ϕ̈−mgl sinϕ+ bϕ = υ, (23)

where m is the mass of the pendulum, l is its length, g is the acceleration due to gravity, and b is the coefficient of viscous
friction. Further, υ is the torque applied at the base of the pendulum that is used to control the pendulum. We define the
continuous-time state as x =

[
ϕ ϕ̇

]T
with ϕ ∈ [−3, 3][rad] the pendulum angle and ϕ̇ ∈ [−16, 16][rads] the pendulum’s

angular velocity. The nonlinear state-space equation for this system in continuous time are

ẋ =

[
ϕ̇

1
ml2

(
υ +mgl sinϕ− bϕ̇

)] = f(x, υ). (24)

When considering the system in discrete time, we sample observations and apply actions a = υ at discrete time points
separated by a fixed time interval ∆t. We simulate the pendulum by integrating the state equation (24) between the sampling
time steps, keeping the applied action fixed throughout the integration. We additionally consider homoscedastic Gaussian
process noise with covariance matrix Σ. Hence we obtain the discrete-time MDP dynamics as

p(·|s, a) = N (µ(s, a),Σ) , (25)

with,

µ(s, a) =

∫ ∆t

0

f(x(t), a)dt, (26)

where x(0) = s. The values for the different parameters can be seen in Table 1.

Table 1: Parameters of the Pendulum.

Parameter Value
mass m 0.1
length l 1

acceleration due to gravity g 9.81
coefficient of viscous friction b 0.1

sampling time interval ∆t 0.01

process noise covariance matrix Σ

[
10−6 0
0 10−3

]

C.2. Controller

The pendulum is controlled via the applied torque υ. We can use feedback linearization (Adamy, 2022) to obtain a controller
of the form

πFL(s) = υFL(x) = ml2
(
ϕ̈d +KD(ϕ̇d − ϕ̇) +KP (ϕ

d − ϕ)
)
−mgl sinϕ+ bϕ̇, (27)

where ϕd, ϕ̇d, and ϕ̈d denote the desired pendulum angle, angular velocity, and angular acceleration, respectively. The
positive constants KP and KD denote the proportional and derivative gains respectively. We choose them to give under-
damped feedback dynamics. The values can be seen in Table 2. For our purpose, we use the upper fixed point as the desired
position, that is, ϕd = 0, ϕ̇d = 0 and ϕ̈d = 0.

19

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

Figure 9: Free body diagram of the pendulum.

Table 2: Parameters of the Controller.

Parameter Value
proportional gain KP 25
derivative gain KD 1

C.3. Data Generation

We create interaction data that is stored Denv to train a PE model. For this, we let the feedback linearization controller (27)
interact with the pendulum (24). Each trajectory starts from a fixed start state

[
ϕ0 ϕ̇0

]T
. The trajectories are terminated

upon reaching Tmax steps. Ten such trajectories are generated. This results in a data distribution with a characteristic spiral
shape as depicted in Figure 3a and 10a. The parameters used for generating the trajectories can be found in Table 3.

Table 3: Trajectory parameters for data generation.

Parameter Value
initial angle ϕ0 3

initial angular velocity ϕ̇0 0
number of steps Tmax 170

C.4. Illustrating the uGJS Uncertainty Measure

To illustrate the effectiveness of the proposed uncertainty measure uGJS, we investigate the connection between dynamics
misalignment DTV (p (s′ | s, a) ∥p̃ (s′ | s, a)) and model uncertainty on the toy example.

We train a PE dynamics model on data created according to Section C.3 and evaluate both quantities over S . To do this, we
discretize the state space into a uniform grid {sij} where i is used to index over ϕ and j is used to index over ϕ̇. For each
sij the corresponding action is obtained as

aij = πFL(sij). (28)

First, we evaluate dynamics misalignment DTV (p (s′ | s, a) ∥p̃ (s′ | s, a)) over the predefined grid. We obtain the true and

20

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

(a) Denv (b) uGJS (Ours) (c) E with uGJS < κ (d) E with uGJS over DTV(p∥p̃)

(e) DTV(p(s
′|s, a)∥p̃(s′|s, a)) (f) uOvR ((Pan et al., 2020)) (g) E with uOvR < κ (h) E with uOvR over DTV(p∥p̃)

Figure 10: Effectiveness of the GJS uncertainty measure

predicted next state distribution as
pij = p(·|sij , aij), (29)

querying the dynamics of the toy example (25), and

p̃ij,e = p̃θe(·|sij , aij) (30)

for each PNN prediction with e ∈ (1 . . . E).

