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Abstract

Low-rank adaptation (LoRA) is a promising method for finetuning models in communication-
constrained settings such as cross-device federated learning (FL). Prior work has explored
ways to improve the efficiency of LoRA in federated settings by imposing additional sparsity
constraints. However, as we show, existing methods for sparse LoRA not only harm accuracy
but can in fact increase overall communication costs. We instead propose FLASC, a
simple approach with two key components: First, FLASC combines LoRA with sparse
communication, which outperforms baselines such as using a lower LoRA rank or pruning
LoRA weights. Second, FLASC-Search efficiently searches the space of sparsity-and-rank
configurations by iteratively comparing pairs of configurations and increasing either the rank
or density. Across four FL datasets, we demonstrate that FLASC outperforms existing
sparse LoRA methods with up to 20% higher accuracy or 10× less communication. Our work
highlights the importance of considering the constraints of existing efficient finetuning methods
and provides a simple and competitive baseline for future work in federated finetuning.

1 Introduction
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Figure 1: We train FL models on 20NewsGroups
while applying sparsity and/or LoRA. LoRA itself
can be more efficient than existing methods, while
FLASC outperforms LoRA in constrained settings.

As pretrained models continue to advance state-of-the-
art performance in a variety of domains, it is critical
to develop methods to efficiently finetune models in
low-resource settings. In this work, we consider the
cross-device federated learning (FL) setting which seeks
to train models across a network of decentralized and
heterogeneous clients (McMahan et al., 2017a). A
major bottleneck in FL is the cost of uploading model
updates to the server, which can significantly slow down
finetuning (Konečný et al., 2017).

Recently, parameter-efficient finetuning (PEFT) has
emerged as an effective way to reduce costs in both
centralized and federated settings (Houlsby et al., 2019;
Hu et al., 2021; Zhang et al., 2023c). We focus on
low-rank adaptation (LoRA), a popular method that
injects trainable low-rank adapters into a model and
freezes the pretrained backbone. To further improve
LoRA, prior works in centralized ML apply sparsity by
pruning individual entries or groups of weights during
training (Wu & Chen, 2022; He et al., 2022; Zhang
et al., 2022; 2023a). Similar works in the FL setting also consider sparsity, but focus on improving LoRA in
heterogeneous and private FL settings (Cho et al., 2023; Babakniya et al., 2023a; Sun et al., 2024). Unfor-
tunately, prior works fail to address the key challenge of configuring LoRA, as they must still tune a rank
hyperparameter and additional hyperparameters related to sparsity—costs that can quickly overshadow the
savings attained from sparsity. Further, even with optimal hyperparameters, these methods can perform
worse than simply using LoRA with an equal communication budget (see Fig. 1).
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To address these issues, we present a seemingly overlooked baseline in communication-efficient federated
finetuning: FLASC (Federated Low-Rank Adaptation with Sparse Communication). Our method has
two key contributions: First, FLASC computes dense local updates while only communicating sparse
updates, which we show greatly improves performance over approaches that reduce the LoRA rank or freeze
LoRA weights. Second, we present a hyperparameter search method FLASC-S (FLASC-Search) that makes
it practical to realize the benefits of sparsity. This method relies on a key tradeoff observed when applying
sparsity via FLASC: reducing the rank is more helpful for reducing redundant communication under a large
budget, while sparsity is more helpful for improving utility under a small budget. In terms of both a single
training run and the total cost of tuning, our method significantly improves the communication-efficiency of
federated LoRA. Furthermore, we find that FLASC is equally robust to LoRA in terms of other common
FL concerns such as heterogeneity and privacy. Overall, our work makes the following contributions:

1. We propose FLASC, a simple method which reduces the communication cost of LoRA by applying
unstructured sparsity to upload communication. FLASC can reduce communication of LoRA by up
to 10× without harming accuracy, or improve accuracy by up to 20% under the same communication
budget. Despite its simplicity, FLASC has been overlooked as a baseline by prior work in efficient FL.

2. We study the interaction between LoRA rank and sparse communication in FLASC. We find that
sparsity is more important at small communication budgets, while reducing the rank is more important
at large budgets. Based on this observation, we propose FLASC-S, an efficient tuning method which
sequentially tunes the density followed by rank, allowing FLASC to save communication even when
considering the cost of hyperparameter tuning.

3. We conduct extensive experiments which show that both LoRA and FLASC are effective when deployed
in settings where other common challenges in FL are present, such as data/systems heterogeneity or
differential privacy. In fact, we find that FLASC outperforms other sparsity and freezing-based methods
that were designed specifically for these concerns.

2 Related Work

Communication-efficient federated learning. Upload communication is a key bottleneck in cross-
device FL (Konečný et al., 2017). While large pretrained models can significantly improve utility in
FL applications (Radford et al., 2018; Nguyen et al., 2022), these models present new challenges with
communication and finetuning at the edge. Many types of methods have been explored to reduce FL
communication costs, including quantization (Reisizadeh et al., 2020; Ozkara et al., 2021), sparsity (Horvath
et al., 2021; Stripelis et al., 2022; Isik et al., 2022; Huang et al., 2022), parameter-efficient finetuning (Chen
et al., 2023), and their combinations (Caldas et al., 2018b; Ro et al., 2022; Babakniya et al., 2023a).

