
Scaling Safe Multi-Agent Control for Signal
Temporal Logic Specifications

Anonymous Author(s)
Affiliation
Address
email

Abstract: Existing methods for safe multi-agent control using logic specifications1

like Signal Temporal Logic (STL) often face scalability issues. This is because2

they rely either on single-agent perspectives or on Mixed Integer Linear Program-3

ming (MILP)-based planners, which are complex to optimize. These methods4

have proven to be computationally expensive and inefficient when dealing with a5

large number of agents. To address these limitations, we present a new scalable6

approach to multi-agent control in this setting. Our method treats the relationships7

between agents using a graph structure rather than in terms of a single-agent per-8

spective. Moreover, it combines a multi-agent collision avoidance controller with9

a Graph Neural Network (GNN) based planner, models the system in a decen-10

tralized fashion, and trains on STL-based objectives to generate safe and efficient11

plans for multiple agents, thereby optimizing the satisfaction of complex temporal12

specifications while also facilitating multi-agent collision avoidance. Our experi-13

ments show that our approach significantly outperforms existing methods that use14

a state-of-the-art MILP-based planner in terms of scalability and performance.15

Keywords: Multi-Robot Systems, Path Planning for Multiple Mobile Robots or16

Agents, Collision Avoidance, Hybrid Logical/Dynamical Planning and Verifica-17

tion, Deep Learning Methods18

1 Introduction19

Learning-based methods have shown promise in multi-agent systems (MAS) for tasks such as colli-20

sion avoidance, path planning, and task allocation [1, 2, 3, 4]. Extensions have also been developed21

to handle complex temporal tasks that may be described using formal languages such as Signal22

Temporal Logic (STL) [5, 6] and other temporal logics [7, 8, 9]; unfortunately, these methods have23

well-known limitations in terms of scalability and performance.24

Signal Temporal Logic (STL) is a formal language for specifying complex temporal tasks that can25

be used to describe the behavior of agents in a multi-agent system. In many settings, including26

autonomous vehicles [10], drones [11], and robotic swarms [12], it is essential to ensure that the27

agents satisfy complex temporal tasks such as sequentially visiting a series of locations while avoid-28

ing collisions with each other and the environment. Once the user has specified the task in STL, the29

task can be synthesized using formal methods [13, 14, 15] in certain environments; however, these30

methods often struggle to scale to complex specifications and environments. In response to these31

challenges, Mixed Integer Linear Programming (MILP)-based planners [16, 17] have been devel-32

oped that can be used to plan over a range of STL specifications but still encounter difficulties with33

collision avoidance when a modest number such as 5 agents are considered (Table 1).34

Inspired by recent progress in learning-based planners [18, 19, 20], we propose a novel approach35

to planning for multi-agent systems with STL specifications that can scale beyond these limitations36

demonstrated on up to 32 agents. More specifically, we introduce a Graph Neural Network (GNN)37

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

ODEPlanner

Update
GNN

0

1
2

MLP

0

1
2

+

Sensing
Radius

Agent Goal Path

1

1
1

A

B

C

Sequence Spec.: ♢[0,10]A ∧ (♢[10,20]B ∧♢[20,30]C)

Final Position
Initial Position

0

1
2
3

4
56 7

0

1

2

3 4
5

6

7

Figure 1: (Left) GNN-ODE Planner Architecture for Multi-Agent Systems with STL Specifica-
tions. The planner πϕi

g generates a sequence of goals for agent i given the initial state of the system
G(0). The safety controller πi ensures that the agents do not collide while following the generated
goals. A GNN encodes the graph representing the collective initial state of the system to yield an
initial goal gi(0) (red) for each agent i. This goal gi(0) is fed into a Multi-Layer Perceptron (MLP)
network to generate a new goal gi(1) (blue) which is fed back into the MLP network in a feedback
loop. This is repeated for T − 1 steps to generate a sequence of goals for the agent. The losses
LSTL and Lach are detailed in Sec. 4.1 and are used to update our planner. (Middle) Real world
experiments on N = 5 drones. (Right) An example trajectory for N = 8 agents for a seq spec
requiring agents to visit A then B and finally C in order.

based planner using Neural Ordinary Difference Equations (ODEs) [18] (Fig. 1, Sec. 4.2) trained38

end-to-end on an STL objective to generate safe and robust plans for multiple agents that can be39

realized using a learnable MA collision avoidance controller ([21], Sec. 4.3). To scale up, we use40

the ODE-based component to plan general paths that satisfy the given task while using a GNN to41

model agent interactions in a scalable manner to achieve coordination between the agents as they42

determine which ODE-generated goal trajectory to follow. Our loss components (Sec. 4.1) allow43

the planner to find paths that satisfy the STL objective while also being achievable in the presence44

of collision avoidance maneuvers and agent-to-agent interactions.45

Our contributions are as follows: 1) We propose a novel scalable GNN-based planner (GNN-ODE)46

trained on an STL objective to generate safe and achievable plans for multiple agents. 2) We demon-47

strate the effectiveness of our approach on a range of STL specifications and show that our method48

can scale to a large number of agents and complex specifications beyond existing methods that use49

a state-of-the-art MILP-based planner with an average 65% improved success rate.50

1.1 Related Work51

Symbolic methods have been part of a recent resurgence as neuro-symbolic algorithms [22, 23]52

which aspire to combine the generalizability of neural methods with the ability of most symbolic53

systems to be interpretable and modifiable by human users. Notably, there have been efforts to in-54

tegrate temporal logic constraints within learning-enabled controllers. In the field of Reinforcement55

Learning (RL), some examples of this are TLTL [24], which defines a reward function from a logic56

specification and reward shaping mechanisms, [25, 26] which create automata modeling a similar57

specification and augment RL-based algorithms used for control. This has been extended to the58

Multi-agent domain, which had recent work [27, 9] showing possibilities of coordinating multiple59

agents with diverging objectives, as well as the benefits of distributing specifications among agents60

in terms of scalability.61

A key aspect of scaling control to higher-dimensional environments and robots involves efficiently62

incorporating a high-level planner. This involves decomposing complex logic planning from control63

tasks, allowing each component to focus on its specific role. The high-level planner focuses on64

logic-level planning, ensuring that the robot’s actions adhere to complex specifications, such as those65

defined by STL. In contrast, the low-level controller acts as a tracker, executing the high-level plan66

accurately. Modern control methods have demonstrated this benefit as well from the burgeoning67

2

progress in Hierarchical RL [28, 29, 30, 31, 25] methods as well as the successful integration of68

classical planners with advanced control schemes, including RL controllers [32].69

Symbolic techniques have appeared in robot motion planning as well with the use of Signal Tem-70

poral Logic (STL) to specify objectives for multi-robot systems, which can then be solved by MILP71

solvers [16], graph-based algorithms [33] or sampling-based methods [34, 35]. Collision avoidance72

in these multi-robot systems is a challenging problem since one must also achieve the underlying73

objectives as well and a myriad of techniques [36, 37, 38, 21, 39] have attempted to handle this for74

general robot motion planning tasks. These existing methods, however, have not considered the gen-75

erality of symbolic methods in specifying these objectives or quickly fail to scale as the specification76

dimension, robot complexity and number of agents increases.77

2 Background78

Multi Agent Systems with Partial Observability We can represent a multi-agent system with79

N agents {1, 2, . . . N}. Each agent has its own state si(t) ∈ Si ⊂ Rn, can take an action80

ui(t) ∈ Ui ⊂ Rm, and the collective behavior of the agents is governed by a dynamics func-81

tion si(t + 1) = fi(si(t), ui(t)). For simplicity, we assume all agents have the same dynamics82

function fi = f , state space Si = S, and action space Ui = U . A trajectory τ is a sequence83

of states τ = (s̄(0), s̄(1), . . . , s̄(Th)) where Th is the time horizon, s̄(t) = (s1(t), . . . sN (t)),84

ū(t) = (u1(t), . . . uN (t)) and a policy πi is a function that maps the state of agent i to an ac-85

tion ui = πi(si). The state of the system is partially observable, meaning that each agent can only86

observe its own state and the states of other agents within its sensing range.87

Signal Temporal Logic Signal Temporal Logic (STL) integrates both first-order logic and time-88

dependent modifications of linear temporal logic operators. The essential logical operators include89

∧ (and), ¬ (not), ∨ (or), and ⇒ (implies). Time-dependent operators are ♢[a,b] (eventually between90

times a and b), □[a,b] (globally between times a and b), and U[a,b] (until between times a and b).91

STL formulas are defined as:92

ϕ := P | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ ψ | ♢[a,b]ϕ | □[a,b]ϕ | ϕ U[a,b]ψ,

where P is a predicate function mapping states to real values. Quantitative semantics [13, 40] of93

STL evaluate a robustness value, ρ(ϕ, τ), which measures how strongly a state trace τ satisfies or94

violates ϕ. This robustness metric is differentiable, allowing for direct optimization of STL formulas95

through differentiable planners like neural networks.96

Multi-agent Specification With regards to multi-agent systems withN agents, the MA-STL spec-97

ification Ψ is composed from N individual STL specifications
∧N

i=1 ϕi where ϕi associates an STL98

specification for a single agent with index i. The MA-STL specification Ψ is satisfied if all individual99