As there is no closed-form solution for computing DTV (pij∥p̃ij) we use the common upper bound of the total variation
distance with respect to the Hellinger distance DH:

DTV (pij∥p̃ij) ≤
√
2DH (pij∥p̃ij) . (31)

Figures 3b and 10e show a heatmap over S of the discretized dynamics misalignment measurements

dij =
1

E

E∑
e=1

√
2DH(pij ||p̃ij,e). (32)

Similarly, we evaluate model uncertainty in Figures 3c and 10b over S plotting

uGJS,ij = uGJS(sij , aij). (33)

As discussed in Section 5.3, both align well. Choosing a suitable κ allows to construct a meaningful set E as depicted in
Figures 3d and 10c that aligns with areas of low dynamics misalignment as illustrated in Figure 10d.

21

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

C.5. Illustrating the uOvR Uncertainty Measure of the M2AC Algorithm (Pan et al., 2020)

Similar to MACURA, Pan et al. (2020) propose to adapt the length of branched model-based rollouts in Dyna-style MBRL
using model uncertainty. Therefore, they present the One-versus-Rest uOvR uncertainty estimate for PE models:

uOvR(s, a) = DKL

(
N (µθe(s, a),Σθe(s, a))∥N (µθ−e(s, a),Σθ−e(s, a))

)
. (34)

This uncertainty estimate is defined as the Kullback-Leibler divergence between a randomly chosen PNN prediction
e ∼ U(1, . . . , E) and a Gaussian distribution defined by merging the remaining PNNs of the PE model, such that

µθ−e
(s, a) =

1

E − 1

E∑
f ̸=e

µθf (s, a) (35)

and

Σθ−e(s, a) =
1

E − 1

E∑
f ̸=e

(
Σθf (s, a) + µθf (s, a)µθf (s, a)

⊤)− µθ−e(s, a)µθ−e(s, a)
⊤. (36)

We evaluate the connection between dynamics misalignment and the uncertainty estimate uOvR on the pendulum toy
example. Here we use the exact same setup as the one discussed in Section C.4, including the identical PE model. The only
difference is that we compute the model uncertainty according to

uOvR,ij = uOvR(sij , aij). (37)

The evaluation over S is depicted in Figure 10f. We see a substantially more noisy uncertainty estimate of uOvR as compared
to the uGJS uncertainty estimate proposed in MACURA and depicted in Figure 10b. Most importantly, we see uOvR to be
overconfident in areas around ϕ = 0 and ϕ̇ = 0 where the uOvR model uncertainty is low, while dynamics misalignment is
high as can be seen from Figure 10e.

Trying to construct a subset
EOvR := {s ∈ S | uOvR(s, a) < κOvR, a ∼ π(· | s)}. (38)

choosing a suitable κOvR does not yield a reasonable result as shown in Figure 10g. The set has no clear boundary, due
to the noisiness of the uOvR uncertainty estimate. More importantly, the set does not align with areas of low dynamics
misalignment, as depicted in Figure 10h, due to the overconfidence of uOvR.

22

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

D. Experiments
In the following, we discuss the details of the experimental setup in Section D.1 and different approaches to exploring the
environment in Dyna-style MBRL in Section D.3.

D.1. Experimental Setup

Instead of the original implementation of MBPO7, all implementations of this work are based on the more recent mbrl-lib
library (Pineda et al., 2021). For MBPO and SAC, we use the implementations provided by the library, while M2AC is
reimplemented as an extension to MBPO, as no open-source version of the M2AC code is available. We further implement
the MACURA algorithm based on the mbrl-lib version of MBPO. The code is available online8.

We run five random seeds for each experiment. Plots show the mean over the corresponding runs as a solid line and the 95%
confidence interval as a shaded region.

In all experiments, the training data for the SAC agent comprises 95% Dmod and 5% Denv for MBPO, M2AC, and
MACURA.