Sparsity and pruning. In centralized ML, pruning is a popular area of research that aims to reduce compute
and storage costs by sparsifying and freezing weights (Frankle & Carbin, 2018; Dettmers & Zettlemoyer, 2019;
Sung et al., 2021). Early studies of sparsity in distributed and federated learning focus on the use of sparse
communication only (Basu et al., 2019; Gao et al., 2021; Mitra et al., 2021). More recent FL methods utilize
pruning by sending a sparse model to clients and finetuning in a sparse-to-sparse manner (Shah & Lau, 2021;
Qiu et al., 2021; Bibikar et al., 2022; Babakniya et al., 2023b). However, a limitation is that sparsity methods
are mainly studied in the context of full model finetuning, even though PEFT methods are already very
communication-efficient. Therefore, we study how to apply unstructured (weight-level) sparsity to LoRA.
We chose unstructured rather than structured (block-level) sparsity due to the limited utility of structured
sparsity in both centralized (Liu et al., 2018) and FL settings (Caldas et al., 2018b; Cheng et al., 2022).

Parameter-efficient finetuning (PEFT). PEFT reduces the cost of finetuning by training a small
number of parameters and freezing the rest of the model (Ding et al., 2022). In this work, we focus on
low-rank adaptation (LoRA), a popular reparameterization-based method which has two advantages: First,
LoRA parameters can be merged with the backbone after training in order to maintain the same inference
costs (Houlsby et al., 2019; Hu et al., 2021). Second, LoRA tends to outperform PEFT methods which
finetune the backbone (Guo et al., 2021; Zaken et al., 2022; Sung et al., 2021; Gong et al., 2022).
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Efficient LoRA. Our work is most similar to recent works in the centralized setting that train LoRA with
unstructured sparsity (Wu & Chen, 2022; He et al., 2022). Other works improve LoRA in various ways with
sparsity (Ding et al., 2023; Liu et al., 2024; Zhang et al., 2025), quantization (Xu et al., 2023; Dettmers et al.,
2024; Zhou et al., 2025), and flexibly adjusting the rank (Zhang et al., 2022; 2023a). LoRA itself can also
be used to efficiently update or guide pruning of the backbone parameters (Zhao et al., 2023; Zhang et al.,
2023b; Zhao et al., 2024; Ribeiro et al., 2024). In contrast to these prior works, we focus on how to make
LoRA more communication-efficient in the context of FL.

Federated LoRA. Many works have observed that LoRA can reduce the communication cost of FL
finetuning (Sun et al., 2022; Malaviya et al., 2023; Zhang et al., 2023d; Nguyen et al., 2024; Singhal et al.,
2025). However, as we show, using LoRA alone is a rigid approach for communication reduction, potentially
leaving a substantial amount of cost savings on the table. Our work takes an approach similar in spirit to
ComPEFT, which merges compressed LoRA adapters. However, they target the application of merging
adapters from multiple sources in a one-shot fashion and use more complex merging procedures (Yadav et al.,
2023). In contrast, we study how to reduce both upload and download communication over multiple rounds
of FL training and analyze these modifications in the context of standard FL optimization methods such as
FedAvg and FedAdam (McMahan et al., 2017a; Reddi et al., 2020). Beyond communication, prior works have
studied the use of LoRA with respect to FL-specific concerns such as data heterogeneity (Kim et al., 2023b;
Babakniya et al., 2023a; Lu et al., 2024; Jiang et al., 2024), systems heterogeneity (Cho et al., 2023; Bai
et al., 2024; Chen et al., 2025), and differential privacy (Sun et al., 2024; Bossy et al.). We show that our use
of sparse uploads can reduce LoRA communication costs without harming robustness to heterogeneity and
privacy, resulting in performance that matches or even exceeds the performance of these specialized methods.

Overall, FLASC fills in two important missing pieces in the current literature: First, while sparse communi-
cation has been widely discussed in FL, its application to LoRA has not been well-studied. Second, while
many extensions to LoRA have been proposed in centralized and FL settings, we show that simple TopK
sparsity is more communication-efficient than these more complex approaches.

3 FLASC: Federated Low-Rank Adaptation with Sparse Communication

We first introduce several sparsity baselines and then discuss benefits of FLASC relative to these methods.
For each matrix of trainable parameters P , these methods maintain an unstructured (weight-level) mask M .
Pruning-based approaches apply M to all FL operations, namely communication, inference (P ⊙M), and
gradient computation (∇P ⊙M). At d% density, communicating P costs d% of the original cost plus a small
cost from communicating M . See Appendix A.1 for details on FL optimization using FedAdam and sparsity.

Sparse Backbone Baselines. Prior work in FL focuses on training and pruning the base model. We evaluate
several such methods: FedSparsify-Global (Stripelis et al., 2022) applies iterative magnitude pruning
(IMP) (Renda et al., 2019). SPDST (Babakniya et al., 2023b) applies pruning-at-initialization (PaI) (Lee
et al., 2018). Federated Select maintains a dense global model and applies temporary magnitude pruning
before the model is downloaded. FedSpa (Huang et al., 2022) is similar, but applies personalized local masks.

Federated LoRA. LoRA is a PEFT method that freezes the pretrained backbone W ∈ Rd×k and constrains
its update ∆W ∈ Rd×k to be a product BA where B ∈ Rd×r and A ∈ Rr×k are newly inserted low-rank
parameters (Hu et al., 2021). To apply LoRA to FL, we set (A, B) as the trainable weights for FedAdam.

Sparse LoRA Baselines. While the communication cost of LoRA can be reduced by initializing (A, B) with
a smaller rank r, “sparse LoRA” methods obtain more expressive updates by applying the pruning-based
ideas from sparse backbone methods to LoRA. To the best of our knowledge, there are two such baselines:
Adapter LTH (Wu & Chen, 2022) applies IMP, while SparseAdapter (He et al., 2022) applies PaI.

