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1. Introduction
Polymorphism, the ability of a molecule to crys-

tallize in multiple distinct structures, significantly
influences material properties in fields like pharma-
ceuticals [1] and materials science [2]. Understand-
ing the crystallization of molecules, and specifically
the appearance of polymorphs, is a great challenge
to modern chemistry, with both fundamental and
practical aspects [3, 4, 5].
Here, motivated by the proven ability of Machine-
Learning (ML) algorithms to perform classification
tasks, we harnessML-based tools and existing chem-
ical datasets to ask the following question: can the
existence of polymorphs of a molecular crystal be
predicted based solely on properties of the single
molecule? To that end, we have trained and tested
a variety of ML binary classification models relying
on the vast crystallographic data found at the Cam-
bridge Structural Database (CSD). Based on the avail-
able data, we find that our algorithm can predict the
existence of polymorphism with an average accu-
racy of ∼ 65% at best, indicating that fundamen-
tally, crystallization is an emergent phenomenon,
and namely, a characteristic that cannot be deduced
by examining the elementary constituents of the sys-
tem alone [6, 7].
However, the nature of the data (and its inherent
biases) and the fact that the ML algorithms tend
to overestimate the number of polymorphs raises
the interesting possibility, that in fact many of the
molecules which are thought to have only one crys-
tal structure, actually have more than one, and that
the algorithm is, in a way, more accurate than the
data itself. We invite the community to test our pre-
dictions through experiments.

2. Substantial section
Using data extracted from the CSD, we curated

a dataset of organic molecular crystals, filtering
out metal-organic frameworks and co-crystals. A
fundamental problem arose in the categorization
of molecules to mono- and poly-morphs as for a
molecule to be labeled as polymorphic, it has to
have (at least) two distinct structures crystallized,
characterized (via, e.g., x-ray crystallography), and
recorded into the database. Often, there is no ap-
parent interest in searching for poly-morphs once

a molecule has been crystallized, resulting in a big
bias in the data.
To ensure a balanced dataset despite the inher-
ent underrepresentation of polymorphic molecules
(2% of the dataset), we employed Random Over-
Sampling (ROS) and a Cross-Validation (CV) frame-
work for model training and evaluation. Molecu-
lar features were derived from computational chem-
istry methods such as Extended Tight Binding (XTB)
and Density Functional Theory (DFT), as well as
cheminformatics descriptors and molecular finger-
prints. We applied five supervised learning mod-
els: Logistic Regression (LG), Multi-Layer Percep-
tron (MLP), k-Nearest Neighbors (kNN), Random
Forest (RF), and Support Vector Machine (SVM).
These models were assessed using Accuracy, ROC-
AUC, Specificity, and Recall, with results compared
across different feature sets. Despite rigorous op-
timization, the best-performing models achieved a
maximum test accuracy of ∼ 65%, only slightly bet-
ter than a random classifier.
Additionally, we explored Positive-Unlabeled (PU)
Learning [8], which compensates for dataset bias
by considering that some monomorphic classifi-
cations might be artifacts of incomplete searches
for alternative crystal forms. PU models tended
to classify a larger fraction of molecules as poly-
morphic, aligning with independent estimates that
polymorphism is more widespread than tradition-
ally recorded (∼ 30% instead of the ∼ 6% seen in
CSD) [9, 10, 11].
The implication of these results is either that (i) sin-
gle particle data is not enough for the classification
task and therefore polymorphism is emergent, or al-
ternatively, (ii) single data is enough for this task,
andwe are able to predict poly-morphs not yet found
in the lab.
Whenmodels independently suggest results that dif-
fer from historical data, this divergence can serve
as a catalyst for re-evaluating entrenched assump-
tions, driving experimental innovation. We encour-
age the community to leverage thedatawehave gath-
ered and themodelswehavedeveloped. A collabora-
tion can take several forms like sharing experimen-
tal data that could refine and validate these mod-
els (alternativemethods such as electron diffraction,
exemplified by techniques like 3D electron diffrac-
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tion [12] or CryoED [13], offer promising avenues for
overcoming the limitations imposed by XRD), or by
raising questions about whether specific molecules
are polymorphic under conditions not yet explored.
If the reader is engaged inmolecular crystallization,
please - send us your data and the molecule you are
crystallizing, and we will examine if it is a mono- or
polymorph. Through collective efforts, we can en-
hance the predictive accuracy of these models, find
new crystal structures, and expand the understand-
ing of polymorphism. For inquiries or contribu-
tions, please contact us at itamarwa@post.bgu.ac.il

2.1 Related work
1. Prediction of polymorphism using deep learn-
ing - see Michael Shatruk team work towards
identifying coordination sites [14] or works like
Lauren Takahashi team that aim to predict crys-
tal structures [15]

2. Predictionof polymorphismusing chemical cal-
culationmethods - in this area most of the work
is centered around ranking the energy land-
scape of differentmolecular arrangments like in
thework done by Alexandre Tkatchenko lab [16]

3. Experimental discovery of poly-morphs - in this
field, extensive work is done to enhance the
current understanding of known polymorphs
and why they appear like for Ritonavir [17] and
ROY [18] [5-methyl-2-[(2-nitrophenyl)amino]-3-
thiophenecarbonitrile]

2.2 Figures and tables
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Fig. 1: Radar plots summarizing the evaluation re-
sults using MLP across the different feature sets.
(A) Radar plot of "sub" metric using normal evalu-
ation, (B) Radar plot of "Full" metric using normal
evaluation, (C) Radar plot of "sub" metric using PU
evaluation, (D) Radar plot of "Full"metric using PU
evaluation. From these plots we can see that the
choice of feature set did not change the accuracy
orRoc-AUC,meaning that the overall performance
was not affected. The difference between the fea-
tures seems to be between specificity and recall,
meaning that themodels aremore lenient towards
classifying all molecules as non-polymorphic or
polymorphic respectively. A key difference be-
tween plots A, C and B, D is the high recall seen in
plots C,D, showing that using PU learning results
in models that tends to classify high percentage of
molecules as polymorphic
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