
Appendix

A Additional Experiments

In this section, we present some additional experiments. This section is organized as follow: in
Section A.1, we conduct experiments using different number of parties (as opposed to three parties
in Section 6); in Section A.2, we test our methods using other regularizer for VRLR, e.g., Lasso; in
Section A.3, we test our methods in VKMC with different number of centers; and finally in Section
A.4, we conduct experiments on another dataset (KC House Dataset [35]).

A.1 Different number of parties

In this section, we test our algorithms using different number of parties. We choose to use five parties
(T = 5) in this section instead of three parties in Section 6.

Empirical setup Most of the experimental setups are the same as those in Section 6, except
that now we use 5 parties instead of 3 parties. There are 90 dimensions for a single data in
YearPredictionMSD dataset, and we let each party hold 18 dimensions. Besides, changing the
number of parties does not affect the performance of U-Central and U-SAGA (but the number of
communication will change due to different number of parties), and we reuse the results from Section
6 and recalculate the number of communications.

Empirical results Figure 4 and 5 summarize our results for VRLR and VKMC respectively. Note
that all the observations in Section 6 hold for 5 parties.
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Figure 4: Results for 5 parties (Section A.1) Left: Testing loss and communication complexity of
VRLR for different methods. C and U means using coreset or uniform sampling. The number in
the parentheses denote the sample size. Right: Testing loss of VRLR for different methods under
multiple sample sizes.

A.2 Different regularizer for VRLR

In this part, we consider using different regularizers in VRLR.

Empirical setup We consider three different regression problems: plain linear regression, Lasso
regression, and elastic nets. In Section 6, we consider the Ridge regression (R(θ) = 0.1n ∥θ∥22
where n is the dataset size), and in this part, linear regression denotes the optimization problem where
R(θ) = 0, Lasso regression denotes the problem where R(θ) = 2n ∥θ∥1, and elastic net denotes the
problem where R(θ) = 2n ∥θ∥1 + n ∥θ∥22. All the experiments setup remains the same as Section
6, except the for Lasso regression and elastic nets, there is no SAGA solver and we only compare
C-Central and U-Central with Central.
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Figure 5: Results for 5 parties (Section A.1) Left: Cost and communication complexity of VKMC
for different methods. C and U means using coreset sampling or uniform sampling. The number in
the parentheses denote the sample size. Right: Cost of VKMC for different methods under multiple
sample sizes.
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Figure 6: Results for linear regression (Section A.2) Left: Training loss and communication complex-
ity of VRLR for different methods. C and U means using coreset or uniform sampling. The number
in the parentheses denote the sample size. Right: Testing loss of VRLR for different methods under
multiple sample sizes.

Empirical results We plot the training loss instead of the testing loss since we are comparing
different objective functions. Figure 6, 7, and 8 show the empirical results in this part. Note that all
the observations in Section 6 also hold: (1) coreset sampling and uniform sampling can drastically
reduce the communication complexity where nearly maintain the solution performance, and (2)
coreset performs better than uniform sampling under the same number of communication.

A.3 Different number of centers for VKMC

In this section we test our methods on VKMC using different number of centers.

Empirical setup The experimental setup in this part is the same as the setup in Section 6 for
VKMC, except that we are using 5 centers instead of 10 centers.

Empirical results Figure 9 summarizes the result. All the observations in Section 6 also hold.

A.4 Experiments on other datasets

In this section, we present the experiment results on another dataset. We choose the KC House
Dataset [35] for both VRLR and VKMC.
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Figure 7: Results for Lasso regression (Section A.2) Left: Training loss and communication complex-
ity of VRLR for different methods. C and U means using coreset or uniform sampling. The number
in the parentheses denote the sample size. Right: Testing loss of VRLR for different methods under
multiple sample sizes.
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Figure 8: Results for elastic net (Section A.2) Left: Training loss and communication complexity of
VRLR for different methods. C and U means using coreset or uniform sampling. The number in
the parentheses denote the sample size. Right: Testing loss of VRLR for different methods under
multiple sample sizes.
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Figure 9: Results for VKMC with 5 centers (Section A.3) Left: Cost and communication complexity
of VKMC for different methods. C and U means using coreset sampling or uniform sampling. The
number in the parentheses denote the sample size. Right: Cost of VKMC for different methods under
multiple sample sizes.
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.
Figure 10: Results for KC House dataset (Section A.4) Left: Training loss and communication
complexity of VRLR for different methods. C and U means using coreset or uniform sampling. The
number in the parentheses denote the sample size. Right: Testing loss of VRLR for different methods
under multiple sample sizes.
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Figure 11: Results for KC House dataset (Section A.4) Left: Cost and communication complexity
of VKMC for different methods. C and U means using coreset sampling or uniform sampling. The
number in the parentheses denote the sample size. Right: Cost of VKMC for different methods under
multiple sample sizes.

Empirical setup Our experiment setup is nearly the same as the setup in Section 6. However, there
are a few differences: (1) the dataset we use is KC House Dataset [35], which contains 21613 data
points and each datapoint constains 18 features and a label; (2) we conduct the experiment using only
two parties because the limited number of features, we put the first nine features on the first party
and the remaining on the second; and (3), we do not consider regularizer for VRLR (plain linear
regression). Also note that similar to Section 6, we normalize each feature to have standard deviation
1 during the clustering task.

Empirical results For VRLR, we plot the training loss instead of the testing loss, since the dataset
is not so large and coreset does not have theoretical guarantee for generalization error. Figure 10
and 11 summarize our results for VRLR and VKMC respectively. From the results, we still find that
our coreset construction method can outperform uniform sampling, and both of them can drastically
reduce the communication complexity compared with the original baselines.

