Appendix for Rectifying the Shortcut Learning of
Background for Few-Shot Learning

A Details of Section 3

Dataset Construction. We construct a subset D = (Dpg, D,) of minilmageNet D-Full = (Dp-
Full, D,-Full). D is created by randomly picking 100 out of 600 images from the first 27 categories
of Dp-Full; And D, is created by randomly picking 40 out of 600 images from all categories of
D, -Full. We then crop each image in D such that the foreground object is tightly bounded. Some
examples are displayed in Fig. [I]

Cosine Classifier (CC) and Prototypical Network (PN). In CC [3]], the feature extractor fy is
trained together with a cosine-similarity based classifier under standard supervised way. The loss can
be formally described as
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where C' denotes the number of classes in Dp, cos(-,-) denotes cosine similarity and w; € R?
denotes the learnable prototype for class i. To solve a following downstream few-shot classification
task (S;, Q,) € T, CC adopts a non-parametric metric-based algorithm. Specifically, all images in
(8-, Q) are mapped into features by the trained feature extractor fy. Then all features from the same
class ¢ in S, are averaged to form a prototype p. = % Z(Ly) es. Ly=c fo(z). Cosine similarity
between query image and each prototype is then calculated to obtain score w.r.t. the corresponding
class. In summary, the score for a test image x, w.r.t. class c can be written as
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and the predicted class for z, is the one with the highest score.

The difference between PN and CC is only at the training stage. PN follows meta-learning/episodic
paradigm, in which a pseudo N-way K-shot classication task (S;, Q;) is sampled from Dp during
each iteration ¢ and is solved using the same algorithm as (). The loss at iteration ¢ is the average
prediction loss of all test images and can be described as
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Implementation Details in Sec. 3. For all experiments in Sec. 3, we train CC and PN with ResNet-
12 for 60 epochs. The initial learning rate is 0.1 with cosine decay schedule without restart. Random
crop is used as data augmentation. The batch size for CC is 128 and for PN is 4.

B Contrastive Learning

Contrastive learning tends to maximize the agreement between transformed views of the same image
and minimize the agreement between transformed views of different images. Specifically, Let f,(+)
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Figure 1: Examples of images of constructed datasets D. The first row shows images in D which
are original images of minilmageNet; and the second row illustrates corresponding cropped versions
in D,, in which only foreground objects are remained.
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Figure 2: Comparison of training and validation curves of PN trained under three different settings.

be a convolutional neural network with output feature space R?. Two augmented image patches from
one image x are mapped by f,(+), producing one query feature g, and one key feature k. Additionally,

a queue containing thousands of negative features {vn}ff:l is produced using patches of other images.
This queue can either be generated online using all images in the current batch [1]] or offline using
stored features from last few epochs [4]]. Given g, contrastive learning aims to identify % in thousands

of features {v,, }<_,, and can be formulated as:
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Where 7 denotes a temperature parameter, sim(-,-) a similarity measure. In Exemplar [5]], all

samples in {un},?:l that belong to the same class as q are removed in order to “preserve the unique
information of each positive instance while utilizing the label information in a weak manner”.

C Shortcut Learning in PN

Fig. |Z| shows training and validation curves of PN trained on Dp-Ori, Dp-FG and Dp-Fuse. It
can be observed that the training errors of models trained on Dg-Ori and Dg-FG both decrease to
zero within 10 epochs. However, the validation error does not decrease to a relatively low value and
remains high after convergence, reflecting severe overfitting phenomenon. On the contrary, PN with
fusion samping converges much slower with a relatively lower validation error at the end. Apparently,
shortcuts for PN on both Dp-Ori and Dp-FG exist and are suppressed by fusion sampling. In
our paper we have showed that the shortcuts for dataset Dp-Ori may be the statistical correlations
between background and label and can be relieved by foreground concentration. However for dataset
Dp-FG the shortcut is not clear, and we speculate that appropriate amount of background information
injects some noisy signals into the optimizatiton process which can help the model escape from local
minima. We leave it for future work to further exploration.

D Comparisons of Class-wise Evaluation Performance

Common few-shot evaluation focuses on the average performance of the whole evaluation set, which
can not tell a method is why and in what aspect better than another one. To this end, we propose a



Table 1: Comparisons of class-wise evaluation performance. The first row shows the training sets
of which we compare different models. The second row shows the dataset we evaluate on. Each
score denotes the difference of average accuracy of one class, e.g. a vs. b: (performance of a) -
(performance of b).

