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A Implementation Details

Node features and edge features Following Zhang et al. [21], the node features v; € R?» encode
information specific to each node in our graph observation. Here, we set p, = 3 and use the node
features v; to one-hot encode the type of the node as either an agent node, goal node or LiDAR ray
hitting point node. The edge features e;; € RP¢, where p. > 0 is the edge dimension, are defined as
the information shared from node j to the agent at node ¢, which depends on the states of the nodes
i and j. Since the safety objective depends on the relative positions, one component of the edge
features is p;; = p; — p;. The remaining edge features can be set depending on system dynamics,
such as, relative velocities for double integrator dynamics.

Computation Resources All training procedures were ran on an AWS g4dn.xlarge instance or
equivalent with 4 Intel Xeon-based CPU Cores and 16 GB of RAM with an Nvidia T4 GPU.

Evaluation Details Since we consider objectives that require agents to navigate close to one an-
other at/near termination subsequently blocking the goal locations (A,B,C,D in Table 4), safety rates
were reported until the point an agent had completed their plan. This can be thought of as an al-
ternative to the agents navigating to a ‘safe’ position upon completing their specification/plan. In
a drone setting, we captured this behavior by landing the drones at an agent-specific location upon
completing their specification.

Planner Details For all plans, at any time step ¢, planning step ¢/, each agent ¢ proceeded to
the next waypoint g;(¢' + 1) only when they reached goal g;(¢') within some threshold distance
Tgoal = 0.3 atatime t > k(' 4+ 1) where k is the goal sampling interval (Sec. 4.1). This allowed all
agents to reach the waypoints in the plan without a strict time restriction on the plan duration. The
asynchronous nature of our plans (among agents) fits our problem description (Defn. 1), specifically
the STL Satisfaction criteria. We leave the setting where agents follow a synchronized plan to future
work. For a given plan of length T with goal sample interval k (values in Table 4), the maximum
trajectory length horizon during evaluation T}, was 5k7T".

A.1 Environment Details

Here, we provide the details of each experiment environment as taken from Zhang et al. [21]. We
used a common simulation time step d¢ = 0.03 across all three environments.

SingleIntegrator We use single integrator dynamics as the base environment to verify the correct-
ness of the implementation and to show the performance of the methods when there are no control
input limits. The dynamics is given as &; = v;, where z; = [p?, pi’]T € R? is the position of the
i-th agent and v; = [v7, vf]T its velocity. In this environment, we use e;; = x; — x; as the edge
information.

Doublelntegrator We use double integrator dynamics for this environment. The state of agent ¢
¢ 01T, where [p?,p?]" is the position of the agent, and [0, vY] " is the

is given by z; = [p}, p!, v}
velocity. The action of agent i is given by u; = [a?,a!]", i.e., the acceleration. The dynamics

function is given by:

. xT Yy x Yy T

$i_[viﬂviﬂaivai] (6)
In this environment, we use e;; = x; — x; as the edge information.

DubinsCar We use the standard Dubin’s car model in this environment. The state of agent ¢ is
given by x; = [p%,p?,0;,v;]", where [p?,p?]" is the position of the agent, 0; is the heading, and
v; is the speed. The action of agent 7 is given by u; = [w;,a;]" containing angular velocity and
acceleration magnitude. The dynamics function is given by:

jZi = [Ui COS(GZ')7 (O Sin(@i), Wi, ai]T (7)

We use e; = ej(z;) — e(x;) as the edge information, where e;(x;) =
[p%, p?, v; cos(6;), visin(6;)] .

13
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B STL Specifications

We formally define the Signal Temporal Logic (STL) specifications used in the experiments in Table
4. The specifications include a sequential waypoint task (seq), a coverage task (cover), a loop task
(loop), and a branching task (branch). The specifications are defined over a time horizon 7" and are
satisfied if the agents satisfy the corresponding STL formula. We use four markers A, B, C, and
D to represent rectangular predicates centered around x-y coordinates [0, 0], [2, 2], [2,0], and [0, 2],
respectively. The predicates are defined as p; = dist(s;, p;) < 1.0 where dist(s;, p;) is the L1-norm
(| - |1) distance between the agent i’s state s; and the predicate p;.