STL specifications are satisfied and the agents do not collide.100

Graphical Representation for Multi-Agent Systems Graph Neural Networks (GNNs) are adept101

at modeling multi-agent systems by representing agents and obstacles as vertices within a graph102

G = (V,E). Each vertex in V = Va ∪ Vo corresponds to either an agent or a static obstacle.103

Edges E encapsulate direct interactions between vertices, with specific emphasis on agent-to-agent104

and agent-to-obstacle connections. We adopt a distance-based adjacency criterion where an edge105

(vi, vj) ∈ E exists if the Euclidean distance between vertices vi and vj does not exceed a predefined106

threshold R, for capturing the local topology of agents within this range [38]. A GNN processes107

the graph to produce a global embedding representing the collective state of the system. This global108

state is further processed through specialized readout functions ri, tailored to extract and map the109

global embedding to a specific set of actions ui for each agent [39, 21, 38].110

Barrier Certificates Barrier certificates [41] are a useful technique to avoid robot collisions in111

MA systems [42] by forcing the state of the entire system to stay within the safe region. For a state112

space S ⊂ Rn, let Su ⊂ S be the unsafe set and Ss = S\Su the safe set, which contains the set113

3

of initial conditions S0 ⊂ Ss. Also, define the space of control actions as U ⊂ Rm. For a dynamic114

system ṡ(t) = f(s(t), u(t)), a control barrier function h : Rn 7→ R satisfies:115

h(s) ≥ 0 ∀s ∈ S0, h(s) < 0 ∀s ∈ Su, ∇sh · f(s, u) + α(h(s)) ≥ 0 ∀s ∈ s | h(s) ≥ 0. (1)

For a control policy (π : S → U) and CBF (h), if (s(0) ∈ s | h(s) ≥ 0) and the above conditions116

are satisfied with (u = π(x)), then (s(t) ∈ s | h(s) ≥ 0) for all t ∈ [0,∞). This implies that the117

state never enters the unsafe set (Su) under π (see [41]).118

Learning-based approaches for barrier certificates [37, 39, 38, 21] have been shown to scale in the119

number of agents beyond existing methods for known systems. Notably, a graphical perspective of120

the agents and their interactions can be used to model the system in a scalable manner (Sec. 4.3).121

3 Problem Statement122

Consider a MA-STL specification Ψ on N agents N = {1, 2, . . . , N}, where each agent is at a123

position pi(t) ∈ P ⊂ R
n with n being 2 or 3 for 2D or 3D environments respectively. Assume124

that each state si(t) of agent i can be directly mapped to its position pi(t), say the first n elements125

of si(t) by a function filterpi : S → P. Similar to Zhang et al. [21], we include a LiDAR126

based observation of nrays > 0 for each agent measuring the distance to the nearest obstacle in127

the environment with a sensing radius R > 0. The j-th ray of agent i is denoted as yi,j(t), where128

yi,j(t) ∈ R+ is the distance to the nearest obstacle in the direction of the j-th ray at time t.129

The MA-STL motion planning problem We now establish the problem of motion planning for130

MA-STL in multi-agent systems. Essentially, the objective is to identify a set of reference goals that131

when followed satisfy a given MA-STL specification, while ensuring that there are no collisions132

between the agents. Suppose there areN agents involved, and the time bound is denoted by Th. The133

planner πϕi
g generates a sequence of goals τgi = (gi(0), gi(1), . . . , gi(T)) for agent i with a given134

plan length T < Th. Each agent has a size radius represented by r, where r > 0. This means that135

when an agent is at position p ∈ W , it is entirely contained within a ball of radius r centered at p,136

denoted as Br(p). With these considerations, we can define the planning problem as follows:137

Definition 1 (Motion Planning in MA-STL) For a given MA-STL specification Ψ =
∧N

i=1 ϕi and138

a set of N agents N , the motion planning problem is finding a distributed control policy πi and a139

planner πϕi
g for each agent i such that the following conditions are satisfied for closed-loop trajec-140

tories of agents in N with length Th:141

• (Safety - Agents) For all t ∈ [0, Th], and for all i, j ∈ N where i ̸= j, ||pi(t)−pj(t)|| ≥ 2r.142

• (Safety - Obstacles) For all t ∈ [0, Th], and for all i ∈ N , yi,j(t) ≥ 2r for all j ∈ [nrays].143

• (STL Satisfaction) There exists t0, t1, . . . , tT such that ti ∈ {0, . . . , Th} and t0 < t1 <144

. . . < tT such that the closed-loop trajectories τ = (s(t0), s(t1), . . . , s(tT)) of the agents145

satisfy the MA-STL specification Ψ i.e. ρ(Ψ, τ) ≥ 0.146

• (Achievability) For all i ∈ N , given the goal trajectory τgi of length T from πϕi
g , the gap147

Dτgi
(τi) =

∑T
t′=0

∥∥filterpi
(si(tt′))− filterpi

(gi(t
′))

∥∥
2
< ϵ for a small ϵ ∈ R+.148

N Spec. 1 / Spec. 2 Planning Time (s)
3 1 seq / 2 seq 11 / 292
5 1 seq / 2 seq 211 / -

Table 1: Planning when considering disjoint time
or space [16], a PWL plan with K = 6 segments
(1 seq) / K = 10 segments (2 seq). The X
seq spec. has X sequential waypoints.

Scaling STL for Multi-agent Systems149

Given an MA-STL specification Ψ on a sys-150

tem of N -agents we would like to provide a151

decentralized algorithm to execute a policy sat-152

isfying the specification with high probability.153

While we might assume a plan-then-execute154

technique [16] that finds a Piece-Wise Linear155

(PWL) path for each agent with K segments,156

such an approach quickly fails to scale with157

specification complexity and number of agents158

when considering collisions between agents at planning time. We posit this is primarily due to159

its collision avoidance mechanism that introduces O(CN
2 ∗ K2) new variables, which quickly160

blows up (where CN
2 = N(N − 1)/2). Consider two goal regions A and B and a sequential161

STL specification requiring agents to visit A (viz. 1 seq) or to visit A then B (viz. 2 seq) while162

4

avoiding collisions. Table 1 demonstrates this by timing out (over 50 minutes) for a simple STL163

specification with N = 5 agents in a 2-D environment with Single Integrator dynamics as well as164

all specifications and number of agents considered in this work (Sec. 5, App. B) .165

Accounting for collision-avoidance independent of the objective is not novel [37, 39], but, as we166

argue in this paper, in order to satisfy an STL specification, one must account for the temporal167

nature of the specification simultaneously with performing any collision-avoidance maneuvers. An168

alternative, as we propose, is to plan for the objectives while adjusting for collision avoidance by169

means of an iterative training procedure involving the safety controller (such as GCBF+) and the170

planner.171

4 Approach172

Our approach integrates planning, control, and safety mechanisms in an end-to-end differentiable173

learning framework. We first introduce a differentiable STL framework using a neural network174

planner to maximize STL robustness (Sec. 4.1). For efficient multi-agent planning, we employ175

GNNs to model agent relationships and generate decentralized goal sequences (Sec. 4.2). To ensure176

collision avoidance, we define a safe set of states using GCBFs for robust control (Sec. 4.3). Finally,177

we discuss the training of our integrated system (Sec. 4.4).178

4.1 Differentiable Signal Temporal Logic for Planning179

Signal Temporal Logic (STL) provides a robustness metric for a given trajectory that quantifies180

the level of satisfaction of a specification ϕ defined using the STL language (Sec. 2). Consider a181

NN planner πϕi
g that takes as input the current state of the system and outputs a sequence of goals182

τgi = (gi(0), gi(1), . . . , gi(T)) for agent i with specification ϕi. We can define a loss function that183

attempts to maximize the STL robustness score for the specification ϕ, given the waypoints from the184

planner. Prior work [19, 40] has used the differentiability of this score function to directly regularize185

a planner’s waypoints for use by a given low-level controller πi(si|gi) which is goal-conditioned,186

i.e. targeted to reach the goal gi given the current state si of agent i.187

For the planner architecture, similar to Xiong et al. [19], we consider using πϕi
g to predict the devi-188

ation between subsequent waypoints ∆gi. Based on this, to maximize the probability of satisfying189

the STL specification given a controller πi, we define the loss function as:190

L
π
ϕi
g ,πi

= E
si∼S0,τgi∼π

ϕi
g (si),

τi∼πi(si,gi)

−λSTLρ(ϕi, τgi)︸ ︷︷ ︸
LSTL

+λachDτgi
(τi)︸ ︷︷ ︸

Lach

 (2)

191

Here we consider two loss components, the first being the STL robustness score ρ(ϕi, τgi) of the192

planned waypoints τgi and the second being the tracking error Dτgi
(τi) of the controller πi with193

respect to the planned waypoints. The coefficients λSTL, λach > 0 are hyperparameters that control194

the relative importance of the two loss components (LSTL and Lach) in the overall loss function.195

The STL Loss LSTL captures our objective, maximizing the STL robustness score of the planned196

waypoints τgi with respect to the specification ϕi. The achievable loss Lach on the other hand ensures197

that the controller πi can track the planned waypoints τgi using a distance metric Dτgi
(τi) (Defn.198