Note that in Figure 10, C-SAGA and U-SAGA performs much worse than the baseline Central.
However, C-Central can perform much better and has similar performance as Central, and this
phenomenon may attribute to the fact that this problem is hard to solve by SAGA algorithm, and
using other second-order methods [73] may help. Also note that when the size is small (100 and 200),
U-Central may produce “ridiculous” solutions and the cost blows up.
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B Justification of Data Assumptions

In this section, we justify our data assumptions in Section 4 (Assumption 4.1) and Section 5 (As-
sumption 5.1). We show that in the smoothed analysis regime, Assumption 4.1 and 5.1 are easy to
satisfy with some standard assumptions. In Section B.1, we show the results related to Assumption
4.1, and in Section B.2, we justify Assumption 5.1.

B.1 Justification of Assumption 4.1

In this section, we interpret and justify Assumption 4.1. First, we recall Assumption 4.1.

Assumption 4.1. Let U (j) ∈ Rn×d′
j denote the orthonormal basis of the column space of X(j)

stored on party j (U (T ) denotes the orthonormal basis of [X(T ), y]), and then the matrix U =
[U (1),U (2), . . . ,U (T )] has smallest singular value σmin(U) ≥ γ > 0.

Assumption 4.1 requires that the subspace generated by any party cannot be included in the subspace
generated by all other parties. However, it it not sure what standard assumptions can lead to
Assumption 4.1. The following lemma shows that, σmin(U) can be lower bounded by th smallest
and largest singular value of matrix X ′ = [X,y].
Lemma B.1. If matrix X ′ = [X,y] has smallest singular value σmin(X

′) > 0 and largest singular
value σmax(X

′), we have

σmin(U) ≥ σmin(X
′)

σmax(X ′)
.

Proof. Because we assume X ′ has smallest singular value, we can represent X ′ = UA, where A is
a d+ 1 by d+ 1 matrix with rank d+ 1.

Now for any w, we have

∥Uw∥ =
∥∥X ′A−1w

∥∥ ≥ σmin(X
′)
∥∥A−1w

∥∥ .
Note that A has rank d+ 1, and thus σmin(A

−1) = 1/σmax(A). Besides, A = diag(A(1), . . . ,A(T ))
is a block diagonal matrix, where X(j) = A(j)U (j) for j ∈ [T − 1] and [X(T ),y] = A(T )U (T ),
and thus σmax(A) = maxj∈[T ]{σmax(A

(j))}. Because U (j) is the orthonormal basis of X(j) or
[X(T ),y], we have

σmax(A
(j)) = σmax(X

(j)), σmax(A
(T )) = σmax([X

(T ),y]).

We also have σmax(X
′) ≥ σmax(X

(j)) and σmax(X
′) ≥ σmax([X

(T ),y]). Combining all the
properties together, we get σmax(A) ≤ σmax(X

′), and thus conclude the proof.

Using the preivous lemma, it is easy to analyze the smallest singular value σ(U) in the smoothed
analysis regime. Specifically, we prove that for any dataset [X,y] satisfying certain conditions, we
add a random perturbation on the dataset, resulting [Xp,yp], and we show that with high probability,
Up (which is constructed from dataset [Xp,yp] has smallest singular value. The result is formalized
in the following theorem.

Theorem B.1. There exists constant n0 such that for any dataset [X,y] ∈ Rn×(d+1) where each
data point ∥[xi; yi]∥22 ≤ B and n ≥ 2d, n ≥ n0. If we perturb the dataset by a small random
Gaussian noise [Xp.yp] where Xp = X +Z, yp = y+w, and each coordinate of Z and w comes
from N (0, r2B2), then with high probability, the basis Up computed from [Xp.yp] has smallest
singular value at least Ω(r).

In order to prove Theorem B.1, we use the following theorem (Theorem 1.1 in [8]).
Proposition B.1 (Smoothed analysis of condition number, Theorem 1.1 in [8]). Suppose that
Ā ∈ Rn×d satisfies

∥∥Ā∥∥ ≤ 1, and let 0 < rp ≤ 1. Then,

Pr
A∼N (Ā,r2I)

{κ(A) ≥ C1t} ≤ (C2/t + C2/rp
√
nt)

n−d+1
,

for some constants C1, C2, C3 and all t ≥ C3.
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Roughly speaking, Proposition B.1 claims that with high probability, the condition number under
the smoothed analysis regime should be bounded above. Then with the help of Lemma B.1 and
Proposition B.1, we can now prove Theorem B.1.

Proof of Theorem B.1. For simplicity, we treat denote D = [X,y] and Dp = [Xp,yp], and Dp =
D +A, where each coordinate of A comes form N (0, r2B2).

Note that the condition number of a matrix is ‘scale invariant’, which means that

κ(A) = κ(cA),

for constants c ̸= 0.

Now, since the row of D has bounded norm B, thus ∥D∥ ≤ B
√
n. By the scale invariance of

condition number, we have
κ(Dp) = κ(Dp/(B

√
n)).

Now, the perturbation factor rp in Proposition B.1 is rB/B
√
n = r/

√
n, and we know that

Pr {κ(Dp) ≥ C1/r} ≤ (C2r + C2)
n−d+1

,

for some constants C1, C3 > 0, constant C2 s.t. 0 < C2 < 1 and all r ≤ C3. Directly applying
Lemma B.1 concludes the proof.

B.2 Justification of Assumption 5.1

In this section, we justify Assumption 5.1. We first recall the assumption.

Assumption 5.1. There exists τ ≥ 1 and some party t ∈ [T ] such that ∥xi − xj∥2 ≤

τ
∥∥∥x(t)

i − x
(t)
j

∥∥∥2 for any i, j ∈ [n].

Roughly speaking, this assumption requires there is a party that is “important”, and any two data
points which can be differentiated can also be differentiated on that party to some extent. In reality,
this assumption should be approximately satisfied since different features should be “correlated”.