Spec. Description Formula T k
seq Sequential of gOﬁlS O[O,T/?)] (A) A <>[T/3,2T/3] (B) A <>[2T/3,T] (C) 30 20
cover | Coverage over goals Or0,11(A) A Q0,1 (B) A Opo,1(C) 15 20
loop Loop over goals Op,7/2) (Oo,7/21(A) A Q0,772 (B)) 30 20
branch Branching (O[O,T] (A) A 0[07T](B)) Vv (O[O,T](C) N <>[07T](D)) 20 10

Table 4: STL specifications used in the experiments. 1" and k are the specification lengths and goal
sample intervals respectively.

C Additional Experiments

In Tables 5, 6 and 7 we show results for the various environments and obstacle scenarios. While
our GNN-ODE has an initial GNN module which can observe these obstacles, and is also trained
to generate initial goals that are ‘achievable’, the GNN-ODE is inherently limited to only consider
obstacles within the sensing radius R of the agents at planning time (i.e. ¢ = 0). As in Zhang
et al. [21], the GCBF+ controller is trained to avoid obstacles. Thus, with a robust plan, we can
achieve reasonably high success rates in this setting as well due to the run-time collision avoidance
maneuvers. Planning times are nearly similar to the results in Sec. 6 (Table 2) likely because
our learning-based planners do not use environment dynamics at inference time and should have a
similar computation cost after training is complete. For this reason, to avoid clutter, we omit this
column in the following tables. We include results from the ODE ablation of our method as shown
in Table 3 under the column ‘ODE’. Additional simulation videos are hosted online'.

C.1 SingleIntegrator Environment

In Table 5 we contain the results for various combinations of specifications, 8 sampled obstacle
positions (marked *Y”’ if present, 'N’ otherwise), and number of agents in the SingleIntegrator En-
vironment. We observe that the GNN-ODE planner outperforms the other planners in terms of
planning time and success rate across all the specifications and obstacles. We note the average im-
provement in success rate of 10% for our GNN-ODE planner over the MILP planner which is not
as large as the improvement in the non-linear DubinsCar environment (Table 2, 6). This is due to
the SingleIntegrator environment being less constrained and the MILP planner being able to find a
feasible solution more easily.

C.2 DubinsCar Environment

In Table 6 we contain the results for various combinations of specifications, 8 sampled obstacle po-
sitions (marked *Y if present, 'N’ otherwise), and number of agents in the DubinsCar Environment.
On average, with obstacles present as well we get a 69% improvement in success rate for our GNN-
ODE planner over the MILP planner, primarly due to the non-linear dynamics of the DubinsCar
environment being challenging for the collision avoidance controller.

C.3 Doublelntegrator Environment

In Table 7 we contain the results for various combinations of specifications, 8 sampled obstacle (Obs)
positions (marked *Y’ if present, N’ otherwise), and number of agents (N) in the Doublelntegrator

'Site: https://anon-ml-git.github.io/ma-stl.github.io/
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572
573
574

Metric Finish Rate 1 Safety Rate T Success Rate T TR |

Specplag'gcsr N—| GNN-ODE  ODE  STLPY | GNN-ODE ~ ODE  STLPY | GNN-ODE ~ODE STLPY | GNN-ODE  ODE  STLPY
= 8 100.00 10000 100.00 | 100.00  100.00 100.00 10000 10000 100.00 || 100075  396.50  257.25
g N [16] 10000 10000 100.00 | 100.00  100.00 100.00 10000 10000 100.00 || 121450  443.00  280.87
= 32| 98.00 100.00  99.00 100.00 10000 98.75 97.50 100.00  97.50 66471 100581 32023
8 10000  93.00  98.00 10000 100.00  95.00 10000 9250  92.50 101575 40895 29257

Y |16| 99.00 96.00  94.00 97.50 100.00  95.00 96.25 9625  88.75 1168.80 47130  314.99

32| 97.00 98.00  94.00 98.12 10000  92.50 95.00 9750  86.88 181259 101877  356.09

