© © N o g b~ 0 O =

20
21
22
23
24

25
26
27
28
29
30
31
32
33
34

35
36
37

Scaling Safe Multi-Agent Control for Signal
Temporal Logic Specifications

Anonymous Author(s)
Affiliation
Address

email

Abstract: Existing methods for safe multi-agent control using logic specifications
like Signal Temporal Logic (STL) often face scalability issues. This is because
they rely either on single-agent perspectives or on Mixed Integer Linear Program-
ming (MILP)-based planners, which are complex to optimize. These methods
have proven to be computationally expensive and inefficient when dealing with a
large number of agents. To address these limitations, we present a new scalable
approach to multi-agent control in this setting. Our method treats the relationships
between agents using a graph structure rather than in terms of a single-agent per-
spective. Moreover, it combines a multi-agent collision avoidance controller with
a Graph Neural Network (GNN) based planner, models the system in a decen-
tralized fashion, and trains on STL-based objectives to generate safe and efficient
plans for multiple agents, thereby optimizing the satisfaction of complex temporal
specifications while also facilitating multi-agent collision avoidance. Our experi-
ments show that our approach significantly outperforms existing methods that use
a state-of-the-art MILP-based planner in terms of scalability and performance.

Keywords: Multi-Robot Systems, Path Planning for Multiple Mobile Robots or
Agents, Collision Avoidance, Hybrid Logical/Dynamical Planning and Verifica-
tion, Deep Learning Methods

1 Introduction

Learning-based methods have shown promise in multi-agent systems (MAS) for tasks such as colli-
sion avoidance, path planning, and task allocation [1, 2, 3, 4]. Extensions have also been developed
to handle complex temporal tasks that may be described using formal languages such as Signal
Temporal Logic (STL) [5, 6] and other temporal logics [7, 8, 9]; unfortunately, these methods have
well-known limitations in terms of scalability and performance.

Signal Temporal Logic (STL) is a formal language for specifying complex temporal tasks that can
be used to describe the behavior of agents in a multi-agent system. In many settings, including
autonomous vehicles [10], drones [11], and robotic swarms [12], it is essential to ensure that the
agents satisfy complex temporal tasks such as sequentially visiting a series of locations while avoid-
ing collisions with each other and the environment. Once the user has specified the task in STL, the
task can be synthesized using formal methods [13, 14, 15] in certain environments; however, these
methods often struggle to scale to complex specifications and environments. In response to these
challenges, Mixed Integer Linear Programming (MILP)-based planners [16, 17] have been devel-
oped that can be used to plan over a range of STL specifications but still encounter difficulties with
collision avoidance when a modest number such as 5 agents are considered (Table 1).

Inspired by recent progress in learning-based planners [18, 19, 20], we propose a novel approach
to planning for multi-agent systems with STL specifications that can scale beyond these limitations
demonstrated on up to 32 agents. More specifically, we introduce a Graph Neural Network (GNN)

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

38
39
40
41
42
43
44
45

46
47
48
49
50

51

52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67

O Agent % Goal

Sequence Spec.: Q141 (Qpyg 205 1 Qo)
* Final Position
G=(V.E) Initial Position
FN
®
e
RN, %S
S i
v o i e il
GNN —»i MLP ... , W
] L AN Update / ! A &
Planner

Figure 1: (Left) GNN-ODE Planner Architecture for Multi-Agent Systems with STL Specifica-
tions. The planner ’/T;)i generates a sequence of goals for agent ¢ given the initial state of the system
G(0). The safety controller 7; ensures that the agents do not collide while following the generated
goals. A GNN encodes the graph representing the collective initial state of the system to yield an
initial goal g;(0) (red) for each agent i. This goal g;(0) is fed into a Multi-Layer Perceptron (MLP)
network to generate a new goal g;(1) (blue) which is fed back into the MLP network in a feedback
loop. This is repeated for 7' — 1 steps to generate a sequence of goals for the agent. The losses
LstL, and L, are detailed in Sec. 4.1 and are used to update our planner. (Middle) Real world
experiments on N = 5 drones. (Right) An example trajectory for N = 8 agents for a seq spec
requiring agents to visit A then B and finally C in order.

based planner using Neural Ordinary Difference Equations (ODEs) [18] (Fig. 1, Sec. 4.2) trained
end-to-end on an STL objective to generate safe and robust plans for multiple agents that can be
realized using a learnable MA collision avoidance controller ([21], Sec. 4.3). To scale up, we use
the ODE-based component to plan general paths that satisfy the given task while using a GNN to
model agent interactions in a scalable manner to achieve coordination between the agents as they
determine which ODE-generated goal trajectory to follow. Our loss components (Sec. 4.1) allow
the planner to find paths that satisfy the STL objective while also being achievable in the presence
of collision avoidance maneuvers and agent-to-agent interactions.

Our contributions are as follows: 1) We propose a novel scalable GNN-based planner (GNN-ODE)
trained on an STL objective to generate safe and achievable plans for multiple agents. 2) We demon-
strate the effectiveness of our approach on a range of STL specifications and show that our method
can scale to a large number of agents and complex specifications beyond existing methods that use
a state-of-the-art MILP-based planner with an average 65% improved success rate.

1.1 Related Work

Symbolic methods have been part of a recent resurgence as neuro-symbolic algorithms [22, 23]
which aspire to combine the generalizability of neural methods with the ability of most symbolic
systems to be interpretable and modifiable by human users. Notably, there have been efforts to in-
tegrate temporal logic constraints within learning-enabled controllers. In the field of Reinforcement
Learning (RL), some examples of this are TLTL [24], which defines a reward function from a logic
specification and reward shaping mechanisms, [25, 26] which create automata modeling a similar
specification and augment RL-based algorithms used for control. This has been extended to the
Multi-agent domain, which had recent work [27, 9] showing possibilities of coordinating multiple
agents with diverging objectives, as well as the benefits of distributing specifications among agents
in terms of scalability.

A key aspect of scaling control to higher-dimensional environments and robots involves efficiently
incorporating a high-level planner. This involves decomposing complex logic planning from control
tasks, allowing each component to focus on its specific role. The high-level planner focuses on
logic-level planning, ensuring that the robot’s actions adhere to complex specifications, such as those
defined by STL. In contrast, the low-level controller acts as a tracker, executing the high-level plan
accurately. Modern control methods have demonstrated this benefit as well from the burgeoning

68
69

70
71
72
73
74
75
76
77

78

79
80
81
82
83
84
85
86
87

88
89
90
91
92

93
94
95
96

97
98
99
100

101
102
103
104

106
107
108
109
110

111
112
113

progress in Hierarchical RL [28, 29, 30, 31, 25] methods as well as the successful integration of
classical planners with advanced control schemes, including RL controllers [32].

Symbolic techniques have appeared in robot motion planning as well with the use of Signal Tem-
poral Logic (STL) to specify objectives for multi-robot systems, which can then be solved by MILP
solvers [16], graph-based algorithms [33] or sampling-based methods [34, 35]. Collision avoidance
in these multi-robot systems is a challenging problem since one must also achieve the underlying
objectives as well and a myriad of techniques [36, 37, 38, 21, 39] have attempted to handle this for
general robot motion planning tasks. These existing methods, however, have not considered the gen-
erality of symbolic methods in specifying these objectives or quickly fail to scale as the specification
dimension, robot complexity and number of agents increases.

2 Background

Multi Agent Systems with Partial Observability We can represent a multi-agent system with
N agents {1,2,...N}. Each agent has its own state s;(t) € S; C R", can take an action
u;(t) € U; C R™, and the collective behavior of the agents is governed by a dynamics func-
tion s;(t + 1) = fi(s;(t),u;(t)). For simplicity, we assume all agents have the same dynamics
function f; = f, state space S; = S, and action space U; = U. A trajectory 7 is a sequence
of states 7 = (5(0),5(1),...,5(Tx)) where T} is the time horizon, 35(¢t) = (s1(t),...sn(t)),
u(t) = (u1(t),...un(t)) and a policy 7; is a function that maps the state of agent 7 to an ac-
tion u; = m;(s;). The state of the system is partially observable, meaning that each agent can only
observe its own state and the states of other agents within its sensing range.

Signal Temporal Logic Signal Temporal Logic (STL) integrates both first-order logic and time-
dependent modifications of linear temporal logic operators. The essential logical operators include
A (and), = (not), V (or), and = (implies). Time-dependent operators are [,) (eventually between
times a and b), [}, ;) (globally between times a and b), and U, p) (until between times a and b).
STL formulas are defined as:

¢:=P|=¢| oAV [oV = |Qn® | Oy | ¢ Uy,

where P is a predicate function mapping states to real values. Quantitative semantics [13, 40] of
STL evaluate a robustness value, p(¢, 7), which measures how strongly a state trace 7 satisfies or
violates ¢. This robustness metric is differentiable, allowing for direct optimization of STL formulas
through differentiable planners like neural networks.