Dp-FG vs. Dp-Ori Dp-FG vs. Dp-Ori Dp-Full: Exemplar vs CC
D,-Ori D,-FG D,-FG

class score class score class score
trifle +3.81 theater curtain +7.39 electric guitar +17.28
theater curtain +3.47 mixing bow +7.04 vase +10.64
mixing bowl +1.61 trifle +4.33 ant +8.88
vase +1.13 vase +3.84 nematode +7.72
nematode +0.12 ant +3.62 cuirass +4.63
school bus -0.52 scoreboard +2.92 mixing bowl +4.30
electric guitar -0.87 crate +1.18 theater curtain +3.35
black-footed ferret ~ -0.91 nematode +0.93 bookshop +2.27
scoreboard -1.55 lion +0.83 crate +1.64
bookshop -1.60 electric guitar +0.61 lion +1.46
lion -2.04 hourglass -0.57 | African hunting dog  +1.42
hourglass -3.12 black-footed ferret  -0.69 trifle +1.13
African hunting dog  -3.99 school bus -0.86 scoreboard +1.06
cuirass -4.05 king crab -1.95 schoolbus +0.73
king crab -4.44 bookshop -2.25 hourglass -0.94
crate -5.32 cuirass -2.54 dalmatian -1.66

ant -5.50 golden retriever -3.18 malamute -2.39
dalmatian -9.71 | African hunting dog -3.84 king crab -2.48
golden retriever -10.27 dalmatian -3.90 golden retriever -3.13
malamute -12.00 malamute -5.72 | black-footed ferret -5.81

more fine-grained class-wise evaluation protocol which displays average few-shot performance per
class instead of single average performance.

We first visualize some images from each class of D,-Ori in Fig. The classes are sorted by
Signal-to-Full (SNF) ratio, which is the average ratio of foreground area over original area in each
class. For instance, the class with highest SNF is bookshop. The images within this class always
display a whole indoor scene, which can be almost fully recognised as foreground. In contrast, images
from the class ant always contain large parts of background which are irrelevant with the category
semantics, thus have low SNF. Although the SNF may not reflect the true complexity of background,
we use it as an indicator and hope we could obtain some insights from the analysis.

D.1 Domain Shift

We first analyse the phenomenon of domain shift of few-shot models trained on Dp-FG and evaluated
on Dp-FG. The first column in Tab. [I|displays class-wise performance difference between CC
trained on Dp-FG and Dp-Ori. It can be seen that the worst-performance classes of model trained
on Dp-FG are those with low SNF and complex background. This indicates that the model trained
on Dp-FG fails to recognise objects taking up small space because they have never met such images
during training.

D.2 Shape Bias and View-Point Invariance of Contrastive Learning

The third column of Tab. [T|shows the class-wise performance difference between Exemplar and CC
evaluated on D,,-FG. We at first take a look at classes on which contrastive learning performs much
better than CC: electric guitar, vase, ant, nematode, cuirass and mixing bowl. One observation is
that the objects of each of these classes look similar in shape. Geirhos et al. [2] point out that CNNs
are strongly biased towards recognising textures rather than shapes, which is different from what
humans do and is harmful for some downstream tasks. Thus we speculate that one of the reasons
that contrastive learning is better than supervised models in some aspects is that contrastive learning
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Figure 3: Illustrative examples of images in D,,-Ori. The number under each class of images denotes
Signal-to-Full ratio (SNF) ratio which is the average ratio of foreground area over original area in
each class. Higher SNF approximately means less noise inside images.
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PN 0.07 0.09 0.03 033 0.16
cc 0.08 0.12 0.12 0.06 0.18 0.21 0.12
Exampler 033 0.26 0.22 0.29 0.30 0.20 0.28

Figure 4: Shape similarity test. Each number denotes the feature similarity between the above image
and its shape using correponding trained feature extractor.
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Figure 5: The effect of different values of 5 and «. The left figure shows the 5-way 1-shot accuracies,
while the right figure shows the 5-way 5-shot accuracies with /3 fixed as 0.8.

prefers shape information more to recognising objects. To simply verify this, we hand draw shapes of
some examples from the evaluation dataset; see Fig. ] Then we calculate the similarity between
features of original images and the shape image using different feature extractors. The results are
shown in Fig. [f] As we can see, Exemplar recognises objects based on shape information more than
the other two supervised methods. This is a conjecture more than a assertion. We leave it for future
work to explore the shape bias of contrastive learning more deeply.

Next, let’s have a look on the classes on which contrastive learning performs relatively poor: black-
footed ferret, golden retriever, king crab and malamute. It can be noticed that these classes all refer to
animals that have different shapes under different view points. For example, dogs from the front and
dogs from the side look totally different. The supervised loss pulls all views of one kind of animals
closer, therefore enabling the model with the knowledge of dicriminating objects from different view
points. On the contrary, contrastive learning pushes different images away, but only pulls patches of
the same one image which has the same view point, thus has no prior of view point invariance. This
suggests that contrastive learning can be further improved if view point invariance is injected into the
learning process.

D.3 The Similarity between training Supervised Models with Foreground and training
Models with Contrastive Learning

The second column and the third column of Tab. [T]are somehow similar, indicating that supervised
models learned with foreground and learned with contrastive learning learn similar patterns of images.
However, there are some classes that have distinct performance. For instance, the performance
difference of contrastive learning on class electric guitar over CC is much higher than that of CC
with Dp-FG over Dp-Ori. It is interesting to investigate what makes the difference between the
representations learned by contrastive learning and supervised learning.