1) that extracts the positions from τi using filterpi and minimizes a normed distance between the199

two, i.e. Dτgi
(τi) =

∑T
t=0 ∥filterpi

(si(kt))− filterpi
(gi(t))∥2 where k > 0, k ∈ Z

+ is a200

fixed goal sampling rate during training such that kT = Th. In this paper, we consider the same201

specification ϕi = ϕ and use the same planner for all agents. This enables easy generalization to202

different numbers of agents during testing and allows for a more scalable approach to planning. We203

leave the question of how to support different specifications among agents for future work. This204

leads to our overall loss function for the planner and controller as Lπϕ
g ,π

=
∑N

i=1 Lπ
ϕi
g ,πi

.205

4.2 GNNs for Planning in Multi-Agent Systems206

Graphical models can be useful to scale collision avoidance in multi-agent systems [39, 21, 38] by207

modeling the system in a decentralized manner. Notably, by representing the agents as nodes and208

5

their interactions as edges, we can use Graph Neural Networks (GNNs) to process a graphical view209

of the system as described in Sec. 2 (Fig. 1).210

To handle the planning problem in multi-agent systems we describe the planner πϕ
g . We choose a211

GNN-based planner that takes as input the initial state of the system G(0) and outputs an initial goal212

gi(0) for agent i taking into account the relative positions of the agents. Next we feed this goal gi(0)213

into a 2-layer MLP to predict the deviation ∆gi. This process is repeated for T − 1 steps to generate214

a sequence of goals for the agent given the initial state. By using this GNN-based structure, we can215

get this sequence of goals τgi for each agent i in a single forward pass of the planner πϕ
g .216

As highlighted in Sec. 2, MA-STL can be thought of as independent single-agent STL specifications217

on the agents, albeit with an additional constraint on avoiding collisions between the agents. While218

collision avoidance during planning time is expensive (Sec. 3), we can attempt to plan for the219

objectives for a subset of the agents and use this plan with a safety scheme during run-time. Along220

these lines, during deployment, we use the GNN-ODE (Fig. 1) to generate a sequence of waypoints221

that we sequentially visit in a decentralized manner using the GCBF+ controller (Sec. 4.3). One222

should note this would not be straightforward if we had defined arbitrary STL specifications in the223

joint space of agents involving global coordination or synchronization of objectives [43, 9].224

However, because this may detract from the overall objective due to collision avoidance maneuvers225

causing deadlocks, we update the planner iteratively by sampling the environment as detailed in Sec.226

4.1 with the STL robustness score. In a sense, we “co-learn” the safety (GCBF+ controller, πi) and227

objective (GNN-ODE, πϕi
g) behavior which is a recurrent theme in recent work [19, 32] related to228

the safety of controllers in complex systems.229

4.3 Collision Avoidance in MA Systems230

Following [21], we define the safe set Ss ⊂ SN of an N -agent MAS as the set of MAS states s̄ that231

satisfy the safety properties in Problem 1, i.e.,232

Ss :=
{
s̄ ∈ SN

∣∣∣ (∥yi,j∥ > r, ∀i ∈ N ,∀j ∈ nrays

)∧(
min

i,j∈N ,i̸=j
∥pi − pj∥ > 2r

)}
. (3)

Then, the unsafe, set of the MAS Su = SN \Ss is defined as the complement of Ss. We now define233

the notion of a GCBF[21]:234

Definition 2 (GCBF) A continuously differentiable function h : SM → R is termed as a Graph235

CBF (GCBF) if there exists an extended class-K∞ function α and a control policy πi : SM → U236

for each agent i ∈ Va of the MAS such that, for all s̄ ∈ SN with N ≥M ,237

ḣ(s̄Ni) + α(h(s̄Ni)) ≥ 0, ∀i ∈ Va (4)

where for uj = πj(s̄Nj
) and set of neighbours Ni of agent i in the MAS within sensing radius R,238

we have239

ḣ(s̄Ni
) =

∑
j∈Ni

∂h(s̄Ni)

∂sj
f(sj , uj), (5)

From this definition, as a consequence of the results in Zhang et al. [21], if we find a control policy240

πi and GCBF h such that Eq. (4) holds for all agents i and all states s̄ ∈ Ss , then the MAS will241

never enter the unsafe set Su under the control policy πi.242

4.4 End-to-End Differentiable Learning for MA-STL243

By using the learning framework described in Sec. 4.2 and the safety mechanism in Sec. 4.3, we244

can train the planner and controller in an end-to-end differentiable manner using the loss function245

in Eq. (2) (Sec. 4.1). We use an iterative training loop to sample trajectories from the environment246

at different starting conditions and update the planner πϕ
g for a trained common GCBF+ controller247

πi = π using the loss Lπϕ
g ,π

.248

5 Experiment Setup249

Our experiments aim to validate the following two questions:250

6

Metric Planning Time (s) ↓ Finish Rate (%) ↑ Safety Rate (%) ↑ Success Rate (%) ↑ TtR (steps) ↓
Planner GNN-ODE STLPY GNN-ODE STLPY GNN-ODE STLPY GNN-ODE STLPY GNN-ODE STLPYSpec N

B
ra

nc
h 8 0.05 22.48 100.00 100.00 100.00 85.00 100.00 85.00 712.50 357.00

16 0.04 43.80 100.00 99.00 100.00 53.75 100.00 52.50 745.12 429.81
32 0.03 87.92 95.00 96.00 92.50 20.00 88.12 18.12 820.90 572.39

C
ov

er 8 0.02 10.40 100.00 95.00 100.00 97.50 100.00 95.00 1062.00 429.76
16 0.02 20.14 100.00 78.00 96.25 87.50 96.25 76.25 1124.25 536.33
32 0.03 40.19 99.00 80.00 85.00 56.88 84.38 53.75 1252.59 708.22

L
oo

p 8 0.02 26.16 100.00 98.00 100.00 82.50 100.00 80.00 1874.00 1095.29
16 0.02 52.79 100.00 99.00 97.50 67.50 97.50 66.25 1927.50 1301.54
32 0.04 111.62 99.00 100.00 86.25 38.75 85.62 38.75 2110.88 1598.19

Se
q.

8 0.07 3.46 95.00 98.00 95.00 100.00 95.00 97.50 988.64 637.11
16 0.07 6.96 90.00 89.00 93.75 90.00 86.25 85.00 1173.44 785.97
32 0.08 13.62 89.00 84.00 76.25 64.38 66.88 59.38 1277.91 1013.90

Table 2: Performance of the two planning schemes with the number of agents (N) and specification
complexity for the DubinsCar Environment. We note an average 65% improved success rate and
highlight the best result in bold.

• How scalable is a neural STL planner over competing methods in terms of the number of251

agents and specification complexity?252

• How do the distinct components of our planner (GNN and ODE) help with scalability?253

To demonstrate the robustness of our method to various specifications and agent models we execute254

our experiments on the following robot benchmarks: 2D single integrator dynamics (App. C.1), 2D255

non-linear Dubins Car model (Table 2), 2D Double Integrator dynamics (App. C.3) and a real-world256

3D drone quadcopter setup moving in a fixed 2D plane (App. C.4).257

Our framework was built using JAX [44] based off GCBF+ [21] (Sec. 4.3) with all comparisons258

using this underlying collision avoidance controller. To demonstrate the effectiveness of our method,259

we compare it against a state-of-the-art MILP-based planner (STLPY [17], Table 2) and an ablation260

of our planner without the GNN component (labeled ODE, Table 3).261

We evaluate the planner on a range of specifications: seq, cover, loop and branch. These STL262

specifications can be drawn to parallels in the real-world. A seq task is akin to a set of drones that263

need to visit a series of locations in a specific order at given time intervals for logging time-sensitive264

information. The cover task depicts a scenario where each drone measures a different sensor reading265

but must all cover the same locations within a time interval to consolidate information. The loop task266

captures a set of surveillance drones patrolling the same areas. Lastly, consider a scenario where267

drones are grouped into two separate rooms with two goals present in each. Here a branch task268

could represent a common specification applied to each agent that they must visit the goals of a269

particular room. For a more formal description of the specifications, refer to Appendix B.270

We sampled 5 random initial seeds for each experiment and report the mean planning time (in271

seconds), the percentage of runs in which the specification was satisfied (Finish Rate), the percentage272

of runs where the agent was safe (i.e. did not collide), the percentage of successful runs for each273

specification where the STL specification was satisfied and no collisions occurred, and time-to-reach274

(TtR) in number of steps (i.e. how long it took for the successful runs to complete the task).275

6 Results276

Our results (Table 2) demonstrate how differentiable STL can be used to ensure agents achieve277

complex objectives while avoiding collisions in multi-agent systems.278

Scalability in number of agents We first evaluate the scalability of our approach in the number279

of agents (N) for the non-linear DubinsCar environment. From the results, we observe that the280

success rate decreases gradually as the number of agents increases, which is expected as the number281

of agents increases the complexity of the problem. The results show that the single agent view282

of STLPY proves unsuccessful especially in the N = 32 case where agent interactions are more283

prevalent. Notably our approach has a planning time that is 70-1000x faster than the MILP-based284

planner (STLPY) and does not blow up when considering a larger number of agents N .285

7

Metric Finish Rate (%) ↑ Safety Rate (%) ↑ Success Rate (%) ↑ TtR (steps) ↓

Spec N
Percentage

Change ODE
Percentage

Change ODE
Percentage

Change ODE
Percentage

Change ODE

B
ra

nc
h 8 -2.00 98.00 0.00 100.00 -2.50 97.50 -26.01 527.21

16 -4.00 96.00 -2.50 97.50 -6.25 93.75 -24.86 559.88
32 0.00 95.00 -8.78 84.38 -7.08 81.88 -18.18 671.66

C
ov

er 8 0.00 100.00 0.00 100.00 0.00 100.00 -28.19 762.57
16 0.00 100.00 0.00 96.25 0.00 96.25 -28.58 802.95
32 0.00 99.00 7.35 91.25 7.40 90.62 -28.48 895.88

L
oo

p 8 0.00 100.00 0.00 100.00 0.00 100.00 -16.30 1568.57
16 0.00 100.00 -11.54 86.25 -11.54 86.25 -17.11 1601.03
32 0.00 99.00 0.00 86.25 0.74 86.25 -13.85 1818.59

Se
q.