FL LoRA Baselines. Finally, we evaluate FL-specific methods designed for concerns of data heterogeneity,
systems heterogeneity, and privacy. These are SLoRA (Section 4.3), HetLoRA (Section 4.4), and FFA-
LoRA (Section 4.5) respectively. However, a key limitation of these methods is that they are evaluated in
terms of communication rounds. In contrast, FLASC is designed with communication cost as the primary
concern and uses significantly less total communication. Details on these methods are in Appendix A.3.
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Method Description Upload (↓) Acc (↑)

Sparse backbone: Train W and reduce communication by 25 or 50%

Full Finetune - 100GB 78.0

FedSparsify (Stripelis et al., 2022) Prune a fraction of remaining 75GB 65.3
parameters after model aggregation 50GB 5.0

SPDST (Babakniya et al., 2023b) Prune random parameters before FL; 75GB 75.6
amount based on layer-wise sensitivity 50GB 5.0

Federated Select (Charles et al., 2022) Learn dense global model; apply 75GB 76.8
a global mask before download 50GB 5.0

FedSpa (Huang et al., 2022) Learn dense global model and 75GB 5.0
a personalized mask for each client 50GB 5.0

Sparse LoRA: Train A, B and reduce communication by 75%

LoRA (r = 16) (Hu et al., 2021) - 4GB 78.2

Adapter LTH (Wu & Chen, 2022) Prune a fraction of remaining LoRA 1GB 68.7parameters after model aggregation

SparseAdapter (He et al., 2022) Prune parameters before FL; based 1GB 71.9on individual parameter sensitivity

FLASC (ours) Sparsify only communication 1GB 78.1

Table 1: We finetune GPT2 on 20NewsGroups for 200 rounds and reduce communication with sparsity, LoRA,
or both. LoRA is much more efficient than “Sparse backbone” methods. “Sparse LoRA” methods (Adapter
LTH, SparseAdapter) can further reduce the communication of LoRA, but harm accuracy. FLASC only
sparsifies communication and is able to match the accuracy of LoRA with 4× less communication.

Algorithm 1: FLASC
1 Require: r, ddown, dup, ηs, ηc, Sserver, Sclient
2 P ← Initialize LoRA with rank r
3 optim← torch.nn.optim.Adam(P, ηs)
4 for sserver = 1, ..., Sserver do
5 Mdown ← TopKMask(|P |, ddown)
6 Sample clients c1, ..., cn uniformly
7 at random without replacement
8 # communication and local training
9 for i = 1, ..., n in parallel do

10 Pi = P ⊙Mdown
11 P ′

i ← Pi

12 for sclient = 1, ..., Sclient do
13 (x, y)← sample data from ci

14 ∇P ′
i

= ∇1L(P ′
i , x, y)

15 P ′
i ← P ′

i − ηclient∇P ′
i

16 ∆Pi ← Pi − P ′
i

17 Mup,i ← TopKMask(|∆Pi|, dup)
18 ∆Pi ← ∆Pi ⊙Mup,i

19 # server takes one step of FedAdam
20 optim.grad ← 1

n

∑n
i=1 ∆Pi

21 optim.step()

LoRA is a strong baseline. Table 1 shows that
sparse backbone methods are poor baselines, as
they harm accuracy at mild communication reductions
(75GB) or are unusable at larger reductions (50GB).
In contrast, LoRA significantly reduces communica-
tion (4GB) without any drop in accuracy. Although
we expect LoRA to outperform these baselines, it is
surprising that LoRA performs better with almost
20× less communication. Therefore, we treat LoRA
as a strong baseline and focus on sparse LoRA meth-
ods. While sparse LoRA methods were designed in
centralized settings without communication costs in
mind, they still serve as reasonable FL baselines. This
is because they apply the same principles from sparse
backbone methods to LoRA, and to the best of our
knowledge, no FL-specific work has proposed applying
unstructured sparsity to LoRA.

FLASC. In Table 1, we show that the two sparse
LoRA baselines can further reduce the communica-
tion of LoRA. However, these pruning-based methods
apply sparsity to both communication and local fine-
tuning, which is excessively restrictive. Since our goal
is to reduce communication, FLASC (Algorithm 1
and Figure 2) relaxes the finetuning constraint and only applies sparsity to communication. This simple
change enables FLASC to match the performance of LoRA while reducing communication. The key
difference between FLASC and pruning methods lies in the finetuning step; we finetune all entries of P ⊙M
(L11) and only sparsify the update ∆P during upload (L17-18). This allows for much more expressive local
updates compared to only finetuning the sparse non-zero entries of P ⊙M . Furthermore, while other baselines
propose complex methods for selecting the mask M , FLASC uses a simple TopK operation with ℓ1 criterion.
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Figure 2: A step-by-step overview of FLASC with LoRA rank = 2 and density = 1/4. Step 0 is executed
prior to FL. Each round of FL repeats steps 1-6. Blue/red squares indicate the magnitude of weights/updates
respectively. Darker squares indicate a larger magnitude, which is the criterion (ℓ1) used for sparsity.

FLASC is as compute-efficient as LoRA. FLASC finetunes the same parameters as standard LoRA,
resulting in the same compute costs. While sparse LoRA methods aim to reduce these costs, their actual
compute and memory savings are minimal, since the majority of overhead lies in the backbone’s weights
and activations and not the LoRA adapters (Cai et al., 2020; Kim et al., 2023a). We analyze these costs
in Appendix A.2. Additionally, LoRA can be merged with the backbone after training, which removes its
additional inference costs (Luo et al., 2023). Finally, the compute benefits of sparsity can only be realized in
specific settings with a high sparsity or structured sparsity (Muralidharan, 2023). Due to these limitations,
FLASC focuses on using sparsity to reduce the communication of LoRA in FL.