Next, similar to the justification of Assumption 4.1, we use smoothed analysis framework to show
that for dataset X under certain conditions, by perturbing the dataset for a little bit, Assumption 5.1
will be satisfied with high probability. Formally, we have the following theorem.

Theorem B.2. For any dataset where each data point ∥xi∥22 ≤ B for all xi ∈X and maxj∈[T ] dj ≥
Ω(log2 n). If we perturb the dataset by a small random Gaussian noise Xp where Xp = X + Z,
and each coordinate of Z and w comes from N (0, r2B2). Then with high probability, Xp satisfies
Assumption 5.1 with

τ = O

(
1

r2
+

d

log2 n

)
The intuition of the proof is that, the norm of a high-dimensional (sub-)gaussian random vector
should concentrate around Θ(

√
d), where d is the dimension of the (sub-)gaussian random vector.

Thus, as long as we add some perturbation to the original dataset, the norm of the difference between
any two perturbed data points on party j should be at least

√
dj . Formally, we have the following

proposition for the concentration of norm.
Proposition B.2 (Concentration of the norm). Let ξ = (ξ1, . . . , ξd) ∈ Rd be a random Gaussian
vector, where each coordinate is sampled from N (0, r2) independently. Then there exists constants c
such that for any t ≥ 0,

Pr
{∣∣∣∥ξ∥2 − r

√
d
∣∣∣ ≥ rt

}
≤ 2 exp

(
−ct2

)
Now with the help of this proposition, we can now prove Theorem B.2.

Proof of Theorem B.2. First, we upper bound ∥x̃i − x̃j∥2 where x̃i denote the i-th perturbed data
and we use ξi = x̃i − xi to denote the random perturbation. We have

∥x̃i − x̃j∥2 ≤ 2 ∥xi − xj∥2 + 2 ∥ξi − ξj∥2 .
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From the assumption, we know that ∥xi − xj∥ ≤ 2B, and thus we only need to bound the second
term. From Proposition B.2, we know that for fixed i ̸= j, we have

Pr
{∣∣∣∥ξi − ξj∥ −

√
2rB
√
d
∣∣∣ ≥ crB log n

}
≤ 2 exp (4 log n) ,

for some constants c since ξi − ξj is a Gaussian random vector whose entries are drawn from
N (0, 2r2B2). Thus, with probability at least 1− 2/n4, we have

∥x̃i − x̃j∥2 ≤ 8B2 + 4r2B2d+ cr2B2 log2 n,

for some constant c. Then applying the union bound, we know that with probability at least 1− 1
n2 ,

∥x̃i − x̃j∥2 ≤ 8B2 + cr2B2 log2 n,∀i ̸= j,

for some constant c. Without loss of generality, suppose that d1 = maxj∈[T ] dj , and then we lower

bound
∥∥∥x̃(1)

i − x̃
(1)
j

∥∥∥2. First since
∥∥∥x̃(1)

i − x̃
(1)
j

∥∥∥2 is the noncentralized χ2 distribution, we have

Pr

{∥∥∥x̃(1)
i − x̃

(1)
j

∥∥∥2 ≥ t

}
≥ Pr

{∥∥∥ξ(1)i − ξ
(1)
j

∥∥∥2 ≥ t

}
.

Then from Proposition B.2, we have

Pr
{∣∣∣∥∥∥ξ(1)i − ξ

(1)
j

∥∥∥−√2rB√d1

∣∣∣ ≥ crB log n
}
≤ 2 exp (4 log n) ,

for some constant c. Thus, if d1 ≥ C log2 n for some large enough constant c, we know that with
probability at least 1− 2/n4, ∥∥∥x̃(1)

i − x̃
(1)
j

∥∥∥2 ≥ cr2B2 log2 n,

for some constant c. Then with a union bound, we know that with probability at least 1− 1/n2,∥∥∥x̃(1)
i − x̃

(1)
j

∥∥∥2 ≥ cr2B2 log2 n, ∀i ̸= j,

for some constant c. Combining with the previous part, we know that if maxj∈[T ] dj ≥ C log2 n for
some large constant C, then with probability at least 1− 1

n , we have

∥x̃i − x̃j∥2∥∥∥x̃(1)
i − x̃

(1)
j

∥∥∥2 ≤ O

(
B2 + r2B2d+ r2B2 log2 n

r2B2 log2 n

)
= O

(
1

r2
+

d

log2 n

)
.

C Proof of Theorem 2.5

Proof of Theorem 2.5. We only take VRLR as an example. We consider the following communication
scheme: First apply the communication scheme A′ to construct an ε-coreset (S,w) for VRLR in the
server; then the server broadcasts (S,w) to all parties; and finally apply the communication scheme
A to (S,w) and obtain a solution θ ∈ Rd in the server.

Let θ⋆ be the optimal solution for the offline regularized linear regression problem.

By the coreset definition, we have that

costR(X,θ) ≤ (1 + ε)costR(S,θ) (by coreset definition)

≤ (1 + ε)α · costR(S,θ⋆) (by A)

≤ (1 + ε)2α · costR(X,θ⋆) (by coreset definition)

≤ (1 + 3ε)α · costR(X,θ⋆), (ε ∈ (0, 1))

which proves the approximation ratio.

For the total communication complexity, note that the broadcasting step costs 2Tm. This completes
the proof.
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D Proof of Theorem 3.1

For preparation, we first introduce a well-known importance sampling framework for offline coreset
construction by [22, 7].
Theorem D.1 (Feldman-Langberg framework [22, 7]). Let ε, δ ∈ (0, 1/2) and let k ≥ 1 be an
integer. Let X ⊂ Rd be a dataset of n points together with a label vector y ∈ Rn, and g ∈ Rn

≥0

be a vector. Let G :=
∑

i∈[n] gi. Let S ⊆ [n] be constructed by taking m ≥ 1 samples, where each
sample i ∈ [n] is selected with probability gi

G and has weight w(i) := G
|S|gi . Then we have

• If gi ≥ supθ∈Rd
costRi (X,θ)
costR(X,θ)

holds for any i ∈ [n] and m = O
(
ε−2G(d2 log G + log(1/δ))

)
,

with probability at least 1− δ, (S,w) is an ε-coreset for offline regularized linear regression.