Table 2: 5-way few-shot performance of CC and PN with different variants of training and evaluation
datasets.

. D,-Ori D,-FG
Model  training set 1-shot 5-shot 1-shot 5-shot
Dp-Ori 4529 +027 6273 4+036 49.03 £028 66.75 +0.15
CC Dp-FG 4484 +£020 60.85 +032 5222 +035 68.65 +0.22
Dp-Fuse  46.02 £0.18 6291 +040 51.87 £039 68.98 + 0.22
Dp-Ori 40.57 +£032 5274 +0.11 4424 +£045 56.75 +£0.34
PN Dg-FG 40.25 +£036 53.25+033 4693 +£050 61.16 +£0.35
Dp-Fuse 4525 + 044 5923 +£028 50.72 £043 64.96 +0.20

Table 3: Comparisons of 5-way few-shot performance of CC and Exemplar trained on the full
minilmageNet and evaluated on two versions of evaluation datasets.

D,-Ori D,-FG
Model 1-shot 5-shot 1-shot 5-shot
CC 62.67 £032 80.22 +023 66.69 +£032 82.86 £0.20
Exemplar 61.14 £0.14 78.13 +£023 70.14 £0.12 85.12 +0.21

E Additional Ablative Studies

In Fig. [5] we show how different values of 3 and « influence the performance of our model. 8 and «
serve as importance factors in SOC, that express the belief of our firstly obtained foreground objects.
As we can see, the performance of our model suffers from either excessively firm (small values) or
weak (high values) belief. As a and 3 approach zero, it puts more attention on the first few detected
objects, leading to increasing risk of wrong matchings of foreground objects; as o and 3 approach
one, all weights of features tend to be the same, losing more emphasis on foreground objects.

F Detailed Performance in Sec. 3

We show detailed performance (both 1-shot and 5-shot) in Tab. [2]and Tab. 3] From the tables, we can
see that 5-way 1-shot performance follows the same trend as 5-way 5-shot performance discussed in
the main article.

G The Influence of Multi-cropping

For fair comparison and to better clarify the influence of our SOC algorithm, we include additional
experiments about the influence of multi-cropping. We implemented several Few-Shot Learning
methods using multi-cropping during evaluation. Specifically, for all methods except DeepEMD, we
average the feature vectors of 7 crops and use the resulted averaged feature for classification. For
DeepEMD, we notice that they also report performance using multi-cropping during the evaluation

Table 4: The influence of multi-cropping on minilmageNet.

Method 1-shot (no MC — MC)  5-shot (no MC — MC)
PN 60.19—63.97 75.50—78.90
Baseline 60.93—63.83 78.46—81.38
CC 62.67—64.41 80.22—82.74
Meta-baseline 62.65—65.31 79.10—81.26
RFS-distill 63.00—65.02 79.63—82.04
FEAT 66.45—68.03 81.94—82.99
DeepEMD 66.61—67.63 82.02—83.47
S2M2_R 64.93—66.97 83.18—84.16
COS 65.05—67.23 81.16—82.79

COSOC 69.28(with MC) 85.16(with MC)

COS+groundtruth 71.36—72.71 86.20—87.43




stage, thus we follow the method in the original paper. We report the results in Tab. i As a reference
of upper bound, we have also included the performance of using the ground truth foreground. We
denote multi-cropping as MC. The results show that multi-cropping can improve FSL models by 1-3
points, and the improvement tends to be marginal when the baseline performance becomes higher.
Moreover, the improvement is smaller in 5-shot settings.

H Additional Visualization Results

In Fig. [6}[0] we display more visualization results of COS algorithm on four classes from the training
set of minilmageNet. For each image, we show the top 3 out of 30 crops with the highest foreground
scores. From the visualization results, we can conclude that: (1) our COS algorithm can reliably
extract foreground regions from images, even if the foreground objects are very small or backgrounds
are extremely noisy. (2) When there is an object in the image which is similar with the foreground
object but comes from a distinct class, our COS algorithm can accurately distinguish them and focus
on the right one, e.g. the last group of pictures in Fig. [/| (3) When multiple instances of foreground
object exist in one picture, our COS algorithm can capture them simultaneously, distributing them in
different crops, e.g. last few groups in Fig. [6] Fig. [[0]shows additional visulization results of SOC
algorithms. Each small group of images display one 5-shot example from one class of the evaluation
set of minilmageNet. Similar observations are presented, consistent with those in the main article.
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Figure 6: Visulization results of COS algorithm on class house finch.
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Figure 7: Visulization results of COS algorithm on class Saluki.
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Figure 8: Visulization results of COS algorithm on class ladybug.
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Figure 9: Visulization results of COS algorithm on class unicycle.
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Figure 10: Additional visualization results of the first step of SOC algorithm. In each group of
images, we show a 5-shot example from one class.
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