5 3 98.00 100.00  95.00 100.00  100.00  100.00 97.50 100.00  95.00 88486  653.00 342.93
1 N |16| 9900  100.00  90.00 10000 100.00  100.00 98.75 100.00  90.00 102440 75825  364.56
© 32| 98.00 98.00  96.00 10000 100.00  97.50 98.12 9750  93.12 1409.89 123741  447.66
3 95.00 9500  88.00 10000 100.00  97.50 95.00 9500  87.50 1068.46 74483  356.17

Y | 16| 96.00 98.00  91.00 100.00 10000  97.50 96.25 9750  91.25 1040.65  1043.66 386.12

32| 96.00 98.00  91.00 10000 99.38  96.88 96.25 9750  88.75 1491.06  1297.69  488.79

N 3 10000 10000 100.00 | 10000  100.00 100.00 10000 10000 100.00 || 189025  2506.00 751.00
g N [16] 10000 10000 100.00 | 100.00  100.00 100.00 10000 10000 100.00 || 144575  2120.12 855.38
32| 10000  100.00 100.00 | 10000  100.00  100.00 10000 10000 100.00 | 2332.19 263575 1062.25

8 100.00 10000  90.00 95.00 10000  92.50 95.00 100.00  82.50 143400 211225 841.32

Y |[16] 99.00 96.00  93.00 96.25 10000  96.25 95.00 9625  88.75 2091.53 231544  927.83

32 99.00 99.00  96.00 96.25 9938 96.25 95.00 9875  91.88 245319 2769.78 1137.71

g 8 10000  53.00  90.00 10000 100.00  100.00 10000 5250  90.00 90550 107230 434.44
2 [N 16| 99.00 4100  73.00 10000 100.00  100.00 98.75 4125 7250 761.08  1119.07 470.17
3 32| 98.00 33.00  66.00 10000 100.00  100.00 98.12 3312 65.62 897.41 146439 66121
8 98.00 4500  88.00 10000 100.00  100.00 97.50 4500  87.50 73143 1239.50 47039

Y |16| 98.00 3600 62.00 10000 100.00  100.00 97.50 3625 62.50 1030.83 127250 548.39

32| 98.00 28.00  74.00 10000 100.00  99.38 98.12 2812 73.12 1186.13  1649.19 797.86

Table 5: Performance of different planner modules with the scalability in the number of agents (V)
and specification complexity for the SingleIntegrator Environment.

Metric Finish Rate 1 Safety Rate T Success Rate T TR |

Specpl"‘(“)"’fsr N—| GNN-ODE  ODE  STLPY | GNN-ODE ~ ODE  STLPY | GNN-ODE ~ODE STLPY || GNN-ODE ~ ODE  STLPY
< N |8 10000  98.00 100.00 | 10000  100.00  85.00 10000  97.50  85.00 1768.75 52557  357.00
g 16 | 10000  96.00  99.00 10000 9750  53.75 10000 9375 5250 1856.12  565.09  429.81
= 32| 95.00 9400  96.00 92.50 86.25  20.00 88.12 8250  18.12 82090 67452 57239
Y |8 100.00  100.00  95.00 97.50 97.50  67.50 97.50 9750  62.50 72850 56279  373.89

16 | 99.00 9500  95.00 92.50 90.00  47.50 91.25 8625  45.00 182895 59529  474.16

32| 9500 85.00  90.00 86.88 7438 3250 81.88 6375  25.00 841.66 70891  586.89

5 N |8 100.00  100.00  95.00 10000 10000  97.50 10000 10000  95.00 106200 75457  429.76
z 16 | 10000  100.00  78.00 96.25 97.50  87.50 96.25 9750  76.25 1127.00 80270  536.33
© 32| 99.00 99.00  80.00 85.00 9250  56.88 84.38 91.88 5375 125259 88331  708.22
Y |8 98.00 98.00  93.00 97.50 9500  92.50 95.00 9250  85.00 109407 82171  460.30

16 | 96.00 93.00  85.00 98.75 9250  76.25 95.00 85.00  67.50 113561 86724  571.55

32| 93.00 93.00  78.00 81.25 83.12 5375 75.62 76.88  49.38 125120 97233 674.09
-~ |N |38 10000 10000  98.00 100.00 10000  82.50 10000 10000  80.00 187400 157007 1092.79
g 16 | 10000  100.00 100.00 | 100.00 8625  76.25 100.00 8625 7625 196312 1601.03 1251.62
32| 98.00 99.00 10000 | 10000 8625 3875 97.50 8625 3875 193627 181859 1598.19