• If gi ≥ supC∈C
costCi (X,C)
costC(X,C)

holds for any i ∈ [n] and m = O
(
ε−2G(dk log G + log(1/δ))

)
,

with probability at least 1− δ, (S,w) is an ε-coreset for offline k-means clustering.

We call gi the sensitivity of point xi that represents the maximum contribution of xi over all possible
parameters, and call G the total sensitivity. By [65], we note that the total sensitivity can be upper
bounded by O(d) for offline regularized linear regression and by O(k) for offline k-means clustering.
By the Feldman-Langberg framework, it suffices to compute a sensitivity vector g ∈ Rn for offline
coreset construction.

Proof of Theorem 3.1. We first discuss the communication complexity of Algorithm 1. At the first
round, the communication complexity in Line 2 is T and in Line 4 is T . At the second round, the
communication complexity in Line 5 is at most

∑
j∈[T ] aj = m and in Line 6 is at most mT . At the

third round, the communication complexity in Line 7 is at most mT . Overall, the total communication
complexity is O(mT ).

Next, we prove the correctness. We only take VRLR as an example and the proof for VKMC is
similar. Note that each sample in S is equivalent to be drawn by the following procedure: Sample
i ∈ [n] with probability

∑
j∈[T ] g

(j)
i /G. This is because by Lines 3 and 5, the sampling probability of

i ∈ [n] is exactly ∑
j∈[T ]

G(j)

G
· g

(j)
i

G(j)
=

∑
j∈[T ] g

(j)
i

G
.

Then letting g′i = ζ ·
∑

j∈[T ] g
(j)
i for each i ∈ [n], we have

g′i ≥ sup
θ∈Rd

costRi (X,θ)

costR(X,θ)

by assumption. This completes the proof by plugging g′i to Theorem D.1.

E Omitted Proof in Section 4

E.1 Communication lower bound for VRLR coreset construction

The proof is via a reduction from an EQUALITY problem to the problem of coreset construction for
VRLR. For preparation, we first introduce some concepts in the field of communication complexity.

Communication complexity. Here it suffices to consider the two-party case (T = 2). Assume we
have two players Alice and Bob, whose inputs are x ∈ X and y ∈ Y respectively. They exchange
messages with a coordinator according to a protocol Π (deterministic/randomized) to compute some
function f : X × Y → Z . For the input (x, y), the coordinator outputs Π(x, y) when Alice and Bob
run Π on it. We also use Π(x, y) to denote the transcript (concatenation of messages). Let |Πx,y| be
the length of the transcript. The communication complexity of Π is defined as maxx,y |Πx,y|. If Π is
a randomized protocol, we define the error of Π by maxx,y P(Π(x, y) ̸= f(x, y)), where the max is
over all inputs (x, y) and the probability is over the randomness used in Π. The δ-error randomized
communication complexity of f , denoted by Rδ(f), is the minimum communication complexity of
any protocol with error at most δ.
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EQUALITY problem. In the EQUALITY problem, Alice holds a = {a1, . . . , an} ∈ {0, 1}n and
Bob holds b = {b1, . . . , bn} ∈ {0, 1}n. The goal is to compute EQUALITY(a, b) which equals 1
if ai = bi for all i ∈ [n] otherwise 0. The following lemma gives a well-known lower bound for
deterministic communication protocols that correctly compute EQUALITY function.
Lemma E.1 (Communication complexity of EQUALITY [42]). The deterministic communication
complexity of EQUALITY is Ω(n).

Reduction from EQUALITY. Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We prove this by a reduction from EQUALITY. For simplicity, it suffices
to assume d = 1 and T = 2 in the VRLR problem. Given an EQUALITY instance of size n, let
a ∈ {0, 1}n be Alice’s input and b ∈ {0, 1}n be Bob’s input. They construct inputs X ∈ Rn

and y ∈ Rn for VRLR, where X = a and y = b. We denote S ⊆ [n] with a weight function
w : S → R≥0 to be an ε-coreset such that for any θ ∈ R, we have

costR(S,θ) :=
∑
i∈S

w(i) · (x⊤
i θ − yi)

2 +R(θ) ∈ (1± ε) · costR(X,θ).

Based on the above guarantee, w.l.o.g, if we set θ = 1 and R = 0, then there exist two cases with
positive cost: (ai, bi) = (0, 1) or (1, 0). In other words, EQUALITY(a, b) = 0 if and only if the
set {(xi, yi) : i ∈ S} includes (0, 1) or (1, 0). Thus, any deterministic protocol for VRLR coreset
construction can be used as a deterministic protocol for EQUALITY. The lower bound follows from
Lemma E.1.

E.2 Proof of Theorem 4.2

In this section, we show the detailed proof of Theoem 4.2. The proof idea is to bound the sensitivity
of each data point and then apply Theorem 3.1. Recall that in Theorem 3.1, we define

ζ = max
i∈[n]

sup
θ∈Rd

costRi (X,θ)

costR(X,θ)/
∑

j∈[T ] g
(j)
i .

We first show the following main lemma.
Lemma E.2. Under Assumption 4.1, the sensitivity of a data point can be bounded by

sup
θ∈Rd

costRi (X,θ)

costR(X,θ)
≤ gi

γ2
,

which means that ζ ≤ 1/γ2.

Proof. The sensitivity function for each data point (xi, yi) is defined as

sup
θ∈Rd

costRi (X,θ)

costR(X,θ)
= sup

θ

(x⊤
i θ − yi)

2 + λR(θ)
n

∥Xθ − y∥2 + λR(θ)
.