4 Results

In this section, we test FLASC in a variety of FL settings and show that it is effective at handling concerns
of communication efficiency (4.1), hyperparameter tuning (4.2), heterogeneity, (4.3, 4.4), and privacy (4.5).
Overall, we show that LoRA with sufficient hyperparameter tuning is robust to these concerns and that
FLASC is able to match the performance of LoRA with up to 10× less communication.

Dataset #Clients #Examples #Classes Metric
CIFAR10 500 50K 10 Accuracy (↑)
20NewsGroups 350 20K 20 Accuracy (↑)
Reddit (next-token prediction) 20K 2M 50257 Perplexity (↓)
Subreddits (topic classification) 100 35K 50 Accuracy (↑)
FLAIR 41K 345K 17 F1 Score (↑)

Table 2: Training partition statistics of the datasets.
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Figure 3: We compare utility vs. communication while training LoRA (rank 16) and reducing communication
with sparsity. FLASC is the most efficient method, while Adapter LTH (Wu & Chen, 2022) is inefficient
early in training and SparseAdapter (He et al., 2022) may converge to a significantly lower utility than
LoRA. Shaded bands show the min/mean/max over 3 random seeds.

Datasets. We present experiments on CIFAR10, 20NewsGroups, Reddit, and FLAIR (Krizhevsky, 2009;
Lang, 1995; Caldas et al., 2018a; Song et al., 2022) (Table 2). CIFAR10 and FLAIR are image datasets, and
20NewsGroups and Reddit are text datasets. For the image datasets, the images are resized to 224× 224
to match ImageNet (the ViT pretraining dataset). We train with standard data augmentations (random
crops and flips). For the text datasets, each example (an email or Reddit comment) is encoded and truncated
to a maximum of length of 256 tokens. We use Reddit for two different tasks: the first is a next-token
prediction task (Reddit), and the second is a topic classification task (Subreddits). We partition CIFAR10
and 20NewsGroups using a synthetic Dirichlet distribution over the set of labels (Hsu et al., 2019). Reddit
and FLAIR are obtained from social media sites (Reddit and Flickr) and are naturally partitioned by user.

Model Details. We used ViT-B-16 (85M params) and GPT2-Small (124M params) as the backbone for
image and text tasks respectively (Dosovitskiy et al., 2021; Radford et al., 2019). For the image datasets, we
finetune a classification head in addition to the LoRA weights. For the text classification tasks (Subreddits
and 20NewsGroups), we format the data as a text-to-text task where the model is trained to output the label
text (Raffel et al., 2020). For all text datasets, we only finetune the LoRA weights and do not finetune the
language modeling head. For all datasets, we use a local batch size of 16. For FLAIR, we sample 200 clients
per round, finetune for 2 local epochs, and communicate for up to 5000 rounds. For the other datasets, we
sample 10 clients each round, finetune for 1 local epoch, and communicate for up to 400 rounds. Full details
on preprocessing and hyperparameters are provided in Appendix B.4.

4.1 Communication Efficiency

First, we show each method’s utility as a function of communication used during a single training run.
In Figure 3, we compare LoRA and the three sparse LoRA methods introduced in Table 1: Adapter
LTH (Wu & Chen, 2022), SparseAdapter (He et al., 2022), and FLASC. We use rank 16 for all methods.
The sparsity ratio of Adapter LTH (i.e. fraction of parameters removed per round) is tuned separately on
each dataset to either 1% or 2%. We use a density of 25% for SparseAdapter and FLASC. While we use
25% density across all datasets in this experiment, we show how other methods are unable to handle lower
densities in Fig. 5. Across all tasks, FLASC matches or exeeds the performance of LoRA while using 3–10×
less communication. In contrast, the other two methods cannot reliably match the performance of LoRA.
For three out of the four datasets, SparseAdapter converges to a significantly lower accuracy than LoRA.
Adapter LTH has limited benefits due to its iterative nature; in early rounds, it uses similar communication
as LoRA, while in later rounds, the adapters are too sparse to continue training and performance plateaus.
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Communication savings. In Figure 4, we measure
the upload communication that each method needs to
reach two target perplexity (PPL) values on Reddit:
53 PPL and 50 PPL. SparseAdapter and Adapter
LTH reduce per-round communication but take sig-
nificantly more rounds to reach the same perplexity
as LoRA, which leads to limited overall benefits. For
example, in the 50 PPL setting, SparseAdapter ends
up using the same communication as LoRA, since al-
though it reduces per-round communication by 4×, it
also requires 4× as many rounds to match the perfor-
mance of LoRA. For FLASC, we test two upload
density values of 1/4 and 1/16. FLASC with 1/4 den-
sity performs well and does not require any additional
rounds to match the utility of LoRA, which results
in exactly 1/4 the communication of LoRA. When
we further decrease the density to 1/16, FLASC re-
quires additional rounds to train, but saves even more
communication than 1/4 density. For example, in the
50 PPL setting, FLASC with 1/16 density requires
16 ∗ 62/600 ≈ 1.65× more rounds than LoRA, but
uses 600/62 ≈ 10× less upload communication overall.
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Figure 5: We compare FLASC to two ways of
freezing weights. All methods use the same amount of
communication. SparseAdapter and Federated
Select freeze weights, which significantly harms
accuracy. FLASC does not freeze weights and only
sparsifies communication.

Sparsity without freezing. In Figure 5, we compare
FLASC to SparseAdapter and Federated Se-
lect, which are both introduced in Section 3. These
two methods respectively correspond to two simple
adjustments to FLASC: server-level and client-level
freezing. SparseAdapter is an example of server-
level freezing. After pruning the model, the zeroed
weights are globally frozen; neither the server or clients
adjust the mask. Federated Select (Charles et al.,
2022) is an example of client-level freezing. The server
temporarily prunes the model and freezes the zeroed
weights during the current round. In other words,
clients only download and finetune the non-zero weights.
However, unlike SparseAdapter, Federated Se-
lect adjusts the mask across rounds and can poten-
tially discover more useful weights. While Federated
Select is proposed in the context of backbone finetun-
ing (and is evaluated as such in Table 1), we apply it to
LoRA in Fig. 5. Finally, FLASC does not freeze at all;
it allows clients to finetune the entire LoRA module
and upload sparse updates with varying masks.