To achieve results comparable to the ones published in (Janner et al., 2019), we tune the MBPO hyperparameters according
to Table 4.

Table 4: Hyperparameters MBPO

Environment Humanoid Ant Halfcheetah Walker Hopper
Epochs 300 300 400 200 125

Steps per Epoch 1000
PNNs per PE 7
PNN Layers 4

PNN Nodes per Layer 400 200
Critic Layers 3

Critic Nodes per Layer 2048 1024
Actor Layers 3

Actor Nodes per Layer 2048 1024
SAC Target Ent. -10 -1 -4 -1 0
SAC Updates G 20 10 30

Rollouts per Round M 406 203 406
Rollouts length Tmax 1→ 25 1→ 25 1 1→ 15

Episodes Schedule Tmax 20→ 300 20→ 100 20→ 100

For MACURA, we choose the hyperparameters very close to MBPO for a fair comparison. In the MBPO implementation,
the number of model-based rollouts per iteration M needs to be a multiple of the number of ensemble members. We
remove this requirement for the MACURA rollout scheme, allowing us to choose M to plain hundreds. Also, we observe
that the actual number of update steps G according to (22) in MACURA is roughly one-half of Gmax. Thus we choose
Gmax for MACURA to be twice as much as G in MBPO. We further introduce the hyperparameters Tmax, ζ, and ξ of the
uncertainty-aware rollout adaption scheme of MACURA. Here, we keep Tmax and ζ constant among all environments and
solely tune ξ for the specific task. A comprehensive overview of the MACURA hyperparameters is provided in Table 5.

In the case of M2AC, we have issues producing stable results. This forces us to deviate from the hyperparameter setup of
MBPO. Similar to MACURA, we remove the requirement for M to be a multiple of the number of ensemble members,
thus choosing M to plain hundreds. In some environments, we observe M2AC yield better results with a fixed temperature
parameter of the SAC agent, thus we disable automatic entropy tuning in these cases9. For the study of different exploration
schemes in Section D.3, we find that hyperparameter settings of M2AC that are stable for deterministic environment

7https://github.com/jannerm/mbpo
8https://github.com/Data-Science-in-Mechanical-Engineering/macura
9If the SAC Target Ent. hyperparameter is shown as N/A in the hyperparameter tables, this means that automatic entropy tuning

(Haarnoja et al., 2018b) is not used for this case, instead a fixed temperature parameter (Haarnoja et al., 2018a) of 0.2 is used.

23

https://github.com/jannerm/mbpo
https://github.com/Data-Science-in-Mechanical-Engineering/macura

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

Table 5: Hyperparameters MACURA

Environment Humanoid Ant Halfcheetah Walker Hopper
Epochs 300 300 400 200 125

Steps per Epoch 1000
PNNs per PE 7
PNN Layers 4

PNN Nodes per Layer 400 200
Critic Layers 3

Critic Nodes per Layer 2048 1024
Actor Layers 3

Actor Nodes per Layer 2048 1024
SAC Target Ent. -10 -1 -4 -1 0

SAC Updates Gmax 40 20 60
Rollouts per Round M 400 200 400
Rollouts length Tmax 10

Quantile Factor ζ 0.95
Scaling Factor ξ 5 2 0.3 30

Table 6: Hyperparameters M2AC (Deterministic Environment Policy)

Environment Humanoid Ant Halfcheetah Walker Hopper
Epochs 300 300 400 200 125

Steps per Epoch 1000
PNNs per PE 7
PNN Layers 4

PNN Nodes per Layer 200
Critic Layers 3

Critic Nodes per Layer 1024 512 1024
Actor Layers 3

Actor Nodes per Layer 1024 512 1024
SAC Target Ent. -17 N/A -6 -1 0
SAC Updates G 20 10 30

Rollouts per Round M 400 200 400
Rollouts length Tmax 10

interaction, destabilize when exploring and vice versa. Therefore, we provide two sets of hyperparameters. Table 6
represents the hyperparameter setting for deterministic interaction, and Table 7 shows the hyperparameters used when
exploring with white or pink noise.

Finally, we choose the hyperparameters of the SAC baseline, according to Table 8. Similar to M2AC, SAC yields better
results with a fixed temperature hyperparameter10.