Multi-agent Specification With regards to multi-agent systems with NV agents, the MA-STL spec-
ification ¥ is composed from N individual STL specifications /\Z]\;1 ¢; where ¢; associates an STL
specification for a single agent with index 7. The MA-STL specification W is satisfied if all individual
STL specifications are satisfied and the agents do not collide.

Graphical Representation for Multi-Agent Systems Graph Neural Networks (GNN5s) are adept
at modeling multi-agent systems by representing agents and obstacles as vertices within a graph
G = (V,E). Each vertex in V = V, UV, corresponds to either an agent or a static obstacle.
Edges E encapsulate direct interactions between vertices, with specific emphasis on agent-to-agent
and agent-to-obstacle connections. We adopt a distance-based adjacency criterion where an edge
(vs,v;) € E exists if the Euclidean distance between vertices v; and v; does not exceed a predefined
threshold R, for capturing the local topology of agents within this range [38]. A GNN processes
the graph to produce a global embedding representing the collective state of the system. This global
state is further processed through specialized readout functions r;, tailored to extract and map the
global embedding to a specific set of actions u; for each agent [39, 21, 38].

Barrier Certificates Barrier certificates [41] are a useful technique to avoid robot collisions in
MA systems [42] by forcing the state of the entire system to stay within the safe region. For a state
space S C R", let S, C S be the unsafe set and S = S\S,, the safe set, which contains the set

114
115

116
117
118

119
120
121

122

123
124
125
126
127
128
129

130
131
132
133
134
135
136
137

138
139
140
141

142

143

144
145
146

147

148

149
150
151
152
153
154
155
156
157
158
159
160
161
162

of initial conditions Sy C Ss. Also, define the space of control actions as &/ C R™. For a dynamic
system $(t) = f(s(t),u(t)), a control barrier function h : R™ — R satisfies:

h(s) >0 Vs€So, h(s) <0 Vsé&Su Vih- f(s,u)+a(h(s)) >0 Vses|h(s)>D0. 1)

For a control policy (7 : S — U) and CBF (h), if (s(0) € s | h(s) > 0) and the above conditions
are satisfied with (u = 7(z)), then (s(t) € s | h(s) > 0) for all t € [0,00). This implies that the
state never enters the unsafe set (S,,) under 7 (see [41]).

Learning-based approaches for barrier certificates [37, 39, 38, 21] have been shown to scale in the
number of agents beyond existing methods for known systems. Notably, a graphical perspective of
the agents and their interactions can be used to model the system in a scalable manner (Sec. 4.3).

3 Problem Statement

Consider a MA-STL specification ¥ on N agents N' = {1,2,..., N}, where each agent is at a
position p;(t) € P C R™ with n being 2 or 3 for 2D or 3D environments respectively. Assume
that each state s;(¢) of agent ¢ can be directly mapped to its position p;(t), say the first n elements
of s;(t) by a function filter,, : S — P. Similar to Zhang et al. [21], we include a LiDAR
based observation of n.,ys > 0 for each agent measuring the distance to the nearest obstacle in
the environment with a sensing radius R > 0. The j-th ray of agent ¢ is denoted as y; ;(¢), where
yi,j(t) € RT is the distance to the nearest obstacle in the direction of the j-th ray at time ¢.

The MA-STL motion planning problem We now establish the problem of motion planning for
MA-STL in multi-agent systems. Essentially, the objective is to identify a set of reference goals that
when followed satisfy a given MA-STL specification, while ensuring that there are no collisions
between the agents. Suppose there are IV agents involved, and the time bound is denoted by 7},. The
planner wgi generates a sequence of goals 7,, = (g;(0), g:(1), ..., 9:(T)) for agent ¢ with a given
plan length 7' < T},. Each agent has a size radius represented by r, where » > 0. This means that
when an agent is at position p € W, it is entirely contained within a ball of radius r centered at p,
denoted as B,.(p). With these considerations, we can define the planning problem as follows:

Definition 1 (Motion Planning in MA-STL) For a given MA-STL specification ¥ = /\f\il ¢; and
a set of N agents N, the motion planning problem is finding a distributed control policy 7; and a
planner ﬂgi for each agent i such that the following conditions are satisfied for closed-loop trajec-
tories of agents in N with length T}, :

* (Safety - Agents) For all t € [0,T},), and for all i, j € N where i # j, ||pi(t)—p;(t)|] > 2r.

* (Safety - Obstacles) For all t € [0,Ty], and for alli € N, y; ;(t) > 2r for all j € [Nrqys).

* (STL Satisfaction) There exists to,t1,...,t7 such that t; € {0,...,Tp} and ty < t; <
... < tp such that the closed-loop trajectories T = (s(to), s(t1), ..., s(tr)) of the agents
satisfy the MA-STL specification U i.e. p(¥,7) > 0.

* (Achievability) For all i € N, given the goal trajectory 1, of length T' from 7r‘g¢’i, the gap
D;, (i) = ZtT,ZO Hf'zllterpi(si(tt/)) — filter i(gi(t’))H2 < eforasmall e € RT.

Scaling STL for Multi-agent Systems

Given an MA-STL specification ¥ on a sys- N | Spec. 1/Spec. 2 | Planning Time (s)
tem of N-agents we would like to provide a 3 ‘ Tseq/2 seq ‘ 117292

decentralized algorithm to execute a policy sat- 5 211/ -

isfying the specification with high probability.

While we might assume a plan-then-execute Table 1: Planning when considering disjoint time
technique [16] that finds a Piece-Wise Linear or space [16], a PWL plan with K = 6 segments
(PWL) path for each agent with K segments, (1 seq)/ K = 10 segments (2 seq). The X
such an approach quickly fails to scale with seq spec. has X sequential waypoints.
specification complexity and number of agents

when considering collisions between agents at planning time. We posit this is primarily due to
its collision avoidance mechanism that introduces O(C3’ x K?) new variables, which quickly
blows up (where CI¥ = N(N — 1)/2). Consider two goal regions A and B and a sequential
STL specification requiring agents to visit A (viz. 1 seq) or to visit A then B (viz. 2 seq) while

1 seq/2seq

163
164
165

166
167
168
169
170
171

172

173
174
175
176
177
178

179

180
181
182
183
184
185
186
187

188
189
190

191
192
193
194
195
196
197

199

200
201
202

204

205

206

207
208

avoiding collisions. Table 1 demonstrates this by timing out (over 50 minutes) for a simple STL
specification with N = 5 agents in a 2-D environment with Single Integrator dynamics as well as
all specifications and number of agents considered in this work (Sec. 5, App. B) .

Accounting for collision-avoidance independent of the objective is not novel [37, 39], but, as we
argue in this paper, in order to satisfy an STL specification, one must account for the temporal
nature of the specification simultaneously with performing any collision-avoidance maneuvers. An
alternative, as we propose, is to plan for the objectives while adjusting for collision avoidance by
means of an iterative training procedure involving the safety controller (such as GCBF+) and the
planner.

4 Approach

Our approach integrates planning, control, and safety mechanisms in an end-to-end differentiable
learning framework. We first introduce a differentiable STL framework using a neural network
planner to maximize STL robustness (Sec. 4.1). For efficient multi-agent planning, we employ
GNN s to model agent relationships and generate decentralized goal sequences (Sec. 4.2). To ensure
collision avoidance, we define a safe set of states using GCBFs for robust control (Sec. 4.3). Finally,
we discuss the training of our integrated system (Sec. 4.4).

4.1 Differentiable Signal Temporal Logic for Planning

Signal Temporal Logic (STL) provides a robustness metric for a given trajectory that quantifies
the level of satisfaction of a specification ¢ defined using the STL language (Sec. 2). Consider a
NN planner wg’i that takes as input the current state of the system and outputs a sequence of goals
Tg; = (9:(0),9:(1),...,9:(T)) for agent i with specification ¢;. We can define a loss function that
attempts to maximize the STL robustness score for the specification ¢, given the waypoints from the
planner. Prior work [19, 40] has used the differentiability of this score function to directly regularize
a planner’s waypoints for use by a given low-level controller 7;(s;|g;) which is goal-conditioned,
i.e. targeted to reach the goal g; given the current state s; of agent .