Although freezing generally harms utility, server-level freezing is a simple yet competitive baseline which can
outperform more complex methods which dynamically adjust the sparse mask between rounds (Babakniya
et al., 2023b). Our results in Figure 5 support this claim, and shows that SparseAdapter works better
than Federated Select across all density values despite employing a relatively simpler method. Finally,
FLASC greatly improves utility over both methods by only considering sparse communication without any
freezing at all. As discussed in Section 3, freezing LoRA parameters has relatively small compute savings,
which motivates us to leverage the utility of dense local updates and then reduce commmunication afterwards.
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4.2 Tuning rank and sparsity with FLASC-S
Algorithm 2: FLASC-S
1 Require: Rank grid R = {r1, ...rM}
2 and density grid D = {d1, ..., dN−1, 1}.
3 for i=1..N do
4 y1 = FLASC(r1, di ∗ r2/r1)
5 y2 = FLASC(r2, di)
6 if y1 < y2 then
7 break
8 for j=i..M do
9 yj = FLASC(r3, di ∗ r1/r2)

FLASC, like other sparse LoRA methods, requires tuning
the rank and sparsity. Generally, a new dataset requires a
new search for optimal hyperparameters, and FLASC is no
exception. While FLASC can train a single model using
less communication than LoRA, the additional cost of
tuning the sparsity can make FLASC more expensive than
only tuning the rank of LoRA and therefore negate the
benefits of applying sparsity in the first place. To address
this issue, we present FLASC-S (FLASC-Search), a
method for efficiently tuning FLASC.

The left plot of Figure 6 provides a high-level illustration of how FLASC-S works. We sweep over rank and
density values increasing by a factor of 2 and highlight the configurations that are evaluated by FLASC-S.
A critical observation is that points on the Pareto front apply a similar density (0.25− 0.5×), while a lower
density (0.125×) performs worse than lower rank (8×) configurations of equal cost. Furthermore, too low of
a rank harms performance, while too high of a rank results in redundant communication.

Based on these observations, our tuning method FLASC-S (Alg. 2.) tunes the sparsity using the lowest-
rank configurations, fixes the sparsity, and then increases the rank. Given two equal-cost (rank, density)
configurations (r2, d) and (r1, dr2/r1) where r1 and r2 are the two lowest ranks in the search space, we expect
r2 to perform worse when d is extremely small. However, we also expect r2 to improve more quickly than r1
as d is increased. This allows us to sweep over values of the density d; once we encounter a value where r2
performs better than r1, we know (r2, d) lies on the rank-density Pareto front. After finding this configuration,
we fix d and increase the rank to find other configurations which lie close to the Pareto front.

The right plot of Figure 6 shows the communication cost of using FLASC-S versus running grid search on
sparse LoRA baselines. The cost (x) is measured in terms of the accumulated communication from testing
multiple (rank, sparsity) configurations, and the performance (y) is given by the best configuration found so
far. Using grid search to tune sparse LoRA baselines (including FLASC) uses more communication than
regular LoRA due to the cost of tuning extra sparsity hyperparameters. By tuning density on the smallest
ranks before scaling up the rank, FLASC-S provides cheaper tuning costs than LoRA.
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Figure 7: We compare FLASC to LoRA and SLoRA on 20NewsGroups. Left, middle: We test two
settings of data heterogeneity α. Each curve varies the LoRA rank from 1 to 16. FLASC with 0.25
density improves over LoRA in all settings, while FLoRA (SLoRA) has large overhead costs due to an
initial 50 rounds of “Stage 1” full-rank finetuning. Right: We compare the per-round accuracy of methods.
FLoRA performs best during Stage 1, but degrades significantly after low-rank truncation. SLoRA applies
a 10% density to Stage 1, which saves communication but harms overall accuracy.

4.3 Data Heterogeneity

Data heterogeneity is a commonly studied issue which can harm FL optimization (Li et al., 2020). In the
context of LoRA, Babakniya et al. (2023a) finds that LoRA suffers more from data heterogeneity compared
to full-rank finetuning and proposes FLoRA (SLoRA), a method that learns a full-rank (and sparse) update
and then initializes LoRA with its truncated SVD (see Appendix A).

Our experiment in this section compares FLASC to LoRA, FLoRA, and SLoRA under varying levels of
data heterogeneity α. Following standard practice in FL literature, we partition the data using a Dirichlet
distribution over the set of labels (Hsu et al., 2019). Each client draws a vector from a Dirichlet(α) distribution,
where the vector dimension is equal to the number of labels. We then normalize each dimension by that
label’s global frequency, and the resulting vectors correspond to the clients’ individual label frequencies.
We show two separate plots for the heterogeneity parameter α ∈ {100, 0.01}. At α = 100, clients have an
approximately uniform number of examples per label, while at α = 0.01, over 90% of most clients’ examples
belong to a single label.