Y |8 95.00 88.00  78.00 10000  60.00 9250 95.00 5500  70.00 189433 455425 1310.58
16 | 96.00 91.00  90.00 90.00 2875 66.25 88.75 2250  57.50 1969.37 448138 137832

32| 89.00 91.00  88.00 80.62 1375 3125 7625 8.12 2438 213835 427429 167291

g N |8 98.00 7000  98.00 97.50 100.00  100.00 95.00 7000  97.50 124643 129850 637.11
g 16 | 95.00 70.00  89.00 96.25 100.00  90.00 92.50 7000  85.00 1188.14 157748 78597
3 32| 89.00 70.00  84.00 76.25 7750 6438 66.88 6375 5938 127791 171505 1013.90
Y |8 95.00 62.00  80.00 10000 9250  95.00 95.00 57.50  80.00 1572.68  1537.60 671.38

16 | 89.00 60.00  75.00 86.25 7500  81.25 7875 50.00  70.00 117586  1640.81 83937
32| 78.00 62.00  68.00 77.50 5375 5375 61.25 3938 41.88 129339  1802.09 1042.54

Table 6: Performance of different planner modules with the scalability in the number of agents (/V)
and specification complexity for the DubinsCar Environment with obstacles.

Environment. The average improvement in success rate of 11% for our GNN-ODE planner over the
MILP planner is similar to the SingleIntegrator environment (Table 5) due to GCBF+controller being
more effective at collision avoidance with the linear dynamics of the DoubleIntegrator environment.

C.4 Real-world Drone Experiments

The experimental validation of this methodology involved deploying a fleet of 5 DJI Tello Ryze
drones to track the trajectories generated via the Dubins Car model. The drones were configured in
WiFi mode to enable swarm behavior which was facilitated through the open-source DJITelloPy 2
library.

*https://github.com/damiafuentes/DJITelloPy
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Metric Finish Rate 1 Safety Rate T Success Rate T TR |

Specplag'lfsr N—| GNN-ODE  ODE  STLPY | GNN-ODE ~ ODE  STLPY | GNN-ODE ~ODE STLPY | GNN-ODE  ODE  STLPY
= N |8 100.00 10000 100.00 | 100.00  100.00 100.00 10000 10000 100.00 || 138475  536.00  379.50
g 16 | 10000 10000  91.00 10000 100.00  100.00 10000 10000 91.25 176838 1577.50 474.44
= 32| 99.00 91.00  73.00 100.00  100.00  100.00 99.38 90.62  72.50 2510.85 220644  617.02
Y |8 100.00  100.00  98.00 97.50 100.00  100.00 97.50 100.00  97.50 277450 53350 39057

16 | 99.00 99.00  94.00 98.75 98.75  100.00 97.50 9750  93.75 292395 159428  533.49

32| 99.00 91.00  68.00 96.25 9375  98.12 95.00 8562  67.50 254379 226378  666.90

5 N |38 10000 10000  93.00 100.00  100.00  100.00 10000 10000  92.50 1681.00  738.00 57220
£ 16 | 10000  100.00  89.00 10000 100.00  100.00 10000 10000 88.75 212743 89450  645.93
© 32| 96.00 75.00  76.00 10000 100.00  100.00 95.62 7500 76.25 220111 154229 87732
Y |8 10000  100.00  90.00 10000 100.00  97.50 10000 10000  87.50 164950  767.50  498.07

16| 9900 10000  89.00 98.75 98.75  100.00 97.50 9875  88.75 212330 92675 75673

32| 95.00 79.00  78.00 95.00 96.25  98.75 90.62 7625  77.50 163034 1625.60  949.62

-~ [N |38 95.00 98.00 100.00 | 10000  100.00 100.00 95.00 9750 100.00 || 195171 271654 1219.75
g 16 |  98.00 99.00 10000 | 10000  100.00  100.00 97.50 9875 100.00 || 261270  3273.04 1781.62
32| 98.00 93.00  96.00 10000 100.00  100.00 98.12 9312 96.25 327147 5260.64 270345

