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A APPENDIX

A.1 BACKGROUND

A.1.1 CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNN) is a specialized type of deep neural network primarily used
for processing structured grid-like data such as images (Younesi et al., 2024). CNN is particularly
effective in image processing tasks such as image classification or object detection, because of its
ability to automatically learn and extract hierarchical features from the input data. Different CNN
architectures have been introduced for image processing tasks, including LeNet (LeCun et al., 1998),
AlexNet (Krizhevsky et al., 2012), Visual Geometry Group (VGG) (Simonyan & Zisserman, 2014),
Residual Network (ResNet) (He et al., 2016) and MobileNet (Howard, 2017).

A CNN architecture generally consists of an input layer, a stack of alternating convolutional and
pooling layers, several fully connected layers, and an output layer at the end (Zhao et al., 2024). The
top panel in Fig. 4 shows the VGG-16 architecture, which includes 13 convolutional layers and 3
fully connected layers. Each convolutional layer contains a set of filters. A convolution operation
involves sliding a filter over the input image, multiplying the filter values by the pixel values at
corresponding positions in the input image, and summing the results to obtain a feature map. By
applying various filters to the input image, a set of feature maps is generated, as shown in Fig. 4.
When multiple convolutional layers are stacked, the later layers capture more representative features
of the input image. We will use the VGG-16 architecture as the main example for implementation
in this paper, but all the discussion and developed algorithms can be applied to any CNN structure.

Figure 4: Illustration of the process of a sample CNN model.

A.1.2 MULTIVARIATE MUTUAL INFORMATION USING RÉNYI ENTROPY

Our proposed CNN pruning method is based on computing the conditional mutual information be-
tween the features extracted in the same layer and in different layers of the CNN. Each feature is
treated as a multivariate random variable in matrix form. The test data after being processed through
the trained CNN provides samples or realizations of each random feature at each layer. Next, we
discuss the method used for computing the mutual information (MI) and conditional mutual infor-
mation (CMI) subsequently.

Rényi Entropy and Mutual Information Computation: To estimate MI between random vari-
ables, we rely on the Rényi’s α-order entropy Hα(X) (Rényi, 1965), defined as

Hα(X) =
1

1− α
log

(∫
X

pα(x) dx

)
, (10)

where X is a continuous random variable with the probability density function (PDF) p(x), and α
is a positive constant. Rényi entropy extends the well-known Shannon entropy which is obtained
when the parameter α approaches 1 (Rényi, 1965).

Calculating Rényi entropy requires knowing the PDF, which limits its application in data-driven
context. To overcome this, we employ a matrix-based α-order Rényi entropy calculation (Giraldo
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Algorithm 6 CMI permutation test (Yu & Principe, 2019a)

1: Input: Selected ordered set of feature maps F s
k , remaining feature maps F r

k , class labels Y ,
selected feature map f (in F r

k ), permutation number P , significance level α
2: Compute: Estimate I({F r

k − f};Y | {F s
k , f})

3: for i = 1 to P do
4: Randomly permute f to obtain f̃i
5: Estimate I({F r

k − f̃i};Y | {F s
k , f̃i})

6: end for
7: Evaluate the significance:
8: if 1

P

∑P
i=1 1[I({F r

k − f};Y | {F s
k , f}) ≥ I({F r

k − f̃i};Y | {F s
k , f̃i})] ≤ α then

9: F s
k ← F s

k ∪ f
10: decision← Continue feature map selection
11: else
12: decision← Stop feature map selection
13: N ← |F s

k |
14: end if
15: return decision, N

et al., 2014) which computes Rényi’s α-order entropy using the eigenspectrum of a normalized
Hermitian matrix, derived by projecting data into a Reproducing Kernel Hilbert Space (RKHS)
(Gong et al., 2022):

Sα(G) =
1

1− α
log2 (tr(G

α)) =
1

1− α
log2

(
n∑

i=1

λα
i (G)

)
, (11)

where G is a normalized kernel matrix obtained from the data and λi(G) are the eigenvalues of G.

For a given CNN, to construct matrix G, we first extract latent features from the CNN by feed-
forwarding the training data to each CNN layer. This process provides for each layer a feature
matrix XN×d, where each row represents a d-dimensional feature vector of a data sample. We then
compute the kernel matrix Ĝ from these features using a kernel function φ(xi, xj) that measures the
similarity between feature vectors xi and xj . In our experiment, we use the RBF kernel φ(xi, xj) =

exp(−||xi − xj ||2/(2σ2)). Next, we normalize the kernel matrix Ĝ to obtain the normalized kernel
matrix G. The normalization ensures G is symmetric and its eigenvalues are within the range [0, 1].

