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1. Introduction 
In magnetic fusion plasmas, turbulence dictates 

plasma confinement time and ultimately limits fusion 
yield. Accurate prediction and control of turbulent 
transport are essential for the advancement of fusion 
energy. Traditionally, this has relied on high-fidelity 
numerical simulations, but their prohibitive 
computational cost and time requirements pose a 
major challenge. 

Here, we capitalize on recent advances in neural 
networks (NNs) to develop data-driven closure and 
surrogate models. Our NN-based large-eddy closure 
model accurately captures the turbulence spectrum 
and flux while operating at just one-eighth of the 
spatial resolution in each direction, achieving a 
speed-up of at least a factor of 10. This approach 
offers a significant step toward efficient and scalable 
turbulence modeling in fusion plasmas. 

 
2.  Large Eddy Simulation of Drift Wave 
Turbulence 

Closure models are essential in Large Eddy 
Simulations (LES) of hydrodynamic turbulence, 
where theoretical approaches, such as the 
Smagorinsky model, have seen considerable success. 
However, their application to plasma turbulence 
remains limited, largely due to the complexity of 
formulating theory-based closures and the vast 
number of possible schemes. A notable exception is 
the eddy viscosity model proposed by Smith and 
Hammett for the single-field Hasegawa-Mima 
equation [1]. 

Here, we leverage recent advances in machine 
learning to identify effective closure models for more 
complex plasma turbulence systems. To mitigate 
computational cost, we focus on the two-dimensional, 
two-field Hasegawa-Wakatani model [2]—a minimal 
yet representative system of turbulent transport. A 
neural network is trained on high-resolution spectral 
Direct Numerical Simulations (DNS) to infer closure 
models, guided by constraints from Direct Interaction 
Approximation (DIA) theory [3]. Under reasonable 
assumptions, DIA predicts a closure model with six 
diffusion and hyperdiffusion coefficients, coupling 
density and vorticity dynamics. 

The resulting model is tested in LES at reduced 
resolution and validated against high-fidelity DNS 
data. The proposed closure achieves robust 
agreement across a broad parameter space, including 
variations in the adiabaticity coefficient and density 
gradient. Notably, the inferred viscosity is negative 
and the hyperviscosity positive, aligning with 
Kraichnan’s prediction [4] for eddy viscosity in two-
dimensional turbulence. Interestingly, cross-terms—
such as density diffusion in the vorticity equation and 
vorticity diffusion in the continuity equation—appear 
to have negligible influence, despite their prominence 
in DIA predictions. These findings highlight the 

potential of machine learning in developing physics-
informed closure models for plasma turbulence. 

 

 
 

Fig. 1: (Up) The volume averaged particle flux as a function 
of time for high resolution DNS, low resolution DNS, and 

low-resolution LES with parameters identified by machine 
learning. (Down) The spectrum of electrostatic potential as 

a function of azimuthal wave number ky for the three 
different cases. 
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