8 -26.32 70.00 5.26 100.00 -26.32 70.00 31.34 1298.50
16 -32.22 61.00 -1.33 92.50 -28.99 61.25 15.30 1352.94
32 -47.19 47.00 26.23 96.25 -28.98 47.50 7.54 1374.23

Table 3: Considering an ablation without the GNN module for the DubinsCar Environment at vari-
ous scales and reporting the percentage change in values. Planning times are comparable.

Scalability in specification complexity For certain specifications such as branch and loop, we286

observe that the MILP planner computation time is significant which can add up over different agent287

initializations. In contrast, our planner is able to generate a solution for all the specifications quickly288

and consistently for different agent initial positions, motivating our learning-based approach. We289

further note the effect in TtR when using our algorithm. We rationalize this trade-off because our290

method finds longer paths that allow goals to be reached by the GCBF+ controller, which is trained291

to avoid other agents. This inherently reduces the number of collisions which is often a greater292

priority. From our ablation study (Table 3) we note the impact of the GNN module especially in293

terms of a 28% impact in success rate for certain specifications such as seq which require increased294

coordination among agents. We can further reason that the impact in cover and loop of the GNN295

module is not as great since agents are not required to reach the goals within a strict order and thus296

require less coordination. With regards to the lower TtR of the successful runs, the lack of a GNN297

module may yield plans that can satisfy the specification efficiently but fail in terms of coordination298

between agents (affecting the overall success rate).299

7 Limitations300

Model-based learning While a model-free approach to collision-avoidance [45, 32] would be301

more amenable to handle unknown environment dynamics, our approach is inherently model-based302

(as is GCBF [38, 21], MACBF [37] and CAM [39]). This is primarily due to the underlying con-303

troller and GCBF (akin to a barrier certificate), using the next state of the system while calculating304

the derivative for use in the loss function.305

Map Complexity, Homogeneity Additionally, since the approach is decentralized, complex maps306

requiring communication and coordination between agents may cause safety issues. As mentioned in307

Zhang et al. [21], it may be hard in dense regions to act in a decentralized manner thus necessitating308

the use of inter-agent communication. We have considered the homogeneous case in this work,309

where all agents have the same dynamics and STL specifications. However, in the heterogeneous310

case, agents may have different dynamics and STL specifications thus needing a more complex311

controller and a planner capable of generalizing to multiple goal positions or STL specifications. Our312

planner does not consider obstacles directly, although as demonstrated in the Appendix (Tables 5, 6,313

7), the GCBF+ controller to an extent provides inherent collision avoidance capabilities. Finally, the314

approach is limited by the complexity of the environment and the number of agents. While we have315

shown that the approach scales well with the number of agents, the complexity of the environment316

and the number of obstacles may cause the planner to fail to find a achievable plan.317

8 Conclusion318

In this work, we have presented a novel approach to planning for multi-agent systems with Sig-319

nal Temporal Logic specifications. Primarily we have shown that by using a differentiable STL320

robustness metric, we can optimize for the satisfaction of complex temporal specifications given a321

controller with MA collision avoidance capabilities. We demonstrate that by training a GNN-ODE322

planner with a carefully constructed loss function we can overcome the limitations of the plan-then-323

execute approach and scale to complex specifications and large numbers of agents.324

8

References325

[1] K. Garg, S. Zhang, O. So, C. Dawson, and C. Fan. Learning Safe Control for Multi-Robot326

Systems: Methods, Verification, and Open Challenges, Nov. 2023. URL http://arxiv.327

org/abs/2311.13714. arXiv:2311.13714 [cs, eess, math].328

[2] T. Huang, S. Koenig, and B. Dilkina. Learning to resolve conflicts for multi-agent path finding329

with conflict-based search. Proceedings of the AAAI Conference on Artificial Intelligence, 35330

(13):11246–11253, May 2021. doi:10.1609/aaai.v35i13.17341. URL https://ojs.aaai.331

org/index.php/AAAI/article/view/17341.332

[3] M. Damani, Z. Luo, E. Wenzel, and G. Sartoretti. Primal2: Pathfinding via reinforcement333

and imitation multi-agent learning - lifelong. IEEE Robotics and Automation Letters, 6(2):334

2666–2673, 2021. doi:10.1109/LRA.2021.3062803.335

[4] Y. Li, X. Zhang, T. Zeng, J. Duan, C. Wu, D. Wu, and X. Chen. Task placement and re-336

source allocation for edge machine learning: A gnn-based multi-agent reinforcement learning337

paradigm. IEEE Transactions on Parallel and Distributed Systems, 34(12):3073–3089, dec338

2023. ISSN 1558-2183. doi:10.1109/TPDS.2023.3313779.339

[5] J. Wang, S. Yang, Z. An, S. Han, Z. Zhang, R. Mangharam, M. Ma, and F. Miao. Multi-340

agent reinforcement learning guided by signal temporal logic specifications. arXiv preprint341

arXiv:2306.06808, 2023.342

[6] A. L. Forsberg, A. Nikou, A. V. Feljan, and J. Tumova. Multi-agent transformer-accelerated rl343

for satisfaction of stl specifications, 2024.344

[7] N. Zhang, W. Liu, and C. Belta. Distributed control using reinforcement learning with345

temporal-logic-based reward shaping. In R. Firoozi, N. Mehr, E. Yel, R. Antonova, J. Bohg,346

M. Schwager, and M. Kochenderfer, editors, Proceedings of The 4th Annual Learning for Dy-347

namics and Control Conference, volume 168 of Proceedings of Machine Learning Research,348

pages 751–762. PMLR, 23–24 Jun 2022. URL https://proceedings.mlr.press/v168/349

zhang22b.html.350

[8] L. Hammond, A. Abate, J. Gutierrez, and M. Wooldridge. Multi-Agent Reinforcement351

Learning with Temporal Logic Specifications. arXiv:2102.00582 [cs], Feb. 2021. URL352

http://arxiv.org/abs/2102.00582. arXiv: 2102.00582.353

[9] J. Eappen and S. Jagannathan. DistSPECTRL: Distributing specifications in multi-agent re-354

inforcement learning systems. In European Conference on Machine Learning and Principles355

and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2022. ISBN 978-3-031-356

26412-2.357

[10] C. E. Tuncali, G. Fainekos, D. V. Prokhorov, H. Ito, and J. Kapinski. Requirements-driven358

test generation for autonomous vehicles with machine learning components. IEEE Transac-359

tions on Intelligent Vehicles, 5:265–280, 2019. URL https://api.semanticscholar.org/360

CorpusID:199442111.361

[11] Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam. Fly-by-logic: Control of multi-drone362

fleets with temporal logic objectives. 2018 ACM/IEEE 9th International Conference on Cyber-363

Physical Systems (ICCPS), pages 186–197, 2018. URL https://api.semanticscholar.364

org/CorpusID:263896988.365

[12] R. Yan, Z. Xu, and A. A. Julius. Swarm signal temporal logic inference for swarm behavior366

analysis. IEEE Robotics and Automation Letters, 4:3021–3028, 2019. URL https://api.367

semanticscholar.org/CorpusID:195832808.368

[13] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In Formal369

Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages 152–166.370

Springer, 2004.371

[14] J. Gutierrez, L. Hammond, A. W. Lin, M. Najib, and M. Wooldridge. Rational Verification for372

Probabilistic Systems. In Proceedings of the 18th International Conference on Principles of373

Knowledge Representation and Reasoning, pages 312–322, 11 2021. doi:10.24963/kr.2021/30.374