For the planner architecture, similar to Xiong et al. [19], we consider using ﬂji to predict the devi-
ation between subsequent waypoints Ag;. Based on this, to maximize the probability of satisfying
the STL specification given a controller 7;, we define the loss function as:

Eﬂ-;}bivﬂ'i T sy~So,T, Nﬂ;bi(sq‘,)y _)\STLP(¢i; Tq‘) +)\aChDTw (Tl) @)
(55 g —_— ———
TinTi(86,91) Lot RS

Here we consider two loss components, the first being the STL robustness score p(¢;, 74,) of the
planned waypoints 74, and the second being the tracking error D . (1) of the controller m; with
respect to the planned waypoints. The coefficients Agrr, Ayen > 0 are hyperparameters that control
the relative importance of the two loss components (Lsrp and L) in the overall loss function.
The STL Loss Lgr, captures our objective, maximizing the STL robustness score of the planned
waypoints 7,, with respect to the specification ¢;. The achievable loss L,c, on the other hand ensures
that the controller 7; can track the planned waypoints 7,, using a distance metric D, (7;) (Defn.
1) that extracts the positions from 7; using filter,, and minimizes a normed distance between the
two, ie. D (1) = Z;‘F:O |[filtery, (si(kt)) — filtery,(gi(t))||, where k > 0,k € ZT isa
fixed goal sampling rate during training such that 7" = T},. In this paper, we consider the same
specification ¢; = ¢ and use the same planner for all agents. This enables easy generalization to
different numbers of agents during testing and allows for a more scalable approach to planning. We
leave the question of how to support different specifications among agents for future work. This

leads to our overall loss function for the planner and controller as Ew;’,w = Zfil Cﬁ_jq: o

4.2 GNNs for Planning in Multi-Agent Systems

Graphical models can be useful to scale collision avoidance in multi-agent systems [39, 21, 38] by
modeling the system in a decentralized manner. Notably, by representing the agents as nodes and

209
210

211
212
213
214
215
216

217
218
219
220
221
222
223
224

225
226
227
228
229

230

231
232

233
234

236
237

238
239

240
241
242

243

244
245
246
247
248

249

250

their interactions as edges, we can use Graph Neural Networks (GNNs) to process a graphical view
of the system as described in Sec. 2 (Fig. 1).

To handle the planning problem in multi-agent systems we describe the planner 7r;5. We choose a
GNN-based planner that takes as input the initial state of the system G(0) and outputs an initial goal
9:(0) for agent i taking into account the relative positions of the agents. Next we feed this goal g;(0)
into a 2-layer MLP to predict the deviation Ag;. This process is repeated for 7' — 1 steps to generate
a sequence of goals for the agent given the initial state. By using this GNN-based structure, we can
get this sequence of goals 7, for each agent ¢ in a single forward pass of the planner 7'('3) .

As highlighted in Sec. 2, MA-STL can be thought of as independent single-agent STL specifications
on the agents, albeit with an additional constraint on avoiding collisions between the agents. While
collision avoidance during planning time is expensive (Sec. 3), we can attempt to plan for the
objectives for a subset of the agents and use this plan with a safety scheme during run-time. Along
these lines, during deployment, we use the GNN-ODE (Fig. 1) to generate a sequence of waypoints
that we sequentially visit in a decentralized manner using the GCBF+ controller (Sec. 4.3). One
should note this would not be straightforward if we had defined arbitrary STL specifications in the
joint space of agents involving global coordination or synchronization of objectives [43, 9].

However, because this may detract from the overall objective due to collision avoidance maneuvers
causing deadlocks, we update the planner iteratively by sampling the environment as detailed in Sec.
4.1 with the STL robustness score. In a sense, we “co-learn” the safety (GCBF+ controller, ;) and
objective (GNN-ODE, 77‘91”) behavior which is a recurrent theme in recent work [19, 32] related to
the safety of controllers in complex systems.

4.3 Collision Avoidance in MA Systems

Following [21], we define the safe set S, C S of an N-agent MAS as the set of MAS states 5 that
satisfy the safety properties in Problem 1, i.e.,

S, = {5 csN ‘ (||y”|| >r, Vie N,Vje nrays> /\ (”3}2# lpi — pjll > 2r) } (3)

Then, the unsafe, set of the MAS S,, = SV \ S, is defined as the complement of S,. We now define
the notion of a GCBF[21]:

Definition 2 (GCBF) A continuously differentiable function h : S™ — R is termed as a Graph
CBF (GCBF) if there exists an extended class-K o, function o and a control policy m; : SM — U
for each agent i € V,, of the MAS such that, for all 5 € SN with N > M,

h(sx,) +alh(5x;)) 20, VieV, @)
where for uj = m;(5x;,) and set of neighbours N; of agent i in the MAS within sensing radius R,
we have Oh(En)
. SN'L
h(sn;) = Z Tf(sjvuj)a (%)
JEN; J

From this definition, as a consequence of the results in Zhang et al. [21], if we find a control policy
m; and GCBF h such that Eq. (4) holds for all agents ¢ and all states § € Ss , then the MAS will
never enter the unsafe set S,, under the control policy ;.

4.4 End-to-End Differentiable Learning for MA-STL

By using the learning framework described in Sec. 4.2 and the safety mechanism in Sec. 4.3, we
can train the planner and controller in an end-to-end differentiable manner using the loss function
in Eq. (2) (Sec. 4.1). We use an iterative training loop to sample trajectories from the environment
at different starting conditions and update the planner 7r‘gz’ for a trained common GCBF+ controller
m; = 7 using the loss LF?J.

S Experiment Setup

Our experiments aim to validate the following two questions:

251
252

253

254
255
256
257

258
259
260
261

262
263
264

266
267
268
269
270

271
272
273
274
275

276

277
278

279
280
281
282

284
285

Metric Planning Time (s) Finish Rate (%) Safety Rate (%) Success Rate (%) 1 TtR (steps)
g P!

Sl};éi““e' GNN-ODE STLPY | GNN-ODE STLPY | GNN-ODE STLPY || GNN-ODE STLPY || GNN-ODE STLPY
= |8 0.05 2248 | 10000 10000 | 10000 85.00 10000 85.00 71230 357.00
S 16| o004 4380 | 10000 9900 | 100.00 5375 10000 52.50 74512 42981
& |32 003 87.92 95.00 96.00 | 92.50 20.00 88.12 18.12 82090 572.39
5 |8 0.02 1040 | 10000 9500 | 10000 97.50 10000 9500 || 106200 429.76
2 16| 002 20.14 | 10000 7800 | 96.25 87.50 96.25 76.25 112425 536.33
© 32 o003 40.19 | 99.00 80.00 | 85.00 56.88 8438 53.75 125259 708.22
= |8 0.02 2616 | 10000 9800 | 10000 8250 10000 8000 || 1874.00 1095.29
g |16] 002 5279 | 10000 99.00 | 97.50 67.50 97.50 66.25 192750 130154
= 132 o004 11162 | 99.00 10000 | 8625 38.75 85.62 3875 || 2110.88 1598.19
|8 0.07 3.46 95.00 98.00 9500 100.00 95.00 97.50 98864 637.01
g 16| 007 6.96 90.00 89.00 | 93.75 90.00 86.25 85.00 || 117344 78597
2 |32 o008 13.62 | 89.00 84.00 | 7625 64.38 66.88 59.38 127791 1013.90

Table 2: Performance of the two planning schemes with the number of agents (/V) and specification
complexity for the DubinsCar Environment. We note an average 65% improved success rate and
highlight the best result in bold.

* How scalable is a neural STL planner over competing methods in terms of the number of
agents and specification complexity?

» How do the distinct components of our planner (GNN and ODE) help with scalability?

To demonstrate the robustness of our method to various specifications and agent models we execute
our experiments on the following robot benchmarks: 2D single integrator dynamics (App. C.1), 2D
non-linear Dubins Car model (Table 2), 2D Double Integrator dynamics (App. C.3) and a real-world
3D drone quadcopter setup moving in a fixed 2D plane (App. C.4).

Our framework was built using JAX [44] based off GCBF+ [21] (Sec. 4.3) with all comparisons
using this underlying collision avoidance controller. To demonstrate the effectiveness of our method,
we compare it against a state-of-the-art MILP-based planner (STLPY [17], Table 2) and an ablation
of our planner without the GNN component (labeled ODE, Table 3).

We evaluate the planner on a range of specifications: seq, cover, loop and branch. These STL
specifications can be drawn to parallels in the real-world. A seq task is akin to a set of drones that
need to visit a series of locations in a specific order at given time intervals for logging time-sensitive
information. The cover task depicts a scenario where each drone measures a different sensor reading
but must all cover the same locations within a time interval to consolidate information. The loop task
captures a set of surveillance drones patrolling the same areas. Lastly, consider a scenario where
drones are grouped into two separate rooms with two goals present in each. Here a branch task
could represent a common specification applied to each agent that they must visit the goals of a
particular room. For a more formal description of the specifications, refer to Appendix B.