D.2. Discussion ξ

The parameter ξ allows us to tune what sufficiently certain is. The general idea is that in the first rollout step, the model is
evaluated in states that are in Denv and have been seen before. Thus, the uncertainty values we get for this first step are
values of the GJS that correspond to being certain. So we choose the base uncertainty ûGJS to be the ζ = 0.95 quantile of
uncertainties after this first rollout step. Taking this base uncertainty as the uncertainty threshold, which corresponds to
ξ = 1, yields reasonable results in all environments. In this case, whenever a prediction step overshoots the 0.95 quantile of
uncertainty within the data support, we consider it to have left E and terminate the model-based rollout.

10If the SAC Target Ent. hyperparameter is shown as N/A in the hyperparameter table, this means that automatic entropy tuning
(Haarnoja et al., 2018b) is not used for this case, instead a fixed temperature parameter (Haarnoja et al., 2018a) of 0.2 is used.

24

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

Table 7: Hyperparameters M2AC (Stochastic Environment Policy)

Environment Humanoid Ant Halfcheetah Walker Hopper
Epochs 300 300 400 200 125

Steps per Epoch 1000
PNNs per PE 7
PNN Layers 4

PNN Nodes per Layer 200
Critic Layers 3

Critic Nodes per Layer 1024
Actor Layers 3

Actor Nodes per Layer 1024
SAC Target Ent. -17 -1 -4 N/A
SAC Updates G 20 10 30

Rollouts per Round M 400 200 400
Rollouts length Tmax 10

Table 8: Hyperparameters SAC

Environment Humanoid Ant Halfcheetah Walker Hopper
Critic Layers 3

Critic Nodes per Layer 256
Actor Layers 3

Actor Nodes per Layer 256
SAC Target Ent. -17 N/A -6 -6 -3
SAC Updates G 1

However, the model is often very certain within the data support towards the end of the training, leading to a low uncertainty
threshold κ resulting from ξ = 1. This leads to a narrow data distribution in Dmod. Repeatedly training the critics on this
narrow distribution causes overfitting. This introduces instability towards the end of training as discussed in Section 7.4 and
shown in Figure 6. Thus, we typically choose ξ > 1. This is true for all MuJoCo environments but Walker. The Walker
dynamics seem hard to learn for the PE model. This can e.g. be seen from the learning behavior of MBPO in Figure 4. Even
though MBPO solely performs model-based rollouts of length 1 throughout training, learning appears rather brittle. Thus, in
the Walker task, the 0.95 quantile of uncertainties after the first rollout step is too uncertain for stable learning. Therefore,
we chose ξ < 1 to stabilize learning in this case.

From our experience, ξ can be tuned in the following way:

• Perform a run with ξ = 1. This should result in stable learning as long as the agent is in the early stages of training and
improves sufficiently fast. As soon as the algorithm is close to its asymptotic performance, the uncertainty threshold
might get too low such that instabilities in learning occur.

• If this is the case, increase ξ. As indicated in Figure 6, there is a relatively broad range of ξ values that yields stable
performance. If ξ is chosen too large, however, instabilities due to model exploitation occur.

• If instabilities occur early in training, when running MACURA with ξ = 1 the model probably approximates the true
dynamics poorly. This can be checked e.g. by reproducing trajectories in Denv through model-based rollouts and
considering the deviation. In this case, ξ can be reduced until the learning behavior is stable.

The fact that the entire rollout mechanism can be tuned by choosing ξ, from our experience, makes tuning considerably
easier than determining all the required hyperparameters of the M2AC mechanism or designing a suitable rollout schedule
for MBPO.

D.3. Exploration in the Environment

The implementation used in this work, based on the mbrl-lib library (Pineda et al., 2021), uses deterministic environment
exploration for MBPO yielding similar results to the original implementation (Janner et al., 2019). As far as we can recon-

25

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

100 200 300 400
Steps 1e3

5

10

15

Re
tu

rn
1e3

MACURA(D)

MACURA(WN)

MACURA(PN)

MBPO(D)

MBPO(WN)

MBPO(PN)

M2AC(D)

M2AC(WN)

M2AC(PN)

Figure 11: Exploration Schemes on MACURA, MBPO, and M2AC on Halfcheetah. Impact of deterministic (D), white
noise (WN), and pink noise (PN) exploration on algorithmic performance.

struct, the original implementation (Janner et al., 2019) uses white noise exploration in the agent environment interaction,
however, when implementing white noise exploration in the mbrl-lib code, we observe substantially different results from
those reported in (Janner et al., 2019). These range from better performance to divergence. For our reimplementation of
M2AC based on the mbrl-lib code, deterministic environment interaction also yields the most stable results. Thus, we
present the performance of deterministic environment interaction for MBPO and M2AC in Figure 4.