For multiple variables, the matrix-based Rényi’s α-order joint entropy of L variables is computed as
(Yu et al., 2019)

Sα(G1, G2, . . . , GL) = Sα

(
G1 ◦G2 ◦ · · · ◦GL

tr(G1 ◦G2 ◦ · · · ◦GL)

)
, (12)

where (Gk)ij = φk(x
k
i , x

k
j ), with k ∈ {1, ..., L} denotes the normalized kernel matrix of the kth

variable, and φk: X k × X k 7→ R is the kth positive definite kernel, and ◦ denotes the Hadamard
product.

Using Rényi entropy, the matrix-based Rényi’s α-order mutual information Iα(·; ·) is computed as

Iα(G;G1, . . . , GL) = Sα(G) + Sα(G1, . . . , GL)− Sα(G1, . . . , GL, G) (13)

Conditional Mutual Information Computation using Rényi Entropy: Conditional mutual infor-
mation (CMI) quantifies the amount of information shared between two random variables, X and
Y , given the knowledge of a third variable Z. Typically, it is expressed using Shannon entropy as

I(X;Y |Z) = H(X,Z) +H(Y,Z)−H(X,Y, Z)−H(Z) (14)

Using Rényi entropy, CMI can be generalized as the matrix-based Rényi α-order CMI:

Iα(GX ;GY |GZ) = Sα(GX , GZ) + Sα(GY , GZ)− Sα(GX , GY , GZ)− Sα(GZ), (15)

where GX , GY , GZ are the normalized kernel matrices defined on the data samples of the variables
X , Y , and Z, respectively.
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Table 3: Comparison of Permutation Test, Scree Test, and X-Means on Individual Layer pruning
with per-layer CMI. Each test accuracy value is shown for the pruned model obtained by pruning
only the current layer. Accuracy values above 90% are in bold.

PERMUTATION TEST SCREE TEST X-MEANS
Layer Total #Filters #Filters #Filters

No. #Filters Selected Acc. Selected Acc. Selected Acc.

1 64 2 12.83% 49 94.00% 47 94.00%
2 64 2 9.99% 60 92.89% 47 91.27%
3 128 2 10.00% 124 93.40% 111 93.16%
4 256 8 8.40% 109 91.91% 111 92.39%
5 256 2 9.99% 229 93.17% 223 92.45%
6 256 1 9.99% 247 93.44% 239 92.48%
7 512 19 20.95% 238 93.71% 159 91.71%
8 512 17 10.23% 414 93.68% 265 92.58%
9 512 23 80.63% 218 93.13% 244 93.58%

10 512 19 93.97% 192 93.71% 140 93.62%
11 512 19 94.00% 215 93.66% 195 93.59%
12 512 79 94.00% 326 94.02% 136 93.79%
13 512 359 93.78% 448 93.92% 51 93.53%

A.2 PERMUTATION TEST

We describe in this section the Permutation Test used by (Yu & Principe, 2019a) to quantify the
impact of a new feature map f on the model accuracy. Specifically, for a new feature f , CMI per-
mutation test creates a random permutation f̃ from {f ∪ F s

k}, and computes the new CMI value
between the output Y and the set of unselected features, conditioned on the permutation set f̃ . The
algorithm then compares this new CMI value with the original CMI that is conditioned on the orig-
inal set {f ∪ F s

k} to determine whether the contribution of feature f on the output is significant.
Specifically, if the CMI value of the permutated feature set is not significantly smaller than the
original CMI value, the permutation test will discard feature f , as f does not capture the spatial
structure in the input data, and stop the feature selection process. However, applying CMI permuta-
tion method on CNN models leads to the retention of very few filters (Yu et al., 2021), resulting in
a significant drop in the model accuracy. We describe the CMI permutation test as used for feature
selection in (Yu et al., 2021) in Algorithm 6.

A.3 DIFFERENT CUTOFF POINT APPROACHES ON PER-LAYER CMI

In this section, we compare three approaches, Permutation test, Scree test and X-means, for deter-
mining the cutoff point of CMI values and evaluate their effectiveness on per-layer CMI. Here we
prune each layer individually without pruning any other layers, and evaluate the accuracy perfor-
mance of the resulting pruned model with one layer pruned. The results are provided in Table 3,
showing that the Permutation test retains high accuracy in only 4 out of 13 convolutional layers,
while both the Scree test and X-means maintain high accuracy in all layers. The impact of using the
Permutation test to prune all layers is even more dramatic as seen by the results in Table 2.