We sampled 5 random initial seeds for each experiment and report the mean planning time (in
seconds), the percentage of runs in which the specification was satisfied (Finish Rate), the percentage
of runs where the agent was safe (i.e. did not collide), the percentage of successful runs for each
specification where the STL specification was satisfied and no collisions occurred, and time-to-reach
(TtR) in number of steps (i.e. how long it took for the successful runs to complete the task).

6 Results

Our results (Table 2) demonstrate how differentiable STL can be used to ensure agents achieve
complex objectives while avoiding collisions in multi-agent systems.

Scalability in number of agents We first evaluate the scalability of our approach in the number
of agents (V) for the non-linear DubinsCar environment. From the results, we observe that the
success rate decreases gradually as the number of agents increases, which is expected as the number
of agents increases the complexity of the problem. The results show that the single agent view
of STLPY proves unsuccessful especially in the N = 32 case where agent interactions are more
prevalent. Notably our approach has a planning time that is 70-1000x faster than the MILP-based
planner (STLPY) and does not blow up when considering a larger number of agents /V.

286
287

289
290
291
292
293
294
295
296
297
298
299

300

301
302
303
304
305

306
307
308
309
310
311
312
313
314
315
316
317

318

319
320
321
322
323
324

Metric | FinishRate (%)t | Safety Rate (%)1 || SuccessRate (%) 1 || TR (steps) |

Percentage Percentage Percentage Percentage

Spec | N Change ODE Change ODE Change ODE Change ODE
= 8 -2.00 98.00 0.00 100.00 -2.50 97.50 -26.01 52721
] 16 -4.00 96.00 -2.50 97.50 -6.25 93.75 -24.86 559.88
S 32 0.00 95.00 -8.78 84.38 -7.08 81.88 -18.18 671.66
5 8 0.00 100.00 0.00 100.00 0.00 100.00 -28.19 762.57
Z 16 0.00 100.00 0.00 96.25 0.00 96.25 -28.58 802.95
© 32 0.00 99.00 7.35 91.25 7.40 90.62 -28.48 895.88
o 8 0.00 100.00 0.00 100.00 0.00 100.00 -16.30 1568.57
g 16 0.00 100.00 -11.54 86.25 -11.54 86.25 -17.11 1601.03
= 32 0.00 99.00 0.00 86.25 0.74 86.25 -13.85 1818.59
. 8 -26.32 70.00 5.26 100.00 -26.32 70.00 31.34 1298.50
E 16 -32.22 61.00 -1.33 92.50 -28.99 61.25 15.30 1352.94
32 -47.19 47.00 26.23 96.25 -28.98 47.50 7.54 137423

Table 3: Considering an ablation without the GNN module for the DubinsCar Environment at vari-
ous scales and reporting the percentage change in values. Planning times are comparable.

Scalability in specification complexity For certain specifications such as branch and loop, we
observe that the MILP planner computation time is significant which can add up over different agent
initializations. In contrast, our planner is able to generate a solution for all the specifications quickly
and consistently for different agent initial positions, motivating our learning-based approach. We
further note the effect in TtR when using our algorithm. We rationalize this trade-off because our
method finds longer paths that allow goals to be reached by the GCBF+ controller, which is trained
to avoid other agents. This inherently reduces the number of collisions which is often a greater
priority. From our ablation study (Table 3) we note the impact of the GNN module especially in
terms of a 28% impact in success rate for certain specifications such as seq which require increased
coordination among agents. We can further reason that the impact in cover and loop of the GNN
module is not as great since agents are not required to reach the goals within a strict order and thus
require less coordination. With regards to the lower TtR of the successful runs, the lack of a GNN
module may yield plans that can satisfy the specification efficiently but fail in terms of coordination
between agents (affecting the overall success rate).

7 Limitations

Model-based learning While a model-free approach to collision-avoidance [45, 32] would be
more amenable to handle unknown environment dynamics, our approach is inherently model-based
(as is GCBF [38, 21], MACBF [37] and CAM [39]). This is primarily due to the underlying con-
troller and GCBF (akin to a barrier certificate), using the next state of the system while calculating
the derivative for use in the loss function.

Map Complexity, Homogeneity Additionally, since the approach is decentralized, complex maps
requiring communication and coordination between agents may cause safety issues. As mentioned in
Zhang et al. [21], it may be hard in dense regions to act in a decentralized manner thus necessitating
the use of inter-agent communication. We have considered the homogeneous case in this work,
where all agents have the same dynamics and STL specifications. However, in the heterogeneous
case, agents may have different dynamics and STL specifications thus needing a more complex
controller and a planner capable of generalizing to multiple goal positions or STL specifications. Our
planner does not consider obstacles directly, although as demonstrated in the Appendix (Tables 5, 6,
7), the GCBF+ controller to an extent provides inherent collision avoidance capabilities. Finally, the
approach is limited by the complexity of the environment and the number of agents. While we have
shown that the approach scales well with the number of agents, the complexity of the environment
and the number of obstacles may cause the planner to fail to find a achievable plan.

8 Conclusion

In this work, we have presented a novel approach to planning for multi-agent systems with Sig-
nal Temporal Logic specifications. Primarily we have shown that by using a differentiable STL
robustness metric, we can optimize for the satisfaction of complex temporal specifications given a
controller with MA collision avoidance capabilities. We demonstrate that by training a GNN-ODE
planner with a carefully constructed loss function we can overcome the limitations of the plan-then-
execute approach and scale to complex specifications and large numbers of agents.

325

326
327
328

329
330
331

333
334
335

337
338
339

340
341
342

343
344

345
346
347
348
349
350

351
352
353

355
356
357

358

360
361

362
363
364
365

366
367
368

369
370
371

372

374
375

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

K. Garg, S. Zhang, O. So, C. Dawson, and C. Fan. Learning Safe Control for Multi-Robot
Systems: Methods, Verification, and Open Challenges, Nov. 2023. URL http://arxiv.
org/abs/2311.13714. arXiv:2311.13714 [cs, eess, math].

T. Huang, S. Koenig, and B. Dilkina. Learning to resolve conflicts for multi-agent path finding
with conflict-based search. Proceedings of the AAAI Conference on Artificial Intelligence, 35
(13):11246-11253, May 2021. doi:10.1609/aaai.v35i13.17341. URL https://ojs.aaai.
org/index.php/AAAT/article/view/17341.

M. Damani, Z. Luo, E. Wenzel, and G. Sartoretti. Primaly: Pathfinding via reinforcement
and imitation multi-agent learning - lifelong. IEEE Robotics and Automation Letters, 6(2):
2666-2673, 2021. doi:10.1109/LRA.2021.3062803.

Y. Li, X. Zhang, T. Zeng, J. Duan, C. Wu, D. Wu, and X. Chen. Task placement and re-
source allocation for edge machine learning: A gnn-based multi-agent reinforcement learning
paradigm. IEEE Transactions on Parallel and Distributed Systems, 34(12):3073-3089, dec
2023. ISSN 1558-2183. doi:10.1109/TPDS.2023.3313779.

J. Wang, S. Yang, Z. An, S. Han, Z. Zhang, R. Mangharam, M. Ma, and F. Miao. Multi-
agent reinforcement learning guided by signal temporal logic specifications. arXiv preprint
arXiv:2306.06808, 2023.

A. L. Forsberg, A. Nikou, A. V. Feljan, and J. Tumova. Multi-agent transformer-accelerated rl
for satisfaction of stl specifications, 2024.

N. Zhang, W. Liu, and C. Belta. Distributed control using reinforcement learning with
temporal-logic-based reward shaping. In R. Firoozi, N. Mehr, E. Yel, R. Antonova, J. Bohg,
M. Schwager, and M. Kochenderfer, editors, Proceedings of The 4th Annual Learning for Dy-
namics and Control Conference, volume 168 of Proceedings of Machine Learning Research,
pages 751-762. PMLR, 23-24 Jun 2022. URL https://proceedings.mlr.press/v168/
zhang22b.html.

L. Hammond, A. Abate, J. Gutierrez, and M. Wooldridge. Multi-Agent Reinforcement
Learning with Temporal Logic Specifications. arXiv:2102.00582 [cs], Feb. 2021. URL
http://arxiv.org/abs/2102.00582. arXiv: 2102.00582.

J. Eappen and S. Jagannathan. DistSPECTRL: Distributing specifications in multi-agent re-
inforcement learning systems. In European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2022. ISBN 978-3-031-
26412-2.