URL https://doi.org/10.24963/kr.2021/30.375

9

http://arxiv.org/abs/2311.13714
http://arxiv.org/abs/2311.13714
http://arxiv.org/abs/2311.13714
http://dx.doi.org/10.1609/aaai.v35i13.17341
https://ojs.aaai.org/index.php/AAAI/article/view/17341
https://ojs.aaai.org/index.php/AAAI/article/view/17341
https://ojs.aaai.org/index.php/AAAI/article/view/17341
http://dx.doi.org/10.1109/LRA.2021.3062803
http://dx.doi.org/10.1109/TPDS.2023.3313779
https://proceedings.mlr.press/v168/zhang22b.html
https://proceedings.mlr.press/v168/zhang22b.html
https://proceedings.mlr.press/v168/zhang22b.html
http://arxiv.org/abs/2102.00582
https://api.semanticscholar.org/CorpusID:199442111
https://api.semanticscholar.org/CorpusID:199442111
https://api.semanticscholar.org/CorpusID:199442111
https://api.semanticscholar.org/CorpusID:263896988
https://api.semanticscholar.org/CorpusID:263896988
https://api.semanticscholar.org/CorpusID:263896988
https://api.semanticscholar.org/CorpusID:195832808
https://api.semanticscholar.org/CorpusID:195832808
https://api.semanticscholar.org/CorpusID:195832808
http://dx.doi.org/10.24963/kr.2021/30
https://doi.org/10.24963/kr.2021/30

[15] J. Tumova and D. V. Dimarogonas. Multi-agent planning under local ltl specifications and376

event-based synchronization. Automatica, 70(C):239–248, aug 2016. ISSN 0005-1098. doi:10.377

1016/j.automatica.2016.04.006. URL https://doi.org/10.1016/j.automatica.2016.378

04.006.379

[16] D. Sun, J. Chen, S. Mitra, and C. Fan. Multi-agent motion planning from signal temporal logic380

specifications. IEEE Robotics and Automation Letters, 7(2):3451–3458, 2022.381

[17] V. Kurtz and H. Lin. Mixed-integer programming for signal temporal logic with fewer binary382

variables. IEEE Control Systems Letters, 2022.383

[18] P. Das, A. Dasgupta, and D. Dalal. ODEsolvers are also wayfinders: Neural ODEs for multi-384

agent pathplanning. In The Symbiosis of Deep Learning and Differential Equations III, 2023.385

URL https://openreview.net/forum?id=rnhkE2vb4r.386

[19] Z. Xiong, D. Lawson, J. Eappen, A. H. Qureshi, and S. Jagannathan. Co-learning planning and387

control policies constrained by differentiable logic specifications. In 2024 IEEE International388

Conference on Robotics and Automation (ICRA). IEEE, 2024.389

[20] F. Nawaz, T. Li, N. Matni, and N. Figueroa. Learning complex motion plans using neural odes390

with safety and stability guarantees. In 2024 IEEE International Conference on Robotics and391

Automation (ICRA), pages 1–8. IEEE, 2024.392

[21] S. Zhang, O. So, K. Garg, and C. Fan. GCBF+: A Neural Graph Control Barrier Function393

Framework for Distributed Safe Multi-Agent Control, Jan. 2024. URL http://arxiv.org/394

abs/2401.14554. arXiv:2401.14554 [cs, math].395

[22] S. Chaudhuri, K. Ellis, O. Polozov, R. Singh, A. Solar-Lezama, and Y. Yue. Neurosym-396

bolic programming. Foundations and Trends® in Programming Languages, 7(3):158–243,397

2021. ISSN 2325-1107. doi:10.1561/2500000049. URL http://dx.doi.org/10.1561/398

2500000049.399

[23] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese. Neural task programming:400

Learning to generalize across hierarchical tasks. In 2018 IEEE International Conference on401

Robotics and Automation (ICRA), pages 1–8. IEEE, 2018.402

[24] X. Li, C.-I. Vasile, and C. Belta. Reinforcement learning with temporal logic rewards. In 2017403

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3834–404

3839. IEEE, 2017.405

[25] R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. Reward machines: Exploiting406

reward function structure in reinforcement learning. Journal of Artificial Intelligence Research,407

73:173–208, 2022.408

[26] K. Jothimurugan, R. Alur, and O. Bastani. A composable specification language for reinforce-409

ment learning tasks. In NeurIPS. 2019.410

[27] C. Neary, Z. Xu, B. Wu, and U. Topcu. Reward machines for cooperative multi-agent rein-411

forcement learning. In AAMAS, 2021. ISBN 9781450383073.412

[28] J. Yang, I. Borovikov, and H. Zha. Hierarchical cooperative multi-agent reinforcement learning413

with skill discovery. In Proceedings of the 19th International Conference on Autonomous414

Agents and MultiAgent Systems, pages 1566–1574, 2020.415

[29] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.416

In NeurIPS, 2018.417

[30] B. Haworth, G. Berseth, S. Moon, P. Faloutsos, and M. Kapadia. Deep integration of physical418

humanoid control and crowd navigation. In Motion, Interaction and Games, 2020. ISBN419

978-1-4503-8171-0.420

[31] A. Vezhnevets, Y. Wu, M. Eckstein, R. Leblond, and J. Z. Leibo. Options as responses:421

Grounding behavioural hierarchies in multi-agent reinforcement learning. In International422

Conference on Machine Learning, pages 9733–9742. PMLR, 2020.423

10

http://dx.doi.org/10.1016/j.automatica.2016.04.006
http://dx.doi.org/10.1016/j.automatica.2016.04.006
http://dx.doi.org/10.1016/j.automatica.2016.04.006
https://doi.org/10.1016/j.automatica.2016.04.006
https://doi.org/10.1016/j.automatica.2016.04.006
https://doi.org/10.1016/j.automatica.2016.04.006
https://openreview.net/forum?id=rnhkE2vb4r
http://arxiv.org/abs/2401.14554
http://arxiv.org/abs/2401.14554
http://arxiv.org/abs/2401.14554
http://dx.doi.org/10.1561/2500000049
http://dx.doi.org/10.1561/2500000049
http://dx.doi.org/10.1561/2500000049
http://dx.doi.org/10.1561/2500000049

[32] Z. Xiong, J. Eappen, A. H. Qureshi, and S. Jagannathan. Model-free neural lyapunov control424

for safe robot navigation. In 2022 IEEE/RSJ International Conference on Intelligent Robots425

and Systems (IROS), pages 5572–5579, 2022. doi:10.1109/IROS47612.2022.9981632.426

[33] A. T. Buyukkocak, D. Aksaray, and Y. Yazıcıoğlu. Planning of heterogeneous multi-agent427

systems under signal temporal logic specifications with integral predicates. IEEE Robotics428

and Automation Letters, 6(2):1375–1382, 2021. doi:10.1109/LRA.2021.3057049.429

[34] Y. Kantaros and M. M. Zavlanos. Stylus*: A temporal logic optimal control synthesis algo-430

rithm for large-scale multi-robot systems. The International Journal of Robotics Research,431

39(7):812–836, 2020. doi:10.1177/0278364920913922. URL https://doi.org/10.1177/432

0278364920913922.433

[35] C. I. Vasile, X. Li, and C. Belta. Reactive sampling-based path planning with temporal logic434

specifications. The International Journal of Robotics Research, 39(8):1002–1028, 2020. doi:435

10.1177/0278364920918919. URL https://doi.org/10.1177/0278364920918919.436

[36] J. Chen, J. Li, C. Fan, and B. C. Williams. Scalable and safe multi-agent motion planning437

with nonlinear dynamics and bounded disturbances. In Proceedings of the Thirty-Fifth AAAI438

Conference on Artificial Intelligence (AAAI 2021), 2021.439

[37] Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan. Learning safe multi-agent control with decen-440

tralized neural barrier certificates. In International Conference on Learning Representations,441

2021. URL https://openreview.net/forum?id=P6_q1BRxY8Q.442

[38] S. Zhang, K. Garg, and C. Fan. Neural Graph Control Barrier Functions Guided Distributed443

Collision-avoidance Multi-agent Control. Aug. 2023. URL https://openreview.net/444

forum?id=VscdYkKgwdH.445

[39] C. Yu, H. Yu, and S. Gao. Learning control admissibility models with graph neural networks446

for multi-agent navigation. In 6th Annual Conference on Robot Learning, 2022. URL https:447

//openreview.net/forum?id=xC-68ANJeK_.448

[40] K. Leung, N. Aréchiga, and M. Pavone. Backpropagation through signal temporal logic spec-449

ifications: Infusing logical structure into gradient-based methods. Int. Journal of Robotics450

Research, 2022.451

[41] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier function based quadratic452

programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8):3861–453

3876, 2017. doi:10.1109/TAC.2016.2638961.454

[42] L. Wang, A. D. Ames, and M. Egerstedt. Safety Barrier Certificates for Collisions-Free Multi-455

robot Systems. IEEE Transactions on Robotics, 33(3):661–674, June 2017. ISSN 1941-0468.456

doi:10.1109/TRO.2017.2659727. Conference Name: IEEE Transactions on Robotics.457

[43] A. T. Buyukkocak, D. Aksaray, and Y. Yazıcıoğlu. Planning of heterogeneous multi-agent458

systems under signal temporal logic specifications with integral predicates. IEEE Robotics459

and Automation Letters, 6(2):1375–1382, 2021. doi:10.1109/LRA.2021.3057049.460

[44] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,461

A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transfor-462

mations of Python+NumPy programs, 2018. URL http://github.com/google/jax.463

[45] S. Wang, L. Fengb, X. Zheng, Y. Cao, O. O. Oseni, H. Xu, T. Zhang, and Y. Gao. A pol-464

icy optimization method towards optimal-time stability. In 7th Annual Conference on Robot465