A.4 FULL CMI VERSUS COMPACT CMI ON FORWARD PRUNING

In this section, we present the experimental results of Forward Pruning in 4 with two methods for
ranking features and computing CMI values: Full CMI (Section 3.3.1) and Compact CMI (Section
3.3.2), using Scree test as the cutoff point method. Table 4 presents the results of the number of
selected filters and the corresponding accuracy of the pruned model after iteratively pruning each
layer. We observe that, for the first 12 layers, Full CMI retains more filters than Compact CMI and
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Table 4: Full CMI versus Compact CMI on Forward Pruning with Scree test, using Zero weight
pruning where the non-selected filters are set to 0 but not removed from the CNN. Each test accuracy
value is shown for the pruned model obtained by pruning all layers from the first layer up to and
including the current layer, without retraining.

FULL CMI COMPACT CMI
Layer Total #Filters #Filters

No. #Filters Selected Acc. Selected Acc.

1 64 49 94.00% 49 94.00%
2 64 59 93.55% 59 93.59%
3 128 124 93.48% 108 92.95%
4 256 125 93.47% 125 92.95%
5 256 252 93.26% 209 91.37%
6 256 252 93.04% 251 91.33%
7 512 248 92.95% 248 91.24%
8 512 504 92.93% 355 90.19%
9 512 505 92.93% 405 89.81%
10 512 501 92.95% 197 88.73%
11 512 507 92.95% 323 87.71%
12 512 505 92.95% 255 88.19%
13 512 11 37.79% 408 87.38%

hence results in a smaller decrease in accuracy. However, in the last CNN layer, Full CMI retains
very few filters, leading to the significant drop in the pruned model’s accuracy. On the other hand,
Compact CMI has a higher pruned percentage by retaining fewer filters in most layers (except the
last one) while maintaining relatively consistent accuracy throughout all layers.

A.5 COMPARISON BETWEEN FEATURES RETAINED BY SCREE TEST AND X-MEANS

To examine in more detail the difference between Scree test and X-means, we analyze the selected
feature sets of each approach using Bi-directional pruning with Compact CMI computation. Table 5
shows the comparison. The Overlap presents the percentage of feature maps that are retained by both
Scree test and X-means, relative to the total number of feature maps in a given layer. This ”Overlap”
measure provides insight into the agreement between the two cutoff point approaches regarding
which feature maps are essential. Scree test Only and X-means Only represent the percentage of
feature maps retained exclusively by the Scree test and X-means, respectively, relative to the total
number of features retained by each approach. We can see that the overlap of selected features
between the two approaches is highest for Layer 6 and gradually decreases the farther away from
this layer. This overlap percentage is in agreement with the percentage of filters pruned shown
for each approach, as Layer 6 has the lowest percentage pruned for both methods. We note also
that the starting layer for pruning with Scree-test is Layer 10, and with X-means is Layer 13. The
percentage of filters pruned is highest for each method at its starting layer and decreases from there,
but not necessarily in a strictly decreasing order the farther away from the starting layer. This result
is quite curious and shows that different sets of filters can be pruned at each layer depending on the
cutoff point method while still preserving the final accuracy within a relatively reasonable range.
The final re-trained pruned model obtained with either Scree-test or X-means has a test accuracy
within 1.01% of the original unpruned model (as shown in Table 2).

A.6 ANALYSIS ON PRUNING TYPES: ZERO WEIGHTS VERSUS ACTUAL PRUNING

In this experiment, we consider two types of pruning: Zero weight, which sets the pruned weights to
zero while keeping the network structure unchanged, and Actual pruning, which completely removes
the pruned weights from the network, thereby reducing the number of parameters and memory
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Table 5: Comparison of Shared and Exclusive retained feature maps between Scree test and X-means
on Bi-directional pruning with Compact CMI. The ”Overlap” column shows the percentage of over-
lapping selected filters, and the last two columns show the individual percentage of filters pruned,
all relative to the total number of filters in each layer. The ”Only” columns show the percentage of
uniquely selected filters relative to the total number of selected filters in each method. The star (⋆)
indicates the starting layer for pruning in each method.