In Figure 7, each curve (left and middle plots) shows LoRA with rank varying from r ∈ {1, 4, 16}. A 4× larger
rank costs 4× more total upload (x-axis). When the data is identically distributed (α = 100), LoRA rank
1 performs well and achieves only 1-2% less accuracy than larger ranks. When the data is heterogeneous
(α = 0.01), all ranks perform worse, but the impact on lower ranks is much more significant; the accuracy gap
between LoRA rank 1 versus rank 16 grows from 2 to 12%. As long as we select an adequately large rank,
FLASC is a strong baseline in both i.i.d. and non-i.i.d. settings. FLASC can use a density of 0.25× with
minor impact on accuracy, resulting in 2− 8% higher accuracy compared to LoRA with a 4× smaller rank.

Finally, we evaluate FLoRA, which runs an initial 50 rounds of full-rank finetuning called “Stage 1” (see
Appendix A). Unfortunately, full-rank finetuning costs over 200× the communication of LoRA and dominates
the overall cost of finetuning (left and middle plots). A modification to reduce this cost called SLoRA applies
sparsity to Stage 1, but this severely limits model utility (right plot). Furthermore, SVD truncation after
Stage 1 severely harms accuracy and is worse than simply using LoRA throughout. Therefore, while
FLoRA improves quickly and performs best on a per-round basis during Stage 1, these benefits cannot be
fully realized due to (1) high communication cost (up to 200× the cost of LoRA) and (2) performance drop
after SVD truncation.

4.4 Systems Heterogeneity

In addition to data heterogeneity, FL settings also face issues of systems heterogeneity where clients with
limited system resources can slow down or harm training. In recent work, Cho et al. (2023) develop HetLoRA,
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Method (Description)
Accuracy

α = 1 α = 0.01
3 tiers 5 tiers 3 tiers 5 tiers

All lowest tier (rank 1) 77.4 68.4(Restrict all clients to lowest communication tier)
Highest tier only (rank 16) 74.6 72.0 56.2 45.1(Drop lower-tier stragglers from training)
HetLoRA 77.8 76.8 64.3 40.0(Clients train LoRA with varying rank)
FLASC 80.7 80.4 75.8 78.1(Clients upload sparse LoRA updates)

Table 3: We compare methods for handling systems heterogeneity on 20NewsGroups. We vary both data
and systems heterogeneity in terms of the label frequency (α) and tiers of upload budget (tiers) respectively.
Data heterogeneity exacerbates the issues of systems heterogeneity. FLASC is more robust than other
baselines to both data and systems heterogeneity.

which aims to address systems heterogeneity by training LoRA modules with different ranks across clients.
During training, client c with assigned rank rc will download the uppermost rc rows of A and leftmost rc

columns of B from the global LoRA weights (with rank rs) and then use the weights to initialize a local
LoRA module (with rank rc). For a fair comparison with other methods in terms of hyperparameter tuning,
we do not use the self-pruning method proposed by HetLoRA (i.e. we set γ = 1, λ = 0).

Our following experiment on systems heterogeneity constrains the upload budget of each client. We consider
two heterogeneity settings of low (bs = 3, rbase = 4) and high (bs = 5, rbase = 2), where bs is the number of
tiers (unique upload budgets) and rbase is the growth factor between budget tiers. Each client
c is assigned to one of these upload budgets bc ∈ {1, 2, ..., bs} uniformly at random. To satisfy the upload
budget, HetLoRA assigns clients a local rank rc = rbc−1

base . FLASC uses the same upload communication as
HetLoRA by finetuning a rank rs module and applying an upload density of d = rc/rs = r

(bc−bs)
base . For both

methods, the server initializes a LoRA adapter with rank rs = rbs−1
base = 16. In addition, we evaluate two

baselines “All lowest tier” and “Highest tier only”. To address settings where clients have significantly
different upload speeds, “All lowest tier” restricts all clients to LoRA rank 1 in order to accommodate the
clients with the slowest upload speeds. On the other hand, “Highest tier only” drops the clients with slow
upload and only uses model updates from clients which are assigned the highest budget (rank 16).

In Table 3, we show that FLASC outperforms HetLoRA as well as the two naïve baselines. Generally,
performance is better when systems are less (3 tiers) as opposed to more (5 tiers) heterogeneous. Additionally,
we vary the data heterogeneity between α = 1 or 0.01 (see Section 4.3). Heterogeneous data (α = 0.01)
can significantly exacerbate issues of systems heterogeneity; this is because data heterogeneity affects the
accuracy of LoRA at lower ranks, while systems heterogeneity affects which clients are assigned to those
lower ranks. When α = 0.01, “Highest tier only” performs extremely poorly because it can only utilize a
small set of skewed training data. Surprisingly, HetLoRA performs worse than “Highest tier only” when
α = 0.01, tiers = 5. In this setting, HetLoRA performed better in earlier rounds (due to leveraging data
from more clients), but converged to a worse solution (due to heterogeneous updates of varying rank).

4.5 Privacy

Finally, we consider the performance of FLASC when used in conjunction with differential privacy. FL model
updates are susceptible to privacy leakage and adversarial attacks (Geiping et al., 2020), which necessitates
additional techniques such as differential privacy (DP). DP is a popular framework that adds randomness
to an algorithm in order to mask example-level contributions to the algorithm’s output (Abadi et al., 2016;
McMahan et al., 2017b). Full finetuning scales poorly to strict DP budgets due to DP noise overwhelming
the signal in the model updates, but PEFT (e.g. LoRA) is a promising solution to this problem (Luo et al.,
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FFA-LoRA harms utility and is less efficient than LoRA, while FLASC improves the efficiency of LoRA.

2021; Yu et al., 2022). In the FL space, Sun et al. (2024) suggest that combining FL and LoRA can amplify
noise from DP and proposes FFA-LoRA, a method which freezes the A matrix of LoRA.
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Figure 9: We vary the rank of LoRA in
private vs non-private settings. Higher rank is
generally better in non-private settings, while
the optimal rank is lower in private settings.