C. E. Tuncali, G. Fainekos, D. V. Prokhorov, H. Ito, and J. Kapinski. Requirements-driven
test generation for autonomous vehicles with machine learning components. IEEE Transac-
tions on Intelligent Vehicles, 5:265-280,2019. URL https://api.semanticscholar.org/
CorpusID:199442111.

Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam. Fly-by-logic: Control of multi-drone
fleets with temporal logic objectives. 2018 ACM/IEEE 9th International Conference on Cyber-
Physical Systems (ICCPS), pages 186-197, 2018. URL https://api.semanticscholar.
org/CorpusID:263896988.

R. Yan, Z. Xu, and A. A. Julius. Swarm signal temporal logic inference for swarm behavior
analysis. IEEE Robotics and Automation Letters, 4:3021-3028, 2019. URL https://api.
semanticscholar.org/CorpusID:195832808.

O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages 152-166.
Springer, 2004.

J. Gutierrez, L. Hammond, A. W. Lin, M. Najib, and M. Wooldridge. Rational Verification for
Probabilistic Systems. In Proceedings of the 18th International Conference on Principles of
Knowledge Representation and Reasoning, pages 312-322, 11 2021. doi:10.24963/kr.2021/30.
URL https://doi.org/10.24963/kr.2021/30.

http://arxiv.org/abs/2311.13714
http://arxiv.org/abs/2311.13714
http://arxiv.org/abs/2311.13714
http://dx.doi.org/10.1609/aaai.v35i13.17341
https://ojs.aaai.org/index.php/AAAI/article/view/17341
https://ojs.aaai.org/index.php/AAAI/article/view/17341
https://ojs.aaai.org/index.php/AAAI/article/view/17341
http://dx.doi.org/10.1109/LRA.2021.3062803
http://dx.doi.org/10.1109/TPDS.2023.3313779
https://proceedings.mlr.press/v168/zhang22b.html
https://proceedings.mlr.press/v168/zhang22b.html
https://proceedings.mlr.press/v168/zhang22b.html
http://arxiv.org/abs/2102.00582
https://api.semanticscholar.org/CorpusID:199442111
https://api.semanticscholar.org/CorpusID:199442111
https://api.semanticscholar.org/CorpusID:199442111
https://api.semanticscholar.org/CorpusID:263896988
https://api.semanticscholar.org/CorpusID:263896988
https://api.semanticscholar.org/CorpusID:263896988
https://api.semanticscholar.org/CorpusID:195832808
https://api.semanticscholar.org/CorpusID:195832808
https://api.semanticscholar.org/CorpusID:195832808
http://dx.doi.org/10.24963/kr.2021/30
https://doi.org/10.24963/kr.2021/30

376
377
378
379

380
381

382
383

385
386

387
388
389

390
391

393
394
395

396
397
398
399

400
401
402

403
404
405

406
407
408

409
410

411
412

413
414
415

416
417

418
419
420

421
422
423

[15] J. Tumova and D. V. Dimarogonas. Multi-agent planning under local Itl specifications and
event-based synchronization. Automatica, 70(C):239-248, aug 2016. ISSN 0005-1098. doi:10.
1016/j.automatica.2016.04.006. URL https://doi.org/10.1016/j.automatica.2016.
04.006.

[16] D. Sun,J. Chen, S. Mitra, and C. Fan. Multi-agent motion planning from signal temporal logic
specifications. IEEE Robotics and Automation Letters, 7(2):3451-3458, 2022.

[17] V. Kurtz and H. Lin. Mixed-integer programming for signal temporal logic with fewer binary
variables. IEEE Control Systems Letters, 2022.

[18] P.Das, A. Dasgupta, and D. Dalal. $§ODES$solvers are also wayfinders: Neural ODEs for multi-
agent pathplanning. In The Symbiosis of Deep Learning and Differential Equations II1, 2023.
URL https://openreview.net/forum?id=rnhkE2vb4r.

[19] Z.Xiong, D. Lawson, J. Eappen, A. H. Qureshi, and S. Jagannathan. Co-learning planning and
control policies constrained by differentiable logic specifications. In 2024 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2024.

[20] F. Nawaz, T. Li, N. Matni, and N. Figueroa. Learning complex motion plans using neural odes
with safety and stability guarantees. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 1-8. IEEE, 2024.

[21] S. Zhang, O. So, K. Garg, and C. Fan. GCBF+: A Neural Graph Control Barrier Function
Framework for Distributed Safe Multi-Agent Control, Jan. 2024. URL http://arxiv.org/
abs/2401.14554. arXiv:2401.14554 [cs, math].

[22] S. Chaudhuri, K. Ellis, O. Polozov, R. Singh, A. Solar-Lezama, and Y. Yue. Neurosym-
bolic programming. Foundations and Trends® in Programming Languages, 7(3):158-243,
2021. ISSN 2325-1107. doi:10.1561/2500000049. URL http://dx.doi.org/10.1561/
2500000049.

[23] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese. Neural task programming:
Learning to generalize across hierarchical tasks. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1-8. IEEE, 2018.

[24] X.Li, C.-I. Vasile, and C. Belta. Reinforcement learning with temporal logic rewards. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3834—
3839. IEEE, 2017.

[25] R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A. Mcllraith. Reward machines: Exploiting
reward function structure in reinforcement learning. Journal of Artificial Intelligence Research,
73:173-208, 2022.

[26] K. Jothimurugan, R. Alur, and O. Bastani. A composable specification language for reinforce-
ment learning tasks. In NeurIPS. 2019.

[27] C. Neary, Z. Xu, B. Wu, and U. Topcu. Reward machines for cooperative multi-agent rein-
forcement learning. In AAMAS, 2021. ISBN 9781450383073.

[28] J. Yang, I. Borovikov, and H. Zha. Hierarchical cooperative multi-agent reinforcement learning
with skill discovery. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, pages 1566—1574, 2020.

[29] O.Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
In NeurIPS, 2018.

[30] B. Haworth, G. Berseth, S. Moon, P. Faloutsos, and M. Kapadia. Deep integration of physical
humanoid control and crowd navigation. In Motion, Interaction and Games, 2020. ISBN
978-1-4503-8171-0.

[31] A. Vezhnevets, Y. Wu, M. Eckstein, R. Leblond, and J. Z. Leibo. Options as responses:
Grounding behavioural hierarchies in multi-agent reinforcement learning. In International
Conference on Machine Learning, pages 9733-9742. PMLR, 2020.

10

http://dx.doi.org/10.1016/j.automatica.2016.04.006
http://dx.doi.org/10.1016/j.automatica.2016.04.006
http://dx.doi.org/10.1016/j.automatica.2016.04.006
https://doi.org/10.1016/j.automatica.2016.04.006
https://doi.org/10.1016/j.automatica.2016.04.006
https://doi.org/10.1016/j.automatica.2016.04.006
https://openreview.net/forum?id=rnhkE2vb4r
http://arxiv.org/abs/2401.14554
http://arxiv.org/abs/2401.14554
http://arxiv.org/abs/2401.14554
http://dx.doi.org/10.1561/2500000049
http://dx.doi.org/10.1561/2500000049
http://dx.doi.org/10.1561/2500000049
http://dx.doi.org/10.1561/2500000049

424
425
426

427
428
429

430
431
432
433

434

436

437
438
439

440
441
442

443
444
445

446
447
448

449
450
451

452
453
454

455
456
457

459
460

461
462
463

464
465
466

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Z. Xiong, J. Eappen, A. H. Qureshi, and S. Jagannathan. Model-free neural lyapunov control
for safe robot navigation. In 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5572-5579, 2022. doi:10.1109/IROS47612.2022.9981632.

A. T. Buyukkocak, D. Aksaray, and Y. Yazicioglu. Planning of heterogeneous multi-agent
systems under signal temporal logic specifications with integral predicates. IEEE Robotics
and Automation Letters, 6(2):1375-1382, 2021. doi:10.1109/LRA.2021.3057049.

Y. Kantaros and M. M. Zavlanos. Stylus*: A temporal logic optimal control synthesis algo-
rithm for large-scale multi-robot systems. The International Journal of Robotics Research,
39(7):812-836, 2020. doi:10.1177/0278364920913922. URL https://doi.org/10.1177/
0278364920913922.

C. I Vasile, X. Li, and C. Belta. Reactive sampling-based path planning with temporal logic
specifications. The International Journal of Robotics Research, 39(8):1002-1028, 2020. doi:
10.1177/0278364920918919. URL https://doi.org/10.1177/0278364920918919.

J. Chen, J. Li, C. Fan, and B. C. Williams. Scalable and safe multi-agent motion planning
with nonlinear dynamics and bounded disturbances. In Proceedings of the Thirty-Fifth AAAI
Conference on Artificial Intelligence (AAAI 2021), 2021.

Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan. Learning safe multi-agent control with decen-
tralized neural barrier certificates. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=P6_q1BRxY8Q.

S. Zhang, K. Garg, and C. Fan. Neural Graph Control Barrier Functions Guided Distributed
Collision-avoidance Multi-agent Control. Aug. 2023. URL https://openreview.net/
forum?id=VscdYkKgwdH.

C. Yu, H. Yu, and S. Gao. Learning control admissibility models with graph neural networks
for multi-agent navigation. In 6th Annual Conference on Robot Learning, 2022. URL https:
//openreview.net/forum?id=xC-68ANJeK_.

K. Leung, N. Aréchiga, and M. Pavone. Backpropagation through signal temporal logic spec-
ifications: Infusing logical structure into gradient-based methods. Int. Journal of Robotics
Research, 2022.

A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier function based quadratic
programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8):3861—
3876, 2017. doi:10.1109/TAC.2016.2638961.

L. Wang, A. D. Ames, and M. Egerstedt. Safety Barrier Certificates for Collisions-Free Multi-
robot Systems. IEEE Transactions on Robotics, 33(3):661-674, June 2017. ISSN 1941-0468.
doi:10.1109/TRO.2017.2659727. Conference Name: IEEE Transactions on Robotics.

A. T. Buyukkocak, D. Aksaray, and Y. Yazicioglu. Planning of heterogeneous multi-agent
systems under signal temporal logic specifications with integral predicates. IEEE Robotics
and Automation Letters, 6(2):1375-1382, 2021. doi:10.1109/LRA.2021.3057049.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transfor-
mations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

S. Wang, L. Fengb, X. Zheng, Y. Cao, O. O. Oseni, H. Xu, T. Zhang, and Y. Gao. A pol-
icy optimization method towards optimal-time stability. In 7th Annual Conference on Robot
Learning, 2023. URL https://openreview.net/forum?id=r0CWUmMBSnH.

11

http://dx.doi.org/10.1109/IROS47612.2022.9981632
http://dx.doi.org/10.1109/LRA.2021.3057049
http://dx.doi.org/10.1177/0278364920913922
https://doi.org/10.1177/0278364920913922
https://doi.org/10.1177/0278364920913922
https://doi.org/10.1177/0278364920913922
http://dx.doi.org/10.1177/0278364920918919
http://dx.doi.org/10.1177/0278364920918919
http://dx.doi.org/10.1177/0278364920918919
https://doi.org/10.1177/0278364920918919
https://openreview.net/forum?id=P6_q1BRxY8Q
https://openreview.net/forum?id=VscdYkKgwdH
https://openreview.net/forum?id=VscdYkKgwdH
https://openreview.net/forum?id=VscdYkKgwdH
https://openreview.net/forum?id=xC-68ANJeK_
https://openreview.net/forum?id=xC-68ANJeK_
https://openreview.net/forum?id=xC-68ANJeK_
http://dx.doi.org/10.1109/TAC.2016.2638961
http://dx.doi.org/10.1109/TRO.2017.2659727
http://dx.doi.org/10.1109/LRA.2021.3057049
http://github.com/google/jax
https://openreview.net/forum?id=rOCWUmMBSnH

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

486

487

488

Contents

1 Introduction
1.1 Related Work

2 Background
3 Problem Statement

4 Approach

4.1 Differentiable Signal Temporal Logic for Planning

4.2 GNNs for Planning in Multi-Agent Systems

4.3 Collision Avoidance in MA Systemso
4.4 End-to-End Differentiable Learning for MA-STL

5 Experiment Setup
6 Results

7 Limitations

8 Conclusion

A Implementation Details

A.l Environment Details
B STL Specifications

C Additional Experiments
C.1 Singlelntegrator Environment .
C.2 DubinsCar Environment . . .
C.3 Doublelntegrator Environment

C.4 Real-world Drone Experiments

D Hardness of MA-STL specifications

12

AN O L W W

13
13

14

14
14
14
14
15

16

490

491
492
493
494
495
496
497

499
500

501
502
503
504
505
506

507
508
509
510
511
512
513
514

515

516
517

518
519
520
521
522

523
524
525
526

527

528
529
530
531

532
533

A Implementation Details

Node features and edge features Following Zhang et al. [21], the node features v; € R?» encode
information specific to each node in our graph observation. Here, we set p, = 3 and use the node
features v; to one-hot encode the type of the node as either an agent node, goal node or LiDAR ray
hitting point node. The edge features e;; € RP¢, where p. > 0 is the edge dimension, are defined as
the information shared from node j to the agent at node ¢, which depends on the states of the nodes
i and j. Since the safety objective depends on the relative positions, one component of the edge
features is p;; = p; — p;. The remaining edge features can be set depending on system dynamics,
such as, relative velocities for double integrator dynamics.

Computation Resources All training procedures were ran on an AWS g4dn.xlarge instance or
equivalent with 4 Intel Xeon-based CPU Cores and 16 GB of RAM with an Nvidia T4 GPU.

Evaluation Details Since we consider objectives that require agents to navigate close to one an-
other at/near termination subsequently blocking the goal locations (A,B,C,D in Table 4), safety rates
were reported until the point an agent had completed their plan. This can be thought of as an al-
ternative to the agents navigating to a ‘safe’ position upon completing their specification/plan. In
a drone setting, we captured this behavior by landing the drones at an agent-specific location upon
completing their specification.

Planner Details For all plans, at any time step ¢, planning step ¢/, each agent ¢ proceeded to
the next waypoint g;(¢' + 1) only when they reached goal g;(¢') within some threshold distance
Tgoal = 0.3 atatime t > k(' 4+ 1) where k is the goal sampling interval (Sec. 4.1). This allowed all
agents to reach the waypoints in the plan without a strict time restriction on the plan duration. The
asynchronous nature of our plans (among agents) fits our problem description (Defn. 1), specifically
the STL Satisfaction criteria. We leave the setting where agents follow a synchronized plan to future
work. For a given plan of length T with goal sample interval k (values in Table 4), the maximum
trajectory length horizon during evaluation T}, was 5k7T".

A.1 Environment Details

Here, we provide the details of each experiment environment as taken from Zhang et al. [21]. We
used a common simulation time step d¢ = 0.03 across all three environments.

SingleIntegrator We use single integrator dynamics as the base environment to verify the correct-
ness of the implementation and to show the performance of the methods when there are no control
input limits. The dynamics is given as &; = v;, where z; = [p?, pi’]T € R? is the position of the
i-th agent and v; = [v7, vf]T its velocity. In this environment, we use e;; = x; — x; as the edge
information.

Doublelntegrator We use double integrator dynamics for this environment. The state of agent ¢
¢ 01T, where [p?,p?]" is the position of the agent, and [0, vY] " is the

is given by z; = [p}, p!, v}
velocity. The action of agent i is given by u; = [a?,a!]", i.e., the acceleration. The dynamics

function is given by:

. xT Yy x Yy T

$i_[viﬂviﬂaivai] (6)
In this environment, we use e;; = x; — x; as the edge information.

DubinsCar We use the standard Dubin’s car model in this environment. The state of agent ¢ is
given by x; = [p%,p?,0;,v;]", where [p?,p?]" is the position of the agent, 0; is the heading, and
v; is the speed. The action of agent 7 is given by u; = [w;,a;]" containing angular velocity and
acceleration magnitude. The dynamics function is given by:

jZi = [Ui COS(GZ')7 (O Sin(@i), Wi, ai]T (7)

We use e; = ej(z;) — e(x;) as the edge information, where e;(x;) =
[p%, p?, v; cos(6;), visin(6;)] .

13

534

535
536
537
538
539
540
541

542

543
544
545
546
547

549
550
551
552
553

554

555
556
557
558
559
560
561
562

563

564
565
566

568

569

570
571

B STL Specifications

We formally define the Signal Temporal Logic (STL) specifications used in the experiments in Table
4. The specifications include a sequential waypoint task (seq), a coverage task (cover), a loop task
(loop), and a branching task (branch). The specifications are defined over a time horizon 7" and are
satisfied if the agents satisfy the corresponding STL formula. We use four markers A, B, C, and
D to represent rectangular predicates centered around x-y coordinates [0, 0], [2, 2], [2,0], and [0, 2],
respectively. The predicates are defined as p; = dist(s;, p;) < 1.0 where dist(s;, p;) is the L1-norm
(| - |1) distance between the agent i’s state s; and the predicate p;.