Y |8 95.00 98.00 100.00 | 10000 9500  100.00 95.00 9250 100.00 || 253332  2785.64 1229.75

16 | 96.00 99.00  98.00 10000 9625  97.50 96.25 9500  95.00 271348 343133 1830.21

32| 98.00 93.00  97.00 98.75 80.62 9375 96.25 7562 90.62 335394 525158 2850.15

g N |8 100.00  80.00  85.00 10000 100.00  100.00 10000  80.00  85.00 156550 116235 693.67
g 16 | 99.00 88.00  70.00 10000 100.00  100.00 98.75 8750  70.00 1667.12  1472.54  926.60
3 32| 81.00 4900  28.00 10000 100.00  100.00 80.62 4875  28.12 1929.73  1979.83  912.03
Y |8 10000  88.00  80.00 10000 100.00  100.00 100.00 8750  80.00 155275  1380.57 846.60

16 | 10000  84.00  60.00 10000 9875  97.50 10000 8250  60.00 168475  1574.84  960.90

32| 84.00 51.00  34.00 99.38 9312 93.75 83.12 4938 33.12 1969.68  2003.38  930.35

Table 7: Performance of different planner modules with the scalability in the number of agents (V)
and specification complexity for the DoubleIntegrator Environment.

Each Tello drone is equipped with an Inertial Measurement Unit (IMU), a forward-facing camera,
and a downward-facing camera. The latter is useful for precise hovering and position estimation
using the Vision Positioning System (VPS). However, this system is inaccurate and unreliable as
the drones do not possess other sensors like lidar or depth cameras. To mitigate drift and correct
the position estimate errors, ArUco tags were utilized to make the trajectory following robust for
each drone. This ensured the swarm of drones could accurately follow the designated trajectory as
evidenced in the simulation results.

D Hardness of MA-STL specifications

We also performed an ablation study (Table 8, 9, 10) to emphasize the challenge of satisfying these
individual temporal objectives while ensuring global constraints such as safety (collision avoidance).
For each specification, we use the MILP planner with GCBF+ controller and consider the case of an
algorithm prioritizing safety above all else while sacrificing objective satisfaction (i.e. by attempting
to remain stationary rather than risking collisions when a collision is detected 1 step ahead). This
method (marked ‘Prioritize Safety’) uses environment dynamics and global agent communication to
perform this one step lookahead. Notably this is not guaranteed to be safe due to agent input limits
and is unrealistic since it is not decentralized. We compare this to an algorithm with the MILP
planner that can satisfy the temporal specifications nearly always yet allows collisions between
agents by simply following the nominal controller (PID with no collision avoidance maneuvering
[21]) marked ‘Prioritize Objective’.

From the results in Table 2 we can see the non-linear nature of the DubinsCar environment, and input
limits, hinders a near 100% safety rate in the ‘Prioritize Safety’ variant unlike in the other linear
environments (Tables 8, 10). Additionally based on the results we can see in the more complex
environments (DubinsCar, Doublelntegrator) the overly conservative approach of ‘Prioritize Safety’
affects finish rates negatively in the N = 32 case (even with the expensive global communication).
These results highlight the need for planning informed of collision avoidance procedures.
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Planner | Prioritize Objective | Prioritize Safety

Spec Finish Rate ¥  Safety Rate T Success Rate T  TtR | | Finish Rate T Safety Rate t Success Rate 1
20.00 20.00

b5}

3

O

o 654.75

§ 654.75
653.50

Q

g

&

A

Table 8: Depicting the balance between performance and safety with regards to STL specification
complexity for the SingleIntegrator Environment at various scales.

Planner | Prioritize Objective | Prioritize Safety

Finish Rate T Safety Rate T  Success Rate 1 TtR | Finish Rate T Safety Rate T Success Rate 1
25.00 25.00

Table 9: Depicting the balance between performance and safety with regards to STL specification
complexity for the DubinsCar Environment at various scales.

Planner | Prioritize Objective | Prioritize Safety

Finish Rate T Safety Rate T Success Rate T  TtR | | Finish Rate 7 Safety Rate T Success Rate 1

Spec

1207.25
1800.38

SequencT Loop

Table 10: Depicting the balance between performance and safety with regards to STL specification
complexity for the Doublelntegrator Environment at various scales.
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