First, we have

sup
θ∈Rd

(x⊤
i θ − yi)

2 + λR(θ)
n

∥Xθ − y∥2 + λR(θ)
= sup

θ∈Rd

(
(x⊤

i θ − yi)
2

∥Xθ − y∥2 + λR(θ)
+

λR(θ)
n

∥Xθ − y∥2 + λR(θ)

)

≤ sup
θ∈Rd

(
(x⊤

i θ − yi)
2

∥Xθ − y∥2
+

1

n

)
,

where we separate the regression loss and the regularized loss.

Then for the regression loss, define X ′ = [X,y] and d′ =
∑

j∈[T ] d
′
j , we have

sup
θ∈Rd

(x⊤
i θ − yi)

2

∥Xθ − y∥2
≤ sup

θ∈Rd+1

((x′
i)

⊤θ)2

∥X ′θ∥2
= sup

θ∈Rd′

((ui)
⊤θ)2

∥Uθ∥2
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Note that under Assumption 4.1, matrix U has smallest singular value σmin ≥ γ > 0, and we can get

sup
θ∈Rd

(x⊤
i θ − yi)

2

∥Xθ − y∥2
≤ sup

θ∈Rd′

((ui)
⊤θ)2

∥Uθ∥2

≤ sup
θ∈Rd′

((ui)
⊤θ)2

σ2
min ∥θ∥

2

≤ ∥ui∥2

γ2

=

∑
j∈[T ]

∥∥∥u(j)
i

∥∥∥2
γ2

.

Recall that gi =
∑

j∈[T ] g
(j)
i =

∑
j∈[T ]

∥∥∥u(j)
i

∥∥∥2 + T
n . Hence,

sup
θ∈Rd

costRi (X,θ)

costR(X,θ)
≤

∑
j∈[T ]

∥∥∥u(j)
i

∥∥∥2
γ2

+
1

n
≤ gi

γ2
.

Now with the help of Lemma E.2, we can prove Theorem 4.2.

Proof of Theorem 4.2. Note that from Lemma E.2, we know that ζ ≤ 1/γ2. Also note that from
Algorithm 2, we have

G =
∑
j∈[T ]

∑
i∈[n]

(∥∥∥u(j)
i

∥∥∥2 + 1

n

)
=
∑
j∈[T ]

∥∥∥U (j)
∥∥∥2
F
+ T =

∑
j∈[T ]

d′j + T ≤ d+ T + 1 ≤ 2d+ 1.

Then we apply Theorem 3.1, the ε-coreset size for VRLR can be bounded by

m = O(ε−2γ−2d(d2 log (γ−2d) + log 1/δ)),

and the communication complexity is O(mT ).

F Omitted Proof in Section 5

F.1 Communication lower bound for VKMC coreset construction

The proof is via a reduction from a set-disjointness (DISJ) problem to the problem of coreset
construction for VKMC.

DISJ problem. In the DISJ problem, Alice holds a = {a1, . . . , an} ∈ {0, 1}n and Bob holds
b = {b1, . . . , bn} ∈ {0, 1}n. The goal is to compute DISJ(a, b) =

∨
i∈[n](ai

∧
bi). The following

lemma gives a well-known communication lower bound for DISJ.
Lemma F.1 (Communication complexity of DISJ [37, 59, 3]). The randomized communication
complexity of DISJ is Ω(n), i.e., for δ ∈ [0, 1/2) and n ≥ 1, Rδ(DISJ) = Ω(n).

Reduction from DISJ. Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. We prove this by a reduction from DISJ. For simplicity, it suffices to assume
d = 2 and T = 2 in the VKMC problem. Given a DISJ instance of size n, let a ∈ {0, 1}n be
Alice’s input and b ∈ {0, 1}n be Bob’s input. They construct an input X ⊂ R2 for VKMC, where
X = {xi : xi = (ai, bi), i ∈ [n]}. We denote S ⊆ [n] with a weight function w : S → R≥0 to be
an ε-coreset such that for any C ∈ C with |C| = k, we have

costC(S,C) :=
∑
i∈S

w(i) · d(xi,C)2 ∈ (1± ε) · costC(X,C).
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Based on the above guarantee, w.l.o.g., if we set k = 3 and C = {(0, 0), (0, 1), (1, 0)}, then only
point (1, 1) can induce positive cost. In other words, DISJ(a, b) = 1 if and only if the set {xi : i ∈ S}
includes point (1, 1). Thus, any δ-error protocol for VKMC coreset construction can be used as a
δ-error protocol for DISJ. The lower bound follows from Lemma F.1.

F.2 Proof of Theorem 5.2

Algorithm 3 applies the meta Algorithm 1 after computing {g(j)i } locally. The key is to construct
local sensitivities g(j)i so that the sum

∑
j∈[T ] g

(j)
i can approximate global sensitivity gi well, i.e,

with both small ζ and G in Theorem 3.1.

Constructing local sensitivities. By the local sensitivities g(j)i defined in Line 10 of Algorithm 3,
we have the following lemma that upper bound both ζ and G.

Lemma F.2 (Upper bounding the global sensitivity of VKMC locally). Given a dataset X ⊂ Rd

with Assumption 5.1, an α-approximation algorithm for k-means with α = O(1) and integers k ≥ 1,

T ≥ 1, the local sensitivities g(j)i in Algorithm 3 satisfies that for any i ∈ [n], supC∈C
costCi (X,C)
costC(X,C)

≤
4τ
∑

j∈[T ] g
(j)
i , i.e., ζ = O(τ). Moreover, G :=

∑
i∈[n],j∈[T ] g

(j)
i = O(αkT ).