In Figures 11 - 15 we present the performance of MACURA, MBPO, and M2AC with the considered exploration schemes:
deterministic interaction, white exploration noise and pink noise exploration (Eberhard et al., 2023), on the MuJoCo
benchmark.

We have issues producing stable results for M2AC, despite putting the most tuning effort among the compared approaches.
We find that hyperparameter settings that are stable for deterministic interaction destabilize in the case of exploration noise
and vice versa. Thus we provide a set of hyperparameters for deterministic environment interaction and one that we use for
white and pink noise exploration. For MACURA and MBPO we run the same sets of hyperparameters for all exploration
schemes. Generally, we see the performance of M2AC fall short as compared to MACURA and MBPO.

For MBPO, we use the fine-tuned rollout schemes reported in (Janner et al., 2019). White noise exploration in most cases
positively impacts asymptotic performance but increases the variance among runs. In some instances, we observe that
white noise exploration destabilizes learning in MBPO, leading to divergence. For pink noise exploration, we can report a
generally positive impact on the performance of MBPO, increasing data efficiency and asymptotic performance without
destabilizing learning. In some environments, MBPO with a fine-tuned rollout schedule and pink noise exploration can even
compete with MACURA.

MACURA with deterministic environment interaction shows the strongest performance among deterministic interaction
methods in most environments. White noise exploration in some cases yields better results than pink noise exploration,
while considerably increasing variance among trained agents. Different from MBPO, however, white noise exploration does
not destabilize MACURA up to the point of divergence. Overall, we observe that MACURA with pink noise exploration
yields the best data efficiency, asymptotic performance, and stability among all approaches on the benchmark. Combined
with a considerably easier-to-tune rollout length scheduling mechanism than MBPO and M2AC we consider this the most
promising approach for Dyna-style MBRL.

26

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

50 100 150 200
Steps 1e3

2

4

6

Re
tu

rn

1e3
MACURA(D)

MACURA(WN)

MACURA(PN)

MBPO(D)

MBPO(WN)

MBPO(PN)

M2AC(D)

M2AC(WN)

M2AC(PN)

Figure 12: Exploration Schemes on MACURA, MBPO, and M2AC on Walker. Impact of deterministic (D), white noise
(WN), and pink noise (PN) exploration on algorithmic performance.

25 50 75 100 125
Steps 1e3

2

4

Re
tu

rn

1e3
MACURA(D)

MACURA(WN)

MACURA(PN)

MBPO(D)

MBPO(WN)

MBPO(PN)

M2AC(D)

M2AC(WN)

M2AC(PN)

Figure 13: Exploration Schemes on MACURA, MBPO, and M2AC on Hopper. Impact of deterministic (D), white noise
(WN), and pink noise (PN) exploration on algorithmic performance.

27

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

100 200 300
Steps 1e3

2

4

6

8

10

Re
tu

rn

1e3
MACURA(D)

MACURA(WN)

MACURA(PN)

MBPO(D)

MBPO(WN)

MBPO(PN)

M2AC(D)

M2AC(WN)

M2AC(PN)

Figure 14: Exploration Schemes on MACURA, MBPO, and M2AC on Humanoid. Impact of deterministic (D), white noise
(WN), and pink noise (PN) exploration on algorithmic performance.

100 200 300
Steps 1e3

2

4

6

Re
tu

rn

1e3
MACURA(D)

MACURA(WN)

MACURA(PN)

MBPO(D)

MBPO(WN)

MBPO(PN)

M2AC(D)

M2AC(WN)

M2AC(PN)

Figure 15: Exploration Schemes on MACURA, MBPO, and M2AC on Ant. Impact of deterministic (D), white noise (WN),
and pink noise (PN) exploration on algorithmic performance.