Our following experiments evaluate FL methods in non-
private (ϵ = ∞) and private (ϵ < ∞) settings. ϵ is a pri-
vacy budget parameter which bounds the sensitivity of the
algorithm’s output with respect to any individual client in
the training data. We compare full finetuning, LoRA, FFA-
LoRA (reduce comm. by 25%), and FLASC (reduce comm.
by 75% on Reddit, 50% on FLAIR). In Figure 8, we show the
communication efficiency (left) and final utility (right) of each
method. Similar to prior works in DP, we find that LoRA is
more robust to DP than full finetuning. While FFA-LoRA
reduces communication, it also significantly harms utility and
leads to worse efficiency. In Figure 9, we further study the
effect of parameter count by varying the rank of LoRA from
1 to 64. We find that a larger rank does better in non-private
settings, while the optimal rank is smaller in private settings.
Overall, using FLASC with a sufficiently small rank is both
more accurate and efficient than applying FFA-LoRA to any
rank.

5 Conclusion

In this paper, we introduce FLASC, an efficient FL method
that significantly reduces the communication cost of LoRA.
Our method provides both higher utility and substantial
communication savings relative to existing pruning-based
methods. Furthermore, we show that methods which intro-
duce sparsity to LoRA can generally increase communication
costs once accounting for hyperparameter tuning, due to the
extra hyperparameters these methods introduce. To address this issue, we propose FLASC-S, a method
which sequentially tunes the sparsity of FLASC followed by the rank. Finally, we find that FLASC is
competitive with specific solutions for other FL concerns of heterogeneity and privacy while achieving superior
communication efficiency. Overall, our results indicate that FLASC can serve as a strong baseline for future
works in federated fine-tuning. Still, many important questions remain on how to make LoRA even more
efficient in resource-constrained federated networks. For instance, LoRA itself may be insufficient when
scaling to even larger models. In the future, we aim to investigate such questions and design methods to
make high-quality models more accessible to low-resource users.
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A Methods

A.1 FL Optimization with Sparsity and LoRA.

FedAdam. FedAdam is an optimization method that follows the FedOpt framework (Reddi et al., 2020).
At every round, each participating client i downloads a copy of the trainable weights P , finetunes P to obtain
updated weights P ′

i , and uploads ∆Pi = P − P ′
i to the server. The server then computes an average update

∆P = 1
n

∑n
i=1 ∆Pi, where n is the number of clients sampled per round. The average may optionally be

weighted by each client’s dataset size. ∆P can be interpreted as a global pseudo-gradient; for example, the
update rule for FedAvg is to set P ← P −∆P for the next round (McMahan et al., 2017a). In the case of
FedAdam, a stateful Adam optimizer (Kingma, 2014) takes ∆W as input and outputs an adapted global
update at each round. In Algorithm 3, we show how Adam and FedAdam differ only in how ∆P is computed.

We use a single parameter vector P to refer to the trainable parameters of the model. For LoRA, P is a
flattened and concatenated vector of LoRA weights {Al, Bl}L

l=1 where L is the number of layers LoRA is
applied to. Applying TopKMask to P naturally results in varying sparsity per layer. An alternative approach
is to uniformly sparsify each layer (Al, Bl) in before concatenation, but the former tended to perform better.

Algorithm 3: General functions for central and federated training with pruning
1 # FL-specific lines are colored red.
2 Require:
3 P (trainable parameters)
4 L (loss function)
5 Sserver (central training steps or FL rounds)
6 ηserver (learning rate)
7 M (sparse mask)
8 Sclient (num. local steps)
9 ηclient (client learning rate)

10 n (clients per round)
11 Function FLRound(P, M, Sclient, ηclient, n):
12 Sample client datasets c1, ..., cn uniformly at random w/o replacement
13 for i = 1, ..., n in parallel do
14 Pi ← P
15 for s = 1, ..., Sl do
16 Sample batch of data (x, y) from ci

17 ∇Pi = ∇1L(Pi, x, y)⊙M # sparse gradient
18 Pi ← Pi − ηclient∇Pi

19 ∆Pi ← Pi − P

20 return 1
n

∑n
i=1 ∆Pi

21 Function TrainStep(P,M):
22 if FedAdam then
23 return FLRound(P, M, Sclient, ηclient, n)
24 else if Adam then
25 Sample batch of data (x, y) from central dataset
26 return ∇1L(P, x, y)⊙M # sparse gradient

Algorithm 4: Standard LoRA training
1 P ← Initialize LoRA with rank r
2 M ← 1 # all-ones matrix
3 optim← torch.nn.optim.Adam(P, ηserver)
4 for sserver = 1, ..., Sserver do
5 P.grad← TrainStep(P,M)
6 optim.step()
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Sparse LoRA and Sparse FL baselines. In addition to showing how Adam and FedAdam both fit in the
same general training framework, Algorithm 3 shows how centralized pruning methods can be adapted to FL.
We use this framework to succinctly describe our baselines i.e. LoRA in Alg. 4, iterative pruning methods
Adapter LTH and FedSparsify-Global in Alg. 5, and fixed density methods SparseAdapter, SPDST,
and Federated Select in Alg. 6.

Iterative Magnitude Pruning. We use iterative magnitude pruning (IMP) without weight rewinding.
In the original Lottery Ticket Hypothesis (Frankle & Carbin, 2018), the authors propose using IMP to
find sparse subnetworks that can be trained starting from their randomly initialized weights. However, the
procedure of identifying this subnetwork is extremely expensive, as it requires 10−30 iterations of (1) training
the model to convergence, (2) removing the %p smallest magnitude weights, and (3) rewinding (i.e. resetting)
the remaining weights to their initial values. Therefore, this method is unsuitable if the goal is simply to
efficiently train a single model. Therefore, Renda et al. (2019) proposes a more efficient alternative which is to
skip the rewinding step and instead continue training from the pruned state. They show that “IMP without
rewinding” is also able to identify trainable sparse subnetworks without the expensive cost of rewinding.