Learning, 2023. URL https://openreview.net/forum?id=rOCWUmMBSnH.466

11

http://dx.doi.org/10.1109/IROS47612.2022.9981632
http://dx.doi.org/10.1109/LRA.2021.3057049
http://dx.doi.org/10.1177/0278364920913922
https://doi.org/10.1177/0278364920913922
https://doi.org/10.1177/0278364920913922
https://doi.org/10.1177/0278364920913922
http://dx.doi.org/10.1177/0278364920918919
http://dx.doi.org/10.1177/0278364920918919
http://dx.doi.org/10.1177/0278364920918919
https://doi.org/10.1177/0278364920918919
https://openreview.net/forum?id=P6_q1BRxY8Q
https://openreview.net/forum?id=VscdYkKgwdH
https://openreview.net/forum?id=VscdYkKgwdH
https://openreview.net/forum?id=VscdYkKgwdH
https://openreview.net/forum?id=xC-68ANJeK_
https://openreview.net/forum?id=xC-68ANJeK_
https://openreview.net/forum?id=xC-68ANJeK_
http://dx.doi.org/10.1109/TAC.2016.2638961
http://dx.doi.org/10.1109/TRO.2017.2659727
http://dx.doi.org/10.1109/LRA.2021.3057049
http://github.com/google/jax
https://openreview.net/forum?id=rOCWUmMBSnH

Contents467

1 Introduction 1468

1.1 Related Work . 2469

2 Background 3470

3 Problem Statement 4471

4 Approach 5472

4.1 Differentiable Signal Temporal Logic for Planning 5473

4.2 GNNs for Planning in Multi-Agent Systems . 5474

4.3 Collision Avoidance in MA Systems . 6475

4.4 End-to-End Differentiable Learning for MA-STL 6476

5 Experiment Setup 6477

6 Results 7478

7 Limitations 8479

8 Conclusion 8480

A Implementation Details 13481

A.1 Environment Details . 13482

B STL Specifications 14483

C Additional Experiments 14484

C.1 SingleIntegrator Environment . 14485

C.2 DubinsCar Environment . 14486

C.3 DoubleIntegrator Environment . 14487

C.4 Real-world Drone Experiments . 15488

D Hardness of MA-STL specifications 16489

12

A Implementation Details490

Node features and edge features Following Zhang et al. [21], the node features vi ∈ Rρv encode491

information specific to each node in our graph observation. Here, we set ρv = 3 and use the node492

features vi to one-hot encode the type of the node as either an agent node, goal node or LiDAR ray493

hitting point node. The edge features eij ∈ Rρe , where ρe > 0 is the edge dimension, are defined as494

the information shared from node j to the agent at node i, which depends on the states of the nodes495

i and j. Since the safety objective depends on the relative positions, one component of the edge496

features is pij = pj − pi. The remaining edge features can be set depending on system dynamics,497

such as, relative velocities for double integrator dynamics.498

Computation Resources All training procedures were ran on an AWS g4dn.xlarge instance or499

equivalent with 4 Intel Xeon-based CPU Cores and 16 GB of RAM with an Nvidia T4 GPU.500

Evaluation Details Since we consider objectives that require agents to navigate close to one an-501

other at/near termination subsequently blocking the goal locations (A,B,C,D in Table 4), safety rates502

were reported until the point an agent had completed their plan. This can be thought of as an al-503

ternative to the agents navigating to a ‘safe’ position upon completing their specification/plan. In504

a drone setting, we captured this behavior by landing the drones at an agent-specific location upon505

completing their specification.506

Planner Details For all plans, at any time step t, planning step t′, each agent i proceeded to507

the next waypoint gi(t′ + 1) only when they reached goal gi(t′) within some threshold distance508

rgoal = 0.3 at a time t ≥ k(t′+1) where k is the goal sampling interval (Sec. 4.1). This allowed all509

agents to reach the waypoints in the plan without a strict time restriction on the plan duration. The510

asynchronous nature of our plans (among agents) fits our problem description (Defn. 1), specifically511

the STL Satisfaction criteria. We leave the setting where agents follow a synchronized plan to future512

work. For a given plan of length T with goal sample interval k (values in Table 4), the maximum513

trajectory length horizon during evaluation Th was 5kT .514

A.1 Environment Details515

Here, we provide the details of each experiment environment as taken from Zhang et al. [21]. We516

used a common simulation time step δt = 0.03 across all three environments.517

SingleIntegrator We use single integrator dynamics as the base environment to verify the correct-518

ness of the implementation and to show the performance of the methods when there are no control519

input limits. The dynamics is given as ẋi = vi, where xi = [pxi , p
y
i]

⊤ ∈ R2 is the position of the520

i-th agent and vi = [vxi , v
y
i]

⊤ its velocity. In this environment, we use eij = xj − xi as the edge521

information.522

DoubleIntegrator We use double integrator dynamics for this environment. The state of agent i523

is given by xi = [pxi , p
y
i , v

x
i , v

y
i]

⊤, where [pxi , p
y
i]

⊤ is the position of the agent, and [vxi , v
y
i]

⊤ is the524

velocity. The action of agent i is given by ui = [axi , a
y
i]

⊤, i.e., the acceleration. The dynamics525

function is given by:526

ẋi = [vxi , v
y
i , a

x
i , a

y
i]

⊤ (6)

In this environment, we use eij = xj − xi as the edge information.527

DubinsCar We use the standard Dubin’s car model in this environment. The state of agent i is528

given by xi = [pxi , p
y
i , θi, vi]

⊤, where [pxi , p
y
i]

⊤ is the position of the agent, θi is the heading, and529

vi is the speed. The action of agent i is given by ui = [ωi, ai]
⊤ containing angular velocity and530

acceleration magnitude. The dynamics function is given by:531

ẋi = [vi cos(θi), vi sin(θi), ωi, ai]
⊤ (7)

We use eij = ej(xj) − ei(xi) as the edge information, where ei(xi) =532

[pxi , p
y
i , vi cos(θi), vi sin(θi)]

⊤.533

13

B STL Specifications534

We formally define the Signal Temporal Logic (STL) specifications used in the experiments in Table535

4. The specifications include a sequential waypoint task (seq), a coverage task (cover), a loop task536

(loop), and a branching task (branch). The specifications are defined over a time horizon T and are537

satisfied if the agents satisfy the corresponding STL formula. We use four markers A, B, C, and538

D to represent rectangular predicates centered around x-y coordinates [0, 0], [2, 2], [2, 0], and [0, 2],539

respectively. The predicates are defined as pi = dist(si, pi) ≤ 1.0 where dist(si, pi) is the L1-norm540

(| · |1) distance between the agent i’s state si and the predicate pi.541

Spec. Description Formula T k
seq Sequential of goals ♢[0,T/3](A) ∧ ♢[T/3,2T/3](B) ∧ ♢[2T/3,T](C) 30 20

cover Coverage over goals ♢[0,T](A) ∧ ♢[0,T](B) ∧ ♢[0,T](C) 15 20
loop Loop over goals □[0,T/2]

(
♢[0,T/2](A) ∧ ♢[0,T/2](B)

)
30 20

branch Branching
(
♢[0,T](A) ∧ ♢[0,T](B)

)
∨
(
♢[0,T](C) ∧ ♢[0,T](D)

)
20 10

Table 4: STL specifications used in the experiments. T and k are the specification lengths and goal
sample intervals respectively.

C Additional Experiments542

In Tables 5, 6 and 7 we show results for the various environments and obstacle scenarios. While543

our GNN-ODE has an initial GNN module which can observe these obstacles, and is also trained544

to generate initial goals that are ‘achievable’, the GNN-ODE is inherently limited to only consider545

obstacles within the sensing radius R of the agents at planning time (i.e. t = 0). As in Zhang546

et al. [21], the GCBF+ controller is trained to avoid obstacles. Thus, with a robust plan, we can547

achieve reasonably high success rates in this setting as well due to the run-time collision avoidance548

maneuvers. Planning times are nearly similar to the results in Sec. 6 (Table 2) likely because549

our learning-based planners do not use environment dynamics at inference time and should have a550

similar computation cost after training is complete. For this reason, to avoid clutter, we omit this551

column in the following tables. We include results from the ODE ablation of our method as shown552

in Table 3 under the column ‘ODE’. Additional simulation videos are hosted online1.553

C.1 SingleIntegrator Environment554

In Table 5 we contain the results for various combinations of specifications, 8 sampled obstacle555

positions (marked ’Y’ if present, ’N’ otherwise), and number of agents in the SingleIntegrator En-556

vironment. We observe that the GNN-ODE planner outperforms the other planners in terms of557

planning time and success rate across all the specifications and obstacles. We note the average im-558

provement in success rate of 10% for our GNN-ODE planner over the MILP planner which is not559

as large as the improvement in the non-linear DubinsCar environment (Table 2, 6). This is due to560

the SingleIntegrator environment being less constrained and the MILP planner being able to find a561

feasible solution more easily.562

C.2 DubinsCar Environment563

In Table 6 we contain the results for various combinations of specifications, 8 sampled obstacle po-564

sitions (marked ’Y’ if present, ’N’ otherwise), and number of agents in the DubinsCar Environment.565