The proof can be found in Section F.3, and it is partly modified from the dimension-reduction type
argument [65], which upper bounds the total sensitivity of a point set in clustering problem by
projecting points onto an optimal solution. Intuitively, if some party t satisfies Assumption 5.1, the
partition over [n] corresponding to an α-approximation computed using local data will induce a
global ατ -approximate solution. Hence, combining this with the argument mentioned above, we
derive that g(t)i (scaled by 4τ ) is an upper bound of the global sensitivity. Though unaware of which
party satisfies Assumption 5.1, it suffices to sum up g

(j)
i over j ∈ [T ], costing an addtional T in G.

Proof of Theorem 5.2. By Lemma F.2, the sensitivity gap ζ is O(τ) and the total sensitivity G is
O(αkT ). Plugging them into Theorem 3.1 completes the proof.

F.3 Proof of Lemma F.2

Our proof is partly inspired by [65]. For preparation, we first introduce the following useful notations.

Suppose the party t in the dataset X satisfies Assumption 5.1, andA is an α-approximation algorithm
for k-means clustering. Let C̃(t) be an α-approximate solution computed locally in party t using
A, i.e., C̃(t) = A(X(t)) = {c̃(t)l : l ∈ [k]}. We define a mapping π : [n] → [k] to find the
closest center index for each point in the local solution, i.e., π(i) = argminl∈[k] d(x

(t)
i , c̃

(t)
l ). We

also denote B
(t)
l := {i ∈ [n] : π(i) = l} to be the local cluster corresponding to c̃

(t)
l . Note that

{B(t)
l : l ∈ [k]} is a partition over data as B(t)

l ∩B
(t)
l′ = ∅ (l, l′ ∈ [k], l ̸= l′) and ∪l∈[k]B

(t)
l = [n].

Let C̃ := {c̃l : c̃l = 1

|B(t)
l |

∑
i∈B

(t)
l

xi} be a k-center set in Rd lifted from Rdt based on {B(t)
l }.

The following lemma shows that C̃ is also a constant approximation to the global k-means clustering.

Lemma F.3 (Local partition induces global constant apporximation for k-means). If party t of a
dataset X ⊂ Rd satisfies Assumption 5.1, then given a local α-approximate solution C̃(t), for any
k-center set C ∈ C, we have

costC(X, C̃) ≤ τcostC(X(t), C̃(t)) ≤ ατcostC(X,C).

Thus, C̃ is an ατ -approximate solution to the global k-means clustering.

Proof.

costC(X, C̃) =

n∑
i=1

d(xi, C̃)2
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≤
k∑

l=1

∑
i∈B

(t)
l

d(xi, c̃l)
2 (assignment by B

(t)
l is not optimal)

=

k∑
l=1

1

2|B(t)
l |

∑
i,j∈B

(t)
l

d(xi,xj)
2 (a standard property of k-means )

≤
k∑

l=1

τ

2|B(t)
l |

∑
i,j∈B

(t)
l

d(x
(t)
i ,x

(t)
j )2 (by Assumption 5.1)

= τcostC(X(t), C̃(t))

≤ ατcostC(X(t),C(t)) (C̃(t) is α-approximation)

= ατ

n∑
i=1

d(x
(t)
i ,C(t))2

≤ ατ

n∑
i=1

d(xi,C)2

= ατcostC(X,C).

Note that |C̃| = k, and the above inequality holds for any C ∈ C with |C| = k. Minimizing the last
item over C ∈ C completes the proof.

Next, since we get a global constant approximation C̃, we can upper bound the global sensitivities
via projecting X onto C̃. Concretely, the following lemma shows that g(t)i (scaled by 4τ ) is an upper
bound of the global sensitivity of xi if Assumption 5.1 holds for party t.
Lemma F.4 (Upper bounding the global sensitivities for k-means ). If party t of a dataset X ⊂ Rd

satisfies Assumption 5.1, then given a local α-approximate solution C̃(t), we have

sup
C∈C

d(xi,C)2

costC(X,C)
≤ 4ατd(x

(t)
i , C̃(t))2

costC(X(t), C̃(t))
+

4ατ
∑

j∈B
(t)

π(i)

d(x
(t)
j , C̃(t))2

|B(t)
π(i)|costC(X(t), C̃(t))

+
8ατ

|B(t)
π(i)|

. (1)

Proof. Let the multi-set π(X) := {c̃π(i) : i ∈ [n]} be the projection of X to C̃. We denote sX(xi)

to be supC∈C
d(xi,C)2

costC(X,C)
for i ∈ [n]. Similarly, sπ(X)(c̃l) := supC∈C

d(c̃l,C)2

costC(π(X),C)
for l ∈ [k̃].

First we show that for any C ∈ G, the k-means objective of the multi-set π(X) w.r.t. C can be upper
bounded by that of X with a constant factor.

costC(π(X),C) =

n∑
i=1

d(c̃π(i),C)2

=

n∑
i=1

min
l∈[k]

d(c̃π(i), cl)
2

≤
n∑

i=1

min
l∈[k]

(
2d(xi, cl)

2 + 2d(xi, c̃π(i))
2
)

(triangle inequality for d2)

= 2costC(X,C) + 2costC(X, C̃)

≤ 2(1 + ατ)costC(X,C) (Lemma F.3)

≤ 4ατcostC(X,C). (ατ ≥ 1) (2)

Then for any C ∈ C and xi ∈X , we have

d(xi,C)2
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= min
l∈[k]

d(xi, cl)
2

≤ min
l∈[k]

(
2d(xi, c̃π(i))

2 + 2d(c̃π(i), cl)
2
)

(triangle inequality of d2)

= 2d(xi, c̃π(i))
2 + 2d(c̃π(i),C)2

≤ 2d(xi, c̃π(i))
2 + 2sπ(X)(c̃π(i))cost

C(π(X),C) (definition of sπ(X))

≤ 2d(xi, c̃π(i))
2 + 8ατsπ(X)(c̃π(i))cost

C(X,C) (from (2))