28

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

D.4. Noisy Environment

We evaluate MBPO, M2AC, and MACURA on a noisy version of the Halfcheetah environment. To introduce noise, we
take the approach proposed in (Pan et al., 2020) and add noise to the actions applied to the environment. Therefore, the
action applied to the environment is ãt = at + ϵ with ϵ ∼ N (0,Σ). The covariance matrix Σ is a diagonal matrix with
diagonal elements σ2. The additive noise is not observable to the agent and therefore introduces process noise. Following the
experimental setup in (Pan et al., 2020), we conduct three experiments with σ = 0.05, σ = 0.1 , and σ = 0.2 respectively.
The corresponding results are depicted in Figure 16. MACURA consistently outperforms MBPO and M2AC.

100 200 300 400
1e3

5

10

15

Re
tu

rn

1e3 = 0.05

100 200 300 400
1e3

5

10

15
1e3 = 0.1

100 200 300 400
Steps 1e3

5

10

15

Re
tu

rn

1e3 = 0.2

MACURA

MBPO

M2AC

Figure 16: Returns obtained by MACURA, MBPO, and M2AC on noisy Halfcheetah.

D.5. Rollout Horizon, Data Uncertainty, Gradient Steps

We evaluate the rollout - and gradient step adaption mechanism of MACURA on the Walker environment. We compare
MACURA to M2AC and MBPO.

First, we consider the average rollout length of the respective approaches throughout training as depicted in Figure 17.
Therefore, we record the rollout lengths of all M model-based rollouts performed in parallel during one round of model-
based rollouts and compute their average. As proposed in (Janner et al., 2019), MBPO performs one-step rollouts throughout
training leading to an average rollout length of one. The rank-based filtering heuristic of M2AC terminates a fixed quantile
of model-based rollouts after each rollout step. Effectively, this yields a predefined distribution over rollout lengths,
which does not change throughout training. As a side effect, this leads to a constant average rollout length as depicted in
Figure 17. MACURA, instead, has a threshold-based rollout length adaption mechanism, thus the average rollout length
varies throughout training. MACURA performs short rollouts in the early stages of training, where the model has limited
capabilities and increases the rollout length as the model improves. Different from MBPO and M2AC, MACURA can even
discard the first rollout step enabling an average rollout length lower than one.

Next, we investigate the uncertainty of the corresponding data created in model-based rollouts. We measure uncertainty with
the variance of the mean predictions of the individual PNNs within the PE. To recover a scalar uncertainty, we take the
Frobenius norm of the resulting matrix:

uMV(s, a) =

∥∥∥∥∥ 1

E

E∑
e=1

(µθe(s, a)− µPE(s, a))(µθe(s, a)− µPE(s, a))
⊤

∥∥∥∥∥
F

(39)

with µPE(s, a) =
1
E

∑E
e=1 µθe(s, a). By doing this, we aim to avoid artifacts introduced by comparing uncertainty in the

metrics used in M2AC or MACURA and instead provide an impartial analysis of how uncertainty evolves in model-based

29

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

50 100 150 200
Steps 1e3

2

4

6

8

10
av

er
ag

e
ro

llo
ut

 le
ng

th
MACURA

MBPO

M2AC

Figure 17: Average rollout lengths for MACURA, MBPO, and M2AC on Walker.

rollouts.

The average uncertainty corresponding to the respective Dyna-style approaches is depicted in Figure 18. MBPO has the
highest average uncertainty that reduces throughout training. M2AC shows lower average uncertainty than MBPO. We
assume this is the case, as low-uncertainty rollouts are propagated for several rollout steps reducing the mean uncertainty.
MACURA shows an average uncertainty comparable to M2AC. However, the initial average uncertainty in MACURA is
substantially lower than in M2AC and MBPO due to the threshold-based rollout adaption mechanism. Different from the
rank-based heuristic of M2AC that always takes a particular most certain percentage into account (which can include very
uncertain data when initially most data is bad), MACURA can discard all the data that is above the uncertainty threshold.

It should be noted that the average uncertainty gives a rough impression of data quality but is not a suitable metric for
detecting low-quality outliers that occur with low probability. These outliers, however, have a strong influence on the
learning process from our experience.