On average, with obstacles present as well we get a 69% improvement in success rate for our GNN-566

ODE planner over the MILP planner, primarly due to the non-linear dynamics of the DubinsCar567

environment being challenging for the collision avoidance controller.568

C.3 DoubleIntegrator Environment569

In Table 7 we contain the results for various combinations of specifications, 8 sampled obstacle (Obs)570

positions (marked ’Y’ if present, ’N’ otherwise), and number of agents (N) in the DoubleIntegrator571

1Site: https://anon-ml-git.github.io/ma-stl.github.io/

14

https://anon-ml-git.github.io/ma-stl.github.io/

Metric Finish Rate ↑ Safety Rate ↑ Success Rate ↑ TtR ↓
Planner GNN-ODE ODE STLPY GNN-ODE ODE STLPY GNN-ODE ODE STLPY GNN-ODE ODE STLPYSpec Obs N

B
ra

nc
h

N
8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1000.75 396.50 257.25
16 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1214.50 443.00 280.87
32 98.00 100.00 99.00 100.00 100.00 98.75 97.50 100.00 97.50 664.71 1005.81 320.23

Y
8 100.00 93.00 98.00 100.00 100.00 95.00 100.00 92.50 92.50 1015.75 408.95 292.57
16 99.00 96.00 94.00 97.50 100.00 95.00 96.25 96.25 88.75 1168.80 471.30 314.99
32 97.00 98.00 94.00 98.12 100.00 92.50 95.00 97.50 86.88 1812.59 1018.77 356.09

C
ov

er

N
8 98.00 100.00 95.00 100.00 100.00 100.00 97.50 100.00 95.00 884.86 653.00 342.93
16 99.00 100.00 90.00 100.00 100.00 100.00 98.75 100.00 90.00 1024.40 758.25 364.56
32 98.00 98.00 96.00 100.00 100.00 97.50 98.12 97.50 93.12 1409.89 1237.41 447.66

Y
8 95.00 95.00 88.00 100.00 100.00 97.50 95.00 95.00 87.50 1068.46 744.83 356.17
16 96.00 98.00 91.00 100.00 100.00 97.50 96.25 97.50 91.25 1040.65 1043.66 386.12
32 96.00 98.00 91.00 100.00 99.38 96.88 96.25 97.50 88.75 1491.06 1297.69 488.79

L
oo

p

N
8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1890.25 2506.00 751.00
16 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1445.75 2120.12 855.38
32 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 2332.19 2635.75 1062.25

Y
8 100.00 100.00 90.00 95.00 100.00 92.50 95.00 100.00 82.50 1434.00 2112.25 841.32
16 99.00 96.00 93.00 96.25 100.00 96.25 95.00 96.25 88.75 2091.53 2315.44 927.83
32 99.00 99.00 96.00 96.25 99.38 96.25 95.00 98.75 91.88 2453.19 2769.78 1137.71

Se
qu

en
ce

N
8 100.00 53.00 90.00 100.00 100.00 100.00 100.00 52.50 90.00 905.50 1072.30 434.44
16 99.00 41.00 73.00 100.00 100.00 100.00 98.75 41.25 72.50 761.08 1119.07 470.17
32 98.00 33.00 66.00 100.00 100.00 100.00 98.12 33.12 65.62 897.41 1464.39 661.21

Y
8 98.00 45.00 88.00 100.00 100.00 100.00 97.50 45.00 87.50 731.43 1239.50 470.39
16 98.00 36.00 62.00 100.00 100.00 100.00 97.50 36.25 62.50 1030.83 1272.50 548.39
32 98.00 28.00 74.00 100.00 100.00 99.38 98.12 28.12 73.12 1186.13 1649.19 797.86

Table 5: Performance of different planner modules with the scalability in the number of agents (N)
and specification complexity for the SingleIntegrator Environment.

Metric Finish Rate ↑ Safety Rate ↑ Success Rate ↑ TtR ↓
Planner GNN-ODE ODE STLPY GNN-ODE ODE STLPY GNN-ODE ODE STLPY GNN-ODE ODE STLPYSpec Obs N

B
ra

nc
h N 8 100.00 98.00 100.00 100.00 100.00 85.00 100.00 97.50 85.00 1768.75 525.57 357.00

16 100.00 96.00 99.00 100.00 97.50 53.75 100.00 93.75 52.50 1856.12 565.09 429.81
32 95.00 94.00 96.00 92.50 86.25 20.00 88.12 82.50 18.12 820.90 674.52 572.39

Y 8 100.00 100.00 95.00 97.50 97.50 67.50 97.50 97.50 62.50 728.50 562.79 373.89
16 99.00 95.00 95.00 92.50 90.00 47.50 91.25 86.25 45.00 1828.95 595.29 474.16
32 95.00 85.00 90.00 86.88 74.38 32.50 81.88 63.75 25.00 841.66 708.91 586.89

C
ov

er N 8 100.00 100.00 95.00 100.00 100.00 97.50 100.00 100.00 95.00 1062.00 754.57 429.76
16 100.00 100.00 78.00 96.25 97.50 87.50 96.25 97.50 76.25 1127.00 802.70 536.33
32 99.00 99.00 80.00 85.00 92.50 56.88 84.38 91.88 53.75 1252.59 883.31 708.22

Y 8 98.00 98.00 93.00 97.50 95.00 92.50 95.00 92.50 85.00 1094.07 821.71 460.30
16 96.00 93.00 85.00 98.75 92.50 76.25 95.00 85.00 67.50 1135.61 867.24 571.55
32 93.00 93.00 78.00 81.25 83.12 53.75 75.62 76.88 49.38 1251.20 972.33 674.09

L
oo

p N 8 100.00 100.00 98.00 100.00 100.00 82.50 100.00 100.00 80.00 1874.00 1570.07 1092.79
16 100.00 100.00 100.00 100.00 86.25 76.25 100.00 86.25 76.25 1963.12 1601.03 1251.62
32 98.00 99.00 100.00 100.00 86.25 38.75 97.50 86.25 38.75 1936.27 1818.59 1598.19

Y 8 95.00 88.00 78.00 100.00 60.00 92.50 95.00 55.00 70.00 1894.33 4554.25 1310.58
16 96.00 91.00 90.00 90.00 28.75 66.25 88.75 22.50 57.50 1969.37 4481.38 1378.32
32 89.00 91.00 88.00 80.62 13.75 31.25 76.25 8.12 24.38 2138.35 4274.29 1672.91

Se
qu

en
ce N 8 98.00 70.00 98.00 97.50 100.00 100.00 95.00 70.00 97.50 1246.43 1298.50 637.11

16 95.00 70.00 89.00 96.25 100.00 90.00 92.50 70.00 85.00 1188.14 1577.48 785.97
32 89.00 70.00 84.00 76.25 77.50 64.38 66.88 63.75 59.38 1277.91 1715.05 1013.90

Y 8 95.00 62.00 80.00 100.00 92.50 95.00 95.00 57.50 80.00 1572.68 1537.60 671.38
16 89.00 60.00 75.00 86.25 75.00 81.25 78.75 50.00 70.00 1175.86 1640.81 839.37
32 78.00 62.00 68.00 77.50 53.75 53.75 61.25 39.38 41.88 1293.39 1802.09 1042.54

Table 6: Performance of different planner modules with the scalability in the number of agents (N)
and specification complexity for the DubinsCar Environment with obstacles.

Environment. The average improvement in success rate of 11% for our GNN-ODE planner over the572

MILP planner is similar to the SingleIntegrator environment (Table 5) due to GCBF+controller being573

more effective at collision avoidance with the linear dynamics of the DoubleIntegrator environment.574

C.4 Real-world Drone Experiments575

The experimental validation of this methodology involved deploying a fleet of 5 DJI Tello Ryze576

drones to track the trajectories generated via the Dubins Car model. The drones were configured in577

WiFi mode to enable swarm behavior which was facilitated through the open-source DJITelloPy 2578

library.579

2https://github.com/damiafuentes/DJITelloPy

15

Metric Finish Rate ↑ Safety Rate ↑ Success Rate ↑ TtR ↓
Planner GNN-ODE ODE STLPY GNN-ODE ODE STLPY GNN-ODE ODE STLPY GNN-ODE ODE STLPYSpec Obs N

B
ra

nc
h N 8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1384.75 536.00 379.50

16 100.00 100.00 91.00 100.00 100.00 100.00 100.00 100.00 91.25 1768.38 1577.50 474.44
32 99.00 91.00 73.00 100.00 100.00 100.00 99.38 90.62 72.50 2510.85 2206.44 617.02

Y 8 100.00 100.00 98.00 97.50 100.00 100.00 97.50 100.00 97.50 2774.50 533.50 390.57
16 99.00 99.00 94.00 98.75 98.75 100.00 97.50 97.50 93.75 2923.95 1594.28 533.49
32 99.00 91.00 68.00 96.25 93.75 98.12 95.00 85.62 67.50 2543.79 2263.78 666.90

C
ov

er N 8 100.00 100.00 93.00 100.00 100.00 100.00 100.00 100.00 92.50 1681.00 738.00 572.20
16 100.00 100.00 89.00 100.00 100.00 100.00 100.00 100.00 88.75 2127.43 894.50 645.93
32 96.00 75.00 76.00 100.00 100.00 100.00 95.62 75.00 76.25 2201.11 1542.29 877.32