= 2d(xi,
1

|B(t)
π(i)|

∑
j∈B

(t)

π(i)

xj)
2 + 8ατsπ(X)(c̃π(i))cost

C(X,C) (definition of C̃)

≤ 2

|B(t)
π(i)|

∑
j∈B

(t)

π(i)

d(xi,xj)
2 + 8ατsπ(X)(c̃π(i))cost

C(X,C) (convexity of d2)

≤ 2

|B(t)
π(i)|

∑
j∈B

(t)

π(i)

d(xi,xj)
2 +

8ατ

|B(t)
π(i)|

costC(X,C) (sπ(X)(c̃π(i)) ≤
1

|B(t)
π(i)|

)

≤

 2

|B(t)
π(i)|

∑
j∈B

(t)

π(i)

d(xi,xj)
2

costC(X,C)
+

8ατ

|B(t)
π(i)|

 costC(X,C).

Thus,

d(xi,C)2

costC(X,C)

≤ 2

|B(t)
π(i)|

∑
j∈B

(t)

π(i)

d(xi,xj)
2

costC(X,C)
+

8ατ

|B(t)
π(i)|

≤ 2τ

|B(t)
π(i)|

∑
j∈B

(t)

π(i)

d(x
(t)
i ,x

(t)
j )2

costC(X,C)
+

8ατ

|B(t)
π(i)|

(Assumption 5.1)

≤ 2ατ

|B(t)
π(i)|

∑
j∈B

(t)

π(i)

d(x
(t)
i ,x

(t)
j )2

costC(X(t), C̃(t))
+

8ατ

|B(t)
π(i)|

(Lemma F.3)

≤ 4ατ

|B(t)
π(i)|

∑
j∈B

(t)

π(i)

d(x
(t)
i , c̃π(i))

2 + d(x
(t)
j , c̃π(i))

2

costC(X(t), C̃(t))
+

8ατ

|B(t)
π(i)|

(triangle inequality of d2)

=
4ατd(x

(t)
i , C̃(t))2

costC(X(t), C̃(t))
+

4ατ
∑

j∈B
(t)

π(i)

d(x
(t)
j , C̃(t))2

|B(t)
π(i)|costC(X(t), C̃(t))

+
8ατ

|B(t)
π(i)|

,

taking supremum over C ∈ C completes the proof.

Now we are ready to prove Lemma F.2.

Proof of Lemma F.2. By Lemma F.4, since some party t ∈ [T ] satisfies Assumption 5.1, then

sup
C∈C

costCi (X,C)

costC(X,C)
≤ 4τg

(t)
i ≤ 4τ

∑
j∈[T ]

g
(j)
i ,
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where g
(t)
i is defined as the right side of (1) for any t ∈ [T ]. Moreover,

G =
∑
i∈[n]

∑
j∈[T ]

g
(j)
i

=
∑
j∈[T ]

∑
i∈[n]

 αd(x
(j)
i , C̃(j))2

costC(X(j), C̃(j))
+

α
∑

i′∈B
(j)

π(i)

d(x
(j)
i′ , C̃(j))2

|B(j)
π(i)|costC(X(j), C̃(j))

+
2α

|B(j)
π(i)|


=
∑
j∈[T ]

(α+ α+ 2kα)

= 2(k + 1)αT.

Hence, ζ = O(τ) and G = O(αkT ), which completes the proof.

G Robust Coresets for VRLR and VKMC

In this section, we prove that even if the data assumptions 4.1 and 5.1 fail to hold, Algorithms 2 and 3
still provide robust coresets for VRLR (Theorem G.3) and VKMC (Theorem G.4) in the flavor of
approximating with outliers.

G.1 Robust coreset

In this section, we introduce a general definition of robust coreset. For preparation, we first give some
notations for a function space, which can be easily specialized to the cases for VRLR and VKMC.
Given a dataset X of size n, let F be a set of cost functions from X to R≥0. For a subset S ⊆ [n]
with a weight function w : S → R≥0, we denote f(S) to be the weighted total cost over S for any
f ∈ F , i.e., f(S) =

∑
i∈S w(i)f(xi). With a slight abuse of notation, we can see X as [n] with unit

weight such that f(X) =
∑

i∈[n] f(xi). Now we define the robust coreset as follows.

Definition G.1 (Robust coreset). Let β ∈ [0, 1), and ε ∈ (0, 1). Given a set F of functions from X
to R≥0, we say that a weighted subset of S ⊆ [n] is a (β, ε)-robust coreset of X if for any f ∈ F ,
there exists a subset Of ⊆ [n] such that

|Of |
n
≤ β,

|S ∩Of |
|S|

≤ β,

|f(X\Of )− f(S\Of )| ≤ εf(X).

Roughly speaking, we allow a small portion of data to be treated as outliers and neglected both in X
and S when considering the quality of S. Note that a (0, ε)-robust coreset is equivalent to a standard
ε-coreset, and S provides a slightly weaker approximation guarantee with additive error if β > 0.
Also note that our definition of robust coreset is a bit different from that in previous work [22, 32, 69],
which focus on generating robust coresets from uniform sampling, but basically they all capture
similar ideas. This is because we will be interested in the robustness of importance sampling under
the case where a small percentage of data have unbounded sensitivity gap in Algorithm 1, and the
above definition gives simpler results.