50 100 150 200
Steps 1e3

1

2

3

4

m
ea

n
ep

ist
em

ic
va

ria
nc

e

MACURA

MBPO

M2AC

Figure 18: Mean epistemic uncertainty of rollouts for MACURA, MBPO, and M2AC on Walker.

The varying amounts of data created in model-based rollouts require adapting the amount of SAC updates in MACURA.

30

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

Figure 19 shows the average gradient steps G of the respective approaches. Both MBPO and M2AC have a G = 30 fixed

50 100 150 200
Steps 1e3

10

20

30

40

ag
en

t u
pd

at
es

 p
er

 e
nv

iro
nm

en
t s

te
p

MACURA

MBPO/M2AC

Figure 19: SAC Update Steps

throughout training, while MACURA adapts G depending on the occupancy of Dmod (22) that depends on the average
rollout length depicted in Figure 17. Therefore, MACURA performs fewer SAC updates in the early stages of training but
catches up as the model improves. Towards the end of training, MACURA performs a bit over 40 SAC updates per timestep.
Simply increasing G to 40 in MBPO and M2AC, however, does not yield stable results, as depicted in Figure 20 (in the
figure G is referred to as update-to-data (UTD) ratio).

50 100 150 200
Steps 1e3

2

4

6

Re
tu

rn

1e3

MACURA

MBPO UTD 40

M2AC UTD 40

MBPO UTD 30

M2AC UTD 30

Figure 20: Comparison of returns obtained on Walker.

D.6. Uncertainty Estimates

In the following, we investigate the performance of MACURA and M2AC with different uncertainty estimates. Results on
the Humanoid environment are depicted in Figure 21.

M2AC with the GJS uncertainty estimate learns slightly faster and shows slightly stronger performance with less variance.
We assume this to be the case, as the GJS estimate is more reliable in detecting low-quality data, thus stabilizing learning.

31

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

50 100 150 200 250 300
Steps 1e3

2

4

6

8

10
Re

tu
rn

1e3

MACURA

MACURA OvR

MACURA ensemble variance

MACURA epistemic variance

M2AC

M2AC GJS

Figure 21: MACURA and M2AC with different uncertainty metrics on Humanoid.

MACURA with OvR uncertainty estimate (Pan et al., 2020) performs well up to a return of about 7000 and subsequently
diverges presumably due to the brittleness of the OvR uncertainty estimate.

Additionally, we conduct experiments with MACURA using the ensemble variance estimate proposed in (Lu et al., 2021)
and mean variance (39).

While MACURA works with both these uncertainty metrics, they yield weaker results than the GJS estimate. This aligns
with our intuition, as ensemble variance is a combined estimate for epistemic and aleatoric uncertainty, while we are
solely interested in epistemic uncertainty. The variance of ensemble means solely addresses epistemic variance but has no
information about the aleatoric uncertainty at all, which can be problematic. Epistemic uncertainty, however, is defined
by the disagreement of individual PNN predictions, which rather corresponds to the overlap in the probability mass of the
individual predictions. The GJS uncertainty estimate measures this overlap in probability mass, thus providing a better
metric for epistemic uncertainty and works better in practice.

D.7. Prolonged Experiments

In the following, we discuss the behavior of MBPO and MACURA, when trained beyond the typically reported length of
experiments (Janner et al., 2019; Pan et al., 2020). Figure 22 depicts results on Halfcheetah for 1,000,000 environment
interactions as opposed to the 400,000 environment interactions presented in Figure 4. We do not consider M2AC in these
experiments as stabilizing M2AC even for the first 400,000 environment interactions is a substantial challenge. Both MBPO
and MACURA destabilize after an extended amount of training. From our experience, this is due to overfitting of either
the model or the critic after training on similar data distributions over and over again. The training heuristics for model
and critic of MBPO that are largely inherited by MACURA are not well suited for continuing training. Extending these
algorithms to a continuing training setting requires further research addressing when to train your model and agent that is
beyond the scope of this work.

32

Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption

200 400 600 800 1000
Steps 1e3

3000

6000

9000

12000

15000

Re
tu

rn

MACURA

MBPO

Figure 22: MACURA and MBPO with prolonged experiment length on Halfcheetah.

33