Spec. Description Formula T k
seq Sequential of gOﬁlS O[O,T/?)] (A) A <>[T/3,2T/3] (B) A <>[2T/3,T] (C) 30 20
cover | Coverage over goals Or0,11(A) A Q0,1 (B) A Opo,1(C) 15 20
loop Loop over goals Op,7/2) (Oo,7/21(A) A Q0,772 (B)) 30 20
branch Branching (O[O,T] (A) A 0[07T](B)) Vv (O[O,T](C) N <>[07T](D)) 20 10

Table 4: STL specifications used in the experiments. 1" and k are the specification lengths and goal
sample intervals respectively.

C Additional Experiments

In Tables 5, 6 and 7 we show results for the various environments and obstacle scenarios. While
our GNN-ODE has an initial GNN module which can observe these obstacles, and is also trained
to generate initial goals that are ‘achievable’, the GNN-ODE is inherently limited to only consider
obstacles within the sensing radius R of the agents at planning time (i.e. ¢ = 0). As in Zhang
et al. [21], the GCBF+ controller is trained to avoid obstacles. Thus, with a robust plan, we can
achieve reasonably high success rates in this setting as well due to the run-time collision avoidance
maneuvers. Planning times are nearly similar to the results in Sec. 6 (Table 2) likely because
our learning-based planners do not use environment dynamics at inference time and should have a
similar computation cost after training is complete. For this reason, to avoid clutter, we omit this
column in the following tables. We include results from the ODE ablation of our method as shown
in Table 3 under the column ‘ODE’. Additional simulation videos are hosted online'.

C.1 SingleIntegrator Environment

In Table 5 we contain the results for various combinations of specifications, 8 sampled obstacle
positions (marked *Y”’ if present, 'N’ otherwise), and number of agents in the SingleIntegrator En-
vironment. We observe that the GNN-ODE planner outperforms the other planners in terms of
planning time and success rate across all the specifications and obstacles. We note the average im-
provement in success rate of 10% for our GNN-ODE planner over the MILP planner which is not
as large as the improvement in the non-linear DubinsCar environment (Table 2, 6). This is due to
the SingleIntegrator environment being less constrained and the MILP planner being able to find a
feasible solution more easily.

C.2 DubinsCar Environment

In Table 6 we contain the results for various combinations of specifications, 8 sampled obstacle po-
sitions (marked *Y if present, 'N’ otherwise), and number of agents in the DubinsCar Environment.
On average, with obstacles present as well we get a 69% improvement in success rate for our GNN-
ODE planner over the MILP planner, primarly due to the non-linear dynamics of the DubinsCar
environment being challenging for the collision avoidance controller.

C.3 Doublelntegrator Environment

In Table 7 we contain the results for various combinations of specifications, 8 sampled obstacle (Obs)
positions (marked *Y’ if present, N’ otherwise), and number of agents (N) in the Doublelntegrator

'Site: https://anon-ml-git.github.io/ma-stl.github.io/

14

https://anon-ml-git.github.io/ma-stl.github.io/

572
573
574

Metric Finish Rate 1 Safety Rate T Success Rate T TR |

Specplag'gcsr N—| GNN-ODE ODE STLPY | GNN-ODE ~ ODE STLPY | GNN-ODE ~ODE STLPY | GNN-ODE ODE STLPY
= 8 100.00 10000 100.00 | 100.00 100.00 100.00 10000 10000 100.00 || 100075 396.50 257.25
g N [16] 10000 10000 100.00 | 100.00 100.00 100.00 10000 10000 100.00 || 121450 443.00 280.87
= 32| 98.00 100.00 99.00 100.00 10000 98.75 97.50 100.00 97.50 66471 100581 32023
8 10000 93.00 98.00 10000 100.00 95.00 10000 9250 92.50 101575 40895 29257

Y |16| 99.00 96.00 94.00 97.50 100.00 95.00 96.25 9625 88.75 1168.80 47130 314.99

32| 97.00 98.00 94.00 98.12 10000 92.50 95.00 9750 86.88 181259 101877 356.09

5 3 98.00 100.00 95.00 100.00 100.00 100.00 97.50 100.00 95.00 88486 653.00 342.93
1 N |16| 9900 100.00 90.00 10000 100.00 100.00 98.75 100.00 90.00 102440 75825 364.56
© 32| 98.00 98.00 96.00 10000 100.00 97.50 98.12 9750 93.12 1409.89 123741 447.66
3 95.00 9500 88.00 10000 100.00 97.50 95.00 9500 87.50 1068.46 74483 356.17

Y | 16| 96.00 98.00 91.00 100.00 10000 97.50 96.25 9750 91.25 1040.65 1043.66 386.12

32| 96.00 98.00 91.00 10000 99.38 96.88 96.25 9750 88.75 1491.06 1297.69 488.79

N 3 10000 10000 100.00 | 10000 100.00 100.00 10000 10000 100.00 || 189025 2506.00 751.00
g N [16] 10000 10000 100.00 | 100.00 100.00 100.00 10000 10000 100.00 || 144575 2120.12 855.38
32| 10000 100.00 100.00 | 10000 100.00 100.00 10000 10000 100.00 | 2332.19 263575 1062.25

8 100.00 10000 90.00 95.00 10000 92.50 95.00 100.00 82.50 143400 211225 841.32

Y |[16] 99.00 96.00 93.00 96.25 10000 96.25 95.00 9625 88.75 2091.53 231544 927.83

32 99.00 99.00 96.00 96.25 9938 96.25 95.00 9875 91.88 245319 2769.78 1137.71

g 8 10000 53.00 90.00 10000 100.00 100.00 10000 5250 90.00 90550 107230 434.44
2 [N 16| 99.00 4100 73.00 10000 100.00 100.00 98.75 4125 7250 761.08 1119.07 470.17
3 32| 98.00 33.00 66.00 10000 100.00 100.00 98.12 3312 65.62 897.41 146439 66121
8 98.00 4500 88.00 10000 100.00 100.00 97.50 4500 87.50 73143 1239.50 47039

Y |16| 98.00 3600 62.00 10000 100.00 100.00 97.50 3625 62.50 1030.83 127250 548.39

32| 98.00 28.00 74.00 10000 100.00 99.38 98.12 2812 73.12 1186.13 1649.19 797.86

Table 5: Performance of different planner modules with the scalability in the number of agents (V)
and specification complexity for the SingleIntegrator Environment.

Metric Finish Rate 1 Safety Rate T Success Rate T TR |

Specpl"‘(“)"’fsr N—| GNN-ODE ODE STLPY | GNN-ODE ~ ODE STLPY | GNN-ODE ~ODE STLPY || GNN-ODE ~ ODE STLPY
< N |8 10000 98.00 100.00 | 10000 100.00 85.00 10000 97.50 85.00 1768.75 52557 357.00
g 16 | 10000 96.00 99.00 10000 9750 53.75 10000 9375 5250 1856.12 565.09 429.81
= 32| 95.00 9400 96.00 92.50 86.25 20.00 88.12 8250 18.12 82090 67452 57239
Y |8 100.00 100.00 95.00 97.50 97.50 67.50 97.50 9750 62.50 72850 56279 373.89

16 | 99.00 9500 95.00 92.50 90.00 47.50 91.25 8625 45.00 182895 59529 474.16

32| 9500 85.00 90.00 86.88 7438 3250 81.88 6375 25.00 841.66 70891 586.89

5 N |8 100.00 100.00 95.00 10000 10000 97.50 10000 10000 95.00 106200 75457 429.76
z 16 | 10000 100.00 78.00 96.25 97.50 87.50 96.25 9750 76.25 1127.00 80270 536.33
© 32| 99.00 99.00 80.00 85.00 9250 56.88 84.38 91.88 5375 125259 88331 708.22
Y |8 98.00 98.00 93.00 97.50 9500 92.50 95.00 9250 85.00 109407 82171 460.30

16 | 96.00 93.00 85.00 98.75 9250 76.25 95.00 85.00 67.50 113561 86724 571.55

32| 93.00 93.00 78.00 81.25 83.12 5375 75.62 76.88 49.38 125120 97233 674.09
-~ |N |38 10000 10000 98.00 100.00 10000 82.50 10000 10000 80.00 187400 157007 1092.79
g 16 | 10000 100.00 100.00 | 100.00 8625 76.25 100.00 8625 7625 196312 1601.03 1251.62
32| 98.00 99.00 10000 | 10000 8625 3875 97.50 8625 3875 193627 181859 1598.19

Y |8 95.00 88.00 78.00 10000 60.00 9250 95.00 5500 70.00 189433 455425 1310.58
16 | 96.00 91.00 90.00 90.00 2875 66.25 88.75 2250 57.50 1969.37 448138 137832

32| 89.00 91.00 88.00 80.62 1375 3125 7625 8.12 2438 213835 427429 167291

g N |8 98.00 7000 98.00 97.50 100.00 100.00 95.00 7000 97.50 124643 129850 637.11
g 16 | 95.00 70.00 89.00 96.25 100.00 90.00 92.50 7000 85.00 1188.14 157748 78597
3 32| 89.00 70.00 84.00 76.25 7750 6438 66.88 6375 5938 127791 171505 1013.90
Y |8 95.00 62.00 80.00 10000 9250 95.00 95.00 57.50 80.00 1572.68 1537.60 671.38

16 | 89.00 60.00 75.00 86.25 7500 81.25 7875 50.00 70.00 117586 1640.81 83937
32| 78.00 62.00 68.00 77.50 5375 5375 61.25 3938 41.88 129339 1802.09 1042.54

Table 6: Performance of different planner modules with the scalability in the number of agents (/V)
and specification complexity for the DubinsCar Environment with obstacles.