We propose the following theorem to show that (S,w) returned by Algorithm 1 is a (β, ε)-robust
coreset when size m is large enough.
Theorem G.2 (The robustness of Algorighm 1). Let β,ε ∈ (0, 1). Given a dataset X of size n

and a set F of functions from X to R≥0, let gi =
∑

j∈[T ] g
(j)
i and G =

∑
i∈[n] gi. Let S ⊆ [n] be

a sample of size m drawn i.i.d from [n] with probability proportional to {gi : i ∈ [n]}, where each
sample i ∈ [n] is selected with probability gi

G and has weight w(i) := G
mgi

. If ∀i ∈ [n], j ∈ [T ] we

have g
(j)
i ≥ 1/n, let si := supf∈F

f(xi)
f(X) and c =

2
∑

i∈[n] si

βT . If

m = O

(
c2G2

ε2

(
dim(F ) + log

1

δ

))
, (3)

where dim(F ) is the pseudo-demension of F . Then with probability 1− δ, (S,w) is a (β, ε)-robust
coreset of X .
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The proof is in Section G.4. Recall that the term si
gi

represents the sensitivity gap of point xi, and
Algorithm 1 guarantees sublinear communication complexity only if the maximum sensitivity gap
ζ over all points is independent of n. The main idea in the above theorem is that we can reduce
the portion of potential outliers (with large sensitivity gap) to a small constant both in X and S via
scaling sample size m by a sufficiently large constant.

G.2 Robust coresets for VRLR

The following theorem shows that Algorithm 2 returns a robust coreset for VRLR when sample size
m is large enough. Note that m is still independent of n.
Theorem G.3 (Robust coresets for VRLR). For a given dataset X ⊂ Rd, integer T ≥ 1 and
constants β, ε, δ ∈ (0, 1), with probability at least 1 − δ, Algorithm 2 constructs a (β, ε)-robust
coreset for VRLR of size

m = O

(
d4

ε2β2T 2

(
d2 + log

1

δ

))
,

and uses communication complexity O(mT ).

Proof. By Theorem G.2, in VRLR, F = {fθ : fθ(x) = (x⊤θ−y)2 +R(θ)/n,θ ∈ Rd}. Note that
in Theorem 4.2, g(j)i = ∥u(j)

i ∥2 + 1
n ≥

1
n , G = O(d) and

∑
i∈[n] si = O(d), we have cG = O( d2

βT ).

Plugging cG = O( d2

βT ) and dim(F ) = d2 into (3) completes the proof.

G.3 Robust coresets for VKMC

The following theorem shows that Algorithm 3 returns a robust coreset for VKMC when sample size
m is large enough. Note that m is still independent of n.
Theorem G.4 (Robust coresets for VKMC). For a given dataset X ⊂ Rd, an α-approximation
algorithm for k-means with α = O(1), integers k ≥ 1, T ≥ 1 and constants β, ε, δ ∈ (0, 1), with
probability at least 1− δ, Algorithm 3 constructs a (β, ε)-robust coreset for VKMC of size

m = O

(
α2k4

ε2β2

(
dk + log

1

δ

))
,

and uses communication complexity O(mT ).

Proof. By Theorem G.2, in VKMC, F = {fC : fC(x) = d(x,C)2 = minc∈C d(x, c)2,C ∈
C, |C| = k}. Note that in Theorem 5.2, g(j)i ≥ 1

n , G = O(αkT ) and
∑

i∈[n] si = O(k), we have

cG = O(αk
2

β ). Plugging cG = O( d2

βT ) and dim(F ) = dk into (3) completes the proof.

G.4 Proof of Theorem G.2

We first introduce the following lemma which mainly shows that importance sampling generates an
ε-approximation of X on the corresponding weighted function space.
Lemma G.1 (Importance sampling on a function space [2, 22]). Given a set F of functions from
X to R≥0 and a constant ε ∈ (0, 1), let S be a sample of size m drawn i.i.d from [n] with probability
proportional to {gi : i ∈ [n]}. If gi = Ω( 1n ) for any i ∈ [n], and let G =

∑
i∈[n] gi. If

m = O

(
1

ε2

(
dim(F ) + log

1

δ

))
,

where dim(F ) is the pseudo-demension of F . Then with probability 1− δ, ∀f ∈ F and ∀r ≥ 0,∣∣∣∣∣∣∣
∑

i∈[n],
f(xi)

gi
≤r

f(xi)−
∑

i∈S,
f(xi)

gi
≤r

G
mgi

f(xi)

∣∣∣∣∣∣∣ ≤ Gεr.
Now we are ready to prove Theorem G.2.
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Proof of Theorem G.2. Recall that c =
2
∑

i∈[n] si

βT . Let O ⊆ [n] be defined as

O := {i ∈ [n] : si ≥ cgi}.

Note that gi =
∑

j∈[T ] g
(j)
i ≥ T

n , and
∑

i∈[n] si ≥
∑

i∈O si ≥
∑

i∈O cgi ≥ |O| · cTn . Hence,

|O|
n
≤
∑

i∈[n] si

cT
=

β

2
< β. (4)

Let p be the probability that a point in S belongs to O, then

p =

∑
i∈O gi∑
i∈[n] gi

≤
∑

i∈O si

c
∑

i∈[n] gi
≤
∑

i∈O si

cT
≤
∑

i∈[n] si

cT
=

β

2
.

Hence, by a standard multiplicative Chernoff bound, if m = Ω( 1β log 1/δ), then with probability
1− δ/2, we have

|S ∩O|
|S|

≤ β. (5)

For any f ∈ F , we define a subset Of ⊆ O as follows,

Of := {i ∈ [n] :
f(xi)

f(X)
≥ cgi}.

By (4) and (5), we have that |Of |
n ≤ β and |S∩Of |

|S| ≤ β. Note that f(xi)/gi ≥ cf(X) if and only if
i ∈ Of . Let r = cf(X) and plug it into Lemma G.1, then∣∣∣∣∣∣∣

∑
i∈[n],

f(xi)

gi
≤r

f(xi)−
∑

i∈S,
f(xi)

gi
≤r

G
mgi

f(xi)

∣∣∣∣∣∣∣ = |f(X\Of )− f(S\Of )| ≤ Gcεf(X),

scaling ε by 1
cG completes the proof.
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