Y 8 100.00 100.00 90.00 100.00 100.00 97.50 100.00 100.00 87.50 1649.50 767.50 498.07
16 99.00 100.00 89.00 98.75 98.75 100.00 97.50 98.75 88.75 2123.30 926.75 756.73
32 95.00 79.00 78.00 95.00 96.25 98.75 90.62 76.25 77.50 1630.34 1625.60 949.62

L
oo

p N 8 95.00 98.00 100.00 100.00 100.00 100.00 95.00 97.50 100.00 1951.71 2716.54 1219.75
16 98.00 99.00 100.00 100.00 100.00 100.00 97.50 98.75 100.00 2612.70 3273.04 1781.62
32 98.00 93.00 96.00 100.00 100.00 100.00 98.12 93.12 96.25 3271.47 5260.64 2703.45

Y 8 95.00 98.00 100.00 100.00 95.00 100.00 95.00 92.50 100.00 2533.32 2785.64 1229.75
16 96.00 99.00 98.00 100.00 96.25 97.50 96.25 95.00 95.00 2713.48 3431.33 1830.21
32 98.00 93.00 97.00 98.75 80.62 93.75 96.25 75.62 90.62 3353.94 5251.58 2850.15

Se
qu

en
ce N 8 100.00 80.00 85.00 100.00 100.00 100.00 100.00 80.00 85.00 1565.50 1162.35 693.67

16 99.00 88.00 70.00 100.00 100.00 100.00 98.75 87.50 70.00 1667.12 1472.54 926.60
32 81.00 49.00 28.00 100.00 100.00 100.00 80.62 48.75 28.12 1929.73 1979.83 912.03

Y 8 100.00 88.00 80.00 100.00 100.00 100.00 100.00 87.50 80.00 1552.75 1380.57 846.60
16 100.00 84.00 60.00 100.00 98.75 97.50 100.00 82.50 60.00 1684.75 1574.84 960.90
32 84.00 51.00 34.00 99.38 93.12 93.75 83.12 49.38 33.12 1969.68 2003.38 930.35

Table 7: Performance of different planner modules with the scalability in the number of agents (N)
and specification complexity for the DoubleIntegrator Environment.

Each Tello drone is equipped with an Inertial Measurement Unit (IMU), a forward-facing camera,580

and a downward-facing camera. The latter is useful for precise hovering and position estimation581

using the Vision Positioning System (VPS). However, this system is inaccurate and unreliable as582

the drones do not possess other sensors like lidar or depth cameras. To mitigate drift and correct583

the position estimate errors, ArUco tags were utilized to make the trajectory following robust for584

each drone. This ensured the swarm of drones could accurately follow the designated trajectory as585

evidenced in the simulation results.586

D Hardness of MA-STL specifications587

We also performed an ablation study (Table 8, 9, 10) to emphasize the challenge of satisfying these588

individual temporal objectives while ensuring global constraints such as safety (collision avoidance).589

For each specification, we use the MILP planner with GCBF+ controller and consider the case of an590

algorithm prioritizing safety above all else while sacrificing objective satisfaction (i.e. by attempting591

to remain stationary rather than risking collisions when a collision is detected 1 step ahead). This592

method (marked ‘Prioritize Safety’) uses environment dynamics and global agent communication to593

perform this one step lookahead. Notably this is not guaranteed to be safe due to agent input limits594

and is unrealistic since it is not decentralized. We compare this to an algorithm with the MILP595

planner that can satisfy the temporal specifications nearly always yet allows collisions between596

agents by simply following the nominal controller (PID with no collision avoidance maneuvering597

[21]) marked ‘Prioritize Objective’.598

From the results in Table 2 we can see the non-linear nature of the DubinsCar environment, and input599

limits, hinders a near 100% safety rate in the ‘Prioritize Safety’ variant unlike in the other linear600

environments (Tables 8, 10). Additionally based on the results we can see in the more complex601

environments (DubinsCar, DoubleIntegrator) the overly conservative approach of ‘Prioritize Safety’602

affects finish rates negatively in the N = 32 case (even with the expensive global communication).603

These results highlight the need for planning informed of collision avoidance procedures.604

16

Planner Prioritize Objective Prioritize Safety

Spec N Finish Rate ↑ Safety Rate ↑ Success Rate ↑ TtR ↓ Finish Rate ↑ Safety Rate ↑ Success Rate ↑ TtR ↓
B

ra
nc

h 8 100.00 20.00 20.00 233.25 100.00 100.00 100.00 256.00
16 100.00 2.50 2.50 236.12 100.00 100.00 100.00 290.50
32 100.00 0.00 0.00 234.88 100.00 95.00 95.00 342.44

C
ov

er 8 100.00 5.00 5.00 309.50 100.00 100.00 100.00 350.00
16 100.00 0.00 0.00 310.25 100.00 100.00 100.00 386.00
32 100.00 0.00 0.00 310.12 100.00 100.00 100.00 471.50

L
oo

p 8 100.00 0.00 0.00 654.75 100.00 100.00 100.00 751.00
16 100.00 0.00 0.00 654.75 100.00 100.00 100.00 855.38
32 100.00 0.00 0.00 653.50 100.00 100.00 100.00 1053.81

Se
qu

en
ce 8 100.00 0.00 0.00 419.50 100.00 100.00 100.00 468.00

16 100.00 0.00 0.00 422.75 100.00 100.00 100.00 563.75
32 100.00 0.00 0.00 421.62 100.00 98.75 98.75 748.12

Table 8: Depicting the balance between performance and safety with regards to STL specification
complexity for the SingleIntegrator Environment at various scales.

Planner Prioritize Objective Prioritize Safety

Spec N Finish Rate ↑ Safety Rate ↑ Success Rate ↑ TtR ↓ Finish Rate ↑ Safety Rate ↑ Success Rate ↑ TtR ↓

B
ra

nc
h 8 100.00 25.00 25.00 330.50 100.00 100.00 100.00 370.50

16 100.00 3.75 3.75 335.12 98.00 92.50 92.50 434.55
32 100.00 0.62 0.62 332.25 65.00 56.25 47.50 540.42

C
ov

er 8 100.00 5.00 5.00 447.50 100.00 95.00 95.00 483.00
16 100.00 0.00 0.00 447.50 100.00 98.75 98.75 588.00
32 100.00 0.00 0.00 447.00 80.00 72.50 61.25 704.72

L
oo

p 8 100.00 0.00 0.00 1006.00 95.00 90.00 85.00 1087.79
16 100.00 0.00 0.00 1009.12 98.00 77.50 76.25 1568.79
32 100.00 0.00 0.00 1006.31 79.00 51.25 44.38 1810.24

Se
qu

en
ce 8 100.00 0.00 0.00 582.50 100.00 100.00 100.00 682.00

16 100.00 0.00 0.00 588.50 95.00 96.25 93.75 814.29
32 100.00 0.00 0.00 587.12 81.00 71.25 62.50 992.41

Table 9: Depicting the balance between performance and safety with regards to STL specification
complexity for the DubinsCar Environment at various scales.

Planner Prioritize Objective Prioritize Safety

Spec N Finish Rate ↑ Safety Rate ↑ Success Rate ↑ TtR ↓ Finish Rate ↑ Safety Rate ↑ Success Rate ↑ TtR ↓

B
ra

nc
h 8 100.00 7.50 7.50 316.25 100.00 100.00 100.00 427.50

16 100.00 3.75 3.75 321.38 91.00 100.00 91.25 547.60
32 100.00 0.62 0.62 319.06 71.00 100.00 71.25 602.46

C
ov

er 8 100.00 7.50 7.50 404.50 100.00 100.00 100.00 520.00
16 100.00 0.00 0.00 404.75 98.00 100.00 97.50 745.25
32 100.00 0.62 0.62 404.50 86.00 100.00 86.25 885.43

L
oo

p 8 100.00 0.00 0.00 812.25 100.00 100.00 100.00 1207.25
16 100.00 0.00 0.00 812.88 100.00 100.00 100.00 1800.38
32 100.00 0.00 0.00 814.44 95.00 98.75 95.00 2861.72

Se
qu

en
ce 8 100.00 2.50 2.50 535.00 100.00 100.00 100.00 770.00

16 100.00 1.25 1.25 537.75 86.00 100.00 86.25 1009.40
32 100.00 0.00 0.00 538.12 37.00 100.00 36.88 1048.70

Table 10: Depicting the balance between performance and safety with regards to STL specification
complexity for the DoubleIntegrator Environment at various scales.

17

	Introduction
	Related Work

	Background
	Problem Statement
	Approach
	Differentiable Signal Temporal Logic for Planning
	GNNs for Planning in Multi-Agent Systems
	Collision Avoidance in MA Systems
	End-to-End Differentiable Learning for MA-STL

	Experiment Setup
	Results
	Limitations
	Conclusion
	Implementation Details
	Environment Details

	STL Specifications
	Additional Experiments
	SingleIntegrator Environment
	DubinsCar Environment
	DoubleIntegrator Environment
	Real-world Drone Experiments

	Hardness of MA-STL specifications