LAYER OVERLAP SCREE TEST X-MEANS %FILTERS PRUNE
Index Only Only Scree Test X-Means

1 68.75% 0.00% 6.38% 31.25% 26.56%
2 73.44% 22.95% 0.00% 4.69% 26.56%
3 86.72% 10.48% 0.00% 3.13% 13.28%
4 86.72% 8.26% 0.00% 5.47% 13.28%
5 92.19% 0.00% 1.26% 7.81% 6.64%
6 93.36% 4.78% 0.00% 1.95% 6.64%
7 83.20% 0.47% 4.48% 16.41% 12.89%
8 55.86% 30.07% 0.00% 20.12% 44.14%
9 52.15% 0.00% 44.49% 47.85% 6.05%

10 26.17% 30.21% 4.29% 62.50 % (⋆) 72.66%
11 27.73% 29.35% 15.98% 60.74% 66.99%
12 47.46% 2.80% 26.81% 51.17% 35.16%
13 9.96% 85.51% 0.00% 31.25% 90.04% (⋆)

usage. During Actual pruning, as we focus on CNN layers, we leave the last CNN layer unpruned
to preserve its connections to the following fully connected layer.

These two pruning types also involve a difference in the BatchNorm layer operation following each
pruned CNN layer. In Zero-weight pruning, we set the pruned filters to zero without adjusting
the BatchNorm layer. In actual pruning, however, the pruned filters are completely removed from
the CNN model, hence the shape of each pruned CNN layer changes and we adjust the BatchNorm
operation accordingly to match the smaller shape. These adjustments lead to different test accuracies
between Zero-weight and Actual pruning for the pruned models.

Table 6 shows the comparison between Zero-weight and Actual pruning with different CNN pruning
and CMI computation methods. We use the Scree test for selecting the cutoff point. The results show
that Zero-weight pruning leads to higher pruned percentage compared to Actual pruning for three
out of the four settings. However, Actual pruning consistently leads to higher test accuracy for the
final pruned model across all settings. We also note that Bi-directional pruning with compact CMI
achieves the best performance, with highest pruned percentage in both pruning types while still
maintaining high accuracy even before re-training.

Finally, Table 7 shows the comparison between Zero-weight and Actual pruning using different
cutoff point methods. The CNN pruning and CMI computation methods are Bi-directional pruning
and Compact CMI, respectively. The results show that the pruned percentage of Permutation test is
highest compared to other cutoff point methods in both pruning types. However, Permutation test
results in extremely low accuracy both before and after retraining, making it unsuitable for practical
purposes. The Scree test provides highest accuracy among all methods in both pruning types.
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Table 6: Zero weight versus Actual pruning using Scree test Cutoff Point with various CMI Com-
putation Approaches and Pruning Directions

CNN PRUNING FEATURES ORDERING PRUNING TYPE
Zero-weight Actual pruning

Filters Pruned Percentage
Forward pruning full CMI 13.78% 2.18%
Forward pruning compact CMI 29.17% 26.70%
Bi-directional pruning full CMI 34.04% 30.12%
Bi-directional pruning compact CMI 35.56% 36.15%

Parameters Retained (unpruned model: 33.647 M)
Forward CMI full CMI - 33.196 M
Forward CMI compact CMI - 25.7 M
Bi-directional pruning full CMI - 25.643 M
Bi-directional pruning compact CMI - 24.618 M

Accuracy before Retraining (unpruned model: 94.00%)
Forward CMI full CMI 37.79% 93.02%
Forward CMI compact CMI 87.38% 90.17%
Bi-directional pruning full CMI 84.95% 88.59%
Bi-directional pruning compact CMI 82.12% 90.95%

Accuracy after Retraining
Forward CMI full CMI - 93.67%
Forward CMI compact CMI - 93.33%
Bi-directional pruning full CMI - 93.25%
Bi-directional pruning compact CMI - 93.68%
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Table 7: Zero weight vs. Actual pruning on Bi-directional Pruning with Compact CMI using Various
Cutoff Point Approaches

CUTOFF POINT METHOD PRUNING TYPE
Zero-weight Actual pruning

Filters Pruned Percentage
Permutation test 75.50% 81.79%
Scree test 35.56% 31.77%
X-mean 41.38% 34.67%

Parameters Retained (unpruned model: 33.647 M)
Permutation test - 19.379 M
Scree test - 24.618 M
X-means - 25.01 M

Accuracy before Retraining (unpruned model: 94.00%)
Permutation test 9.99% 9.99%
Scree test 82.12% 90.95%
X-means 22.09% 83.56%

Accuracy after Retraining
Permutation test - 10.02%
Scree test - 93.68%
X-means - 92.99%
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