Environment. The average improvement in success rate of 11% for our GNN-ODE planner over the
MILP planner is similar to the SingleIntegrator environment (Table 5) due to GCBF+controller being
more effective at collision avoidance with the linear dynamics of the DoubleIntegrator environment.

C.4 Real-world Drone Experiments

The experimental validation of this methodology involved deploying a fleet of 5 DJI Tello Ryze
drones to track the trajectories generated via the Dubins Car model. The drones were configured in
WiFi mode to enable swarm behavior which was facilitated through the open-source DJITelloPy 2
library.

*https://github.com/damiafuentes/DJITelloPy

15

580
581
582
583
584
585
586

587

588
589
590
591
592
593
594
595
596
597
598

599
600
601
602
603
604

Metric Finish Rate 1 Safety Rate T Success Rate T TR |

Specplag'lfsr N—| GNN-ODE ODE STLPY | GNN-ODE ~ ODE STLPY | GNN-ODE ~ODE STLPY | GNN-ODE ODE STLPY
= N |8 100.00 10000 100.00 | 100.00 100.00 100.00 10000 10000 100.00 || 138475 536.00 379.50
g 16 | 10000 10000 91.00 10000 100.00 100.00 10000 10000 91.25 176838 1577.50 474.44
= 32| 99.00 91.00 73.00 100.00 100.00 100.00 99.38 90.62 72.50 2510.85 220644 617.02
Y |8 100.00 100.00 98.00 97.50 100.00 100.00 97.50 100.00 97.50 277450 53350 39057

16 | 99.00 99.00 94.00 98.75 98.75 100.00 97.50 9750 93.75 292395 159428 533.49

32| 99.00 91.00 68.00 96.25 9375 98.12 95.00 8562 67.50 254379 226378 666.90

5 N |38 10000 10000 93.00 100.00 100.00 100.00 10000 10000 92.50 1681.00 738.00 57220
£ 16 | 10000 100.00 89.00 10000 100.00 100.00 10000 10000 88.75 212743 89450 645.93
© 32| 96.00 75.00 76.00 10000 100.00 100.00 95.62 7500 76.25 220111 154229 87732
Y |8 10000 100.00 90.00 10000 100.00 97.50 10000 10000 87.50 164950 767.50 498.07

16| 9900 10000 89.00 98.75 98.75 100.00 97.50 9875 88.75 212330 92675 75673

32| 95.00 79.00 78.00 95.00 96.25 98.75 90.62 7625 77.50 163034 1625.60 949.62

-~ [N |38 95.00 98.00 100.00 | 10000 100.00 100.00 95.00 9750 100.00 || 195171 271654 1219.75
g 16 | 98.00 99.00 10000 | 10000 100.00 100.00 97.50 9875 100.00 || 261270 3273.04 1781.62
32| 98.00 93.00 96.00 10000 100.00 100.00 98.12 9312 96.25 327147 5260.64 270345

Y |8 95.00 98.00 100.00 | 10000 9500 100.00 95.00 9250 100.00 || 253332 2785.64 1229.75

16 | 96.00 99.00 98.00 10000 9625 97.50 96.25 9500 95.00 271348 343133 1830.21

32| 98.00 93.00 97.00 98.75 80.62 9375 96.25 7562 90.62 335394 525158 2850.15

g N |8 100.00 80.00 85.00 10000 100.00 100.00 10000 80.00 85.00 156550 116235 693.67
g 16 | 99.00 88.00 70.00 10000 100.00 100.00 98.75 8750 70.00 1667.12 1472.54 926.60
3 32| 81.00 4900 28.00 10000 100.00 100.00 80.62 4875 28.12 1929.73 1979.83 912.03
Y |8 10000 88.00 80.00 10000 100.00 100.00 100.00 8750 80.00 155275 1380.57 846.60

16 | 10000 84.00 60.00 10000 9875 97.50 10000 8250 60.00 168475 1574.84 960.90

32| 84.00 51.00 34.00 99.38 9312 93.75 83.12 4938 33.12 1969.68 2003.38 930.35

Table 7: Performance of different planner modules with the scalability in the number of agents (V)
and specification complexity for the DoubleIntegrator Environment.

Each Tello drone is equipped with an Inertial Measurement Unit (IMU), a forward-facing camera,
and a downward-facing camera. The latter is useful for precise hovering and position estimation
using the Vision Positioning System (VPS). However, this system is inaccurate and unreliable as
the drones do not possess other sensors like lidar or depth cameras. To mitigate drift and correct
the position estimate errors, ArUco tags were utilized to make the trajectory following robust for
each drone. This ensured the swarm of drones could accurately follow the designated trajectory as
evidenced in the simulation results.

D Hardness of MA-STL specifications

We also performed an ablation study (Table 8, 9, 10) to emphasize the challenge of satisfying these
individual temporal objectives while ensuring global constraints such as safety (collision avoidance).
For each specification, we use the MILP planner with GCBF+ controller and consider the case of an
algorithm prioritizing safety above all else while sacrificing objective satisfaction (i.e. by attempting
to remain stationary rather than risking collisions when a collision is detected 1 step ahead). This
method (marked ‘Prioritize Safety’) uses environment dynamics and global agent communication to
perform this one step lookahead. Notably this is not guaranteed to be safe due to agent input limits
and is unrealistic since it is not decentralized. We compare this to an algorithm with the MILP
planner that can satisfy the temporal specifications nearly always yet allows collisions between
agents by simply following the nominal controller (PID with no collision avoidance maneuvering
[21]) marked ‘Prioritize Objective’.

From the results in Table 2 we can see the non-linear nature of the DubinsCar environment, and input
limits, hinders a near 100% safety rate in the ‘Prioritize Safety’ variant unlike in the other linear
environments (Tables 8, 10). Additionally based on the results we can see in the more complex
environments (DubinsCar, Doublelntegrator) the overly conservative approach of ‘Prioritize Safety’
affects finish rates negatively in the N = 32 case (even with the expensive global communication).
These results highlight the need for planning informed of collision avoidance procedures.

16

Planner | Prioritize Objective | Prioritize Safety

Spec Finish Rate ¥ Safety Rate T Success Rate T TtR | | Finish Rate T Safety Rate t Success Rate 1
20.00 20.00

b5}

3

O

o 654.75

§ 654.75
653.50

Q

g

&

A

Table 8: Depicting the balance between performance and safety with regards to STL specification
complexity for the SingleIntegrator Environment at various scales.

Planner | Prioritize Objective | Prioritize Safety

Finish Rate T Safety Rate T Success Rate 1 TtR | Finish Rate T Safety Rate T Success Rate 1
25.00 25.00

Table 9: Depicting the balance between performance and safety with regards to STL specification
complexity for the DubinsCar Environment at various scales.

Planner | Prioritize Objective | Prioritize Safety

Finish Rate T Safety Rate T Success Rate T TtR | | Finish Rate 7 Safety Rate T Success Rate 1

Spec

1207.25
1800.38

SequencT Loop

Table 10: Depicting the balance between performance and safety with regards to STL specification
complexity for the Doublelntegrator Environment at various scales.

17

	Introduction
	Related Work

	Background
	Problem Statement
	Approach
	Differentiable Signal Temporal Logic for Planning
	GNNs for Planning in Multi-Agent Systems
	Collision Avoidance in MA Systems
	End-to-End Differentiable Learning for MA-STL

	Experiment Setup
	Results
	Limitations
	Conclusion
	Implementation Details
	Environment Details

	STL Specifications
	Additional Experiments
	SingleIntegrator Environment
	DubinsCar Environment
	DoubleIntegrator Environment
	Real-world Drone Experiments

	Hardness of MA-STL specifications