Algorithm 5: Iterative Magnitude Pruning (IMP) without rewinding
1 Require: p (prune ratio), q (prune frequency)
2 if Adapter LTH then
3 P ← Initialize LoRA with rank r
4 else if FedSparsify-Global then
5 P ← Initialize model backbone weights
6 d← 1
7 optim← torch.nn.optim.Adam(P, ηserver)
8 for sserver = 1, ..., Sserver do
9 if 0 ≡ sserver mod q then

10 M ← TopKMask(|P |, d)
11 P ← P ⊙M # permanently remove entries in P
12 d← d(1− p)
13 P.grad← TrainStep(P,M)
14 optim.step()

Pruning-at-initialization. Pruning-at-initialization (PaI) is a class of methods which prune the model
to a fixed density at the start of training. While IMP (as its name suggests) generally uses magnitude to
rank parameters, pruning-at-initialization (PaI) methods use various sensitivity metrics which determine the
parameters to prune. In our work, we consider SparseAdapter, which applies PaI to LoRA in centralized
learning, and SPDST, which applies PaI to full finetuning in federated learning.

SparseAdapter. As discussed in Section 3, SparseAdapter as proposed is unsuitable for pruning of LoRA.
In general, any senstivity metric which depends on parameter magnitude is unsuitable for LoRA because the
B matrix in LoRA is initialized to all zeros. Therefore, all B weights will be pruned before any weights in A.
For matrices B ∈ Rd×r, A ∈ Rr×k, pruning at any density below d/(d + k) will entirely prune the B matrix,
which leaves us unable to train the model. Therefore, instead of using the SNIP metric, we use parameter
magnitude after finetuning the model for a limited number of iterations.

SPDST. SPDST locally runs a pruning method called SNFS (Dettmers & Zettlemoyer, 2019) and produces
a sparse model on each client. It then measures the average density of each layer across clients to determine
which layers are more or less sensitive. Finally, it randomly prunes each layer of the initial model proportionally
to its sensitivity. We found that SPDST has limited utility due to (1) producing sparse models with SNFS and
(2) randomly selecting the final sparse parameters. Therefore, we evaluate a simpler pruning-at-initialization
metric which first runs a single round of full finetuning and aggregation, then applies magnitude pruning to
the aggregate model. These two adjustments improve performance while sticking to the same principle as
SPDST, which is to directly finetune the model in order to determine which parameters should be pruned.

Federated Select. Federated Select is a method which falls under the broader category of fixed-density
pruning. Like the two PaI methods above, Federated Select prunes the model to a given density and
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freezes the zeroed weights during client finetuning. However, unlike PaI methods, Federated Select retains
the original dense weights at the server; after aggregation, it can adjust the mask based on the updated
weights and have clients download a model with an updated sparsity pattern in the following round.

Algorithm 6: Fixed-density pruning
1 Require: d (prune density)
2 if SparseAdapter then
3 P ← Initialize LoRA with rank r
4 else
5 # We use Federated Select to prune the backbone in Table 1 and to prune LoRA in Sec. 4.2.
6 P ← Initialize model backbone weights
7 # Compute importance scores; SparseAdapter proposes using SNIP (gradient-magnitude)

sensitivity, but this is unsuitable for LoRA. (see Sec. 3). Instead, we use “SPDST” sensitivity.
8 if SPDST then
9 # We use a modified version of SPDST which finetunes the model and computes TopK weights.

10 M ← 1 # matrix of all ones
11 P ′ ← TrainStep(P,M)
12 S ← |P ′|
13 M ← TopKMask(S, d)
14 if not Federated Select then
15 P ← P ⊙M # permanently remove entries in P
16 optim← torch.nn.optim.Adam(P, ηserver)
17 for sserver = 1, ..., Sserver do
18 if Federated Select then
19 M ← TopKMask(|P |, d)
20 P ′ ← P ⊙M # download a temporarily sparse P ′

21 else
22 P ′ = P # P is already sparse
23 P.grad← TrainStep(P’,M)
24 optim.step()

FedSpa. FedSpa is a sparse backbone method proposed by Huang et al. (2022). Similar to Federated
Select, the server maintains a dense global model while clients download a sparse model and only finetune
the non-zero parameters of these sparse models. FedSpa additionally learns a personalized mask at each
client. After local finetuning, FedSpa runs a local “mask searching” algorithm which adjusts the mask in
advance of the next round the client is selected for training. Unfortunately, this introduces a limitation in
that the personalized masks must be statefully maintained across rounds, which is expensive when a large
number of clients participate in FL. We found that FedSpa performed worse than other sparse backbone
methods under a limited budget of 200 rounds, though it can achieve non-trivial performance with a larger
budget of rounds.

Method / Round 200 400 600
FedSpa (density=0.75) 5.00 49.48 5.00
FedSpa (density=0.5) 5.00 16.67 40.17

Table 4: Evaluation of FedSpa on 20NewsGroups. While FedSpa attains non-trivial accuracy after 400
rounds, it performs worse than full finetuning and LoRA, which both reach 78% accuracy in 200 rounds.
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A.2 Sparsity details.

Communication cost of the mask. The mask is stored as a binary vector with p entries where p is
the number of trainable parameters in the model. The cost of communicating this mask is p bits, which is
independent of the actual amount of sparsity in the mask. We use this format for simplicity and because
FLASC (like other model sparsity methods) requires relatively large density values. If communication is
sufficiently sparse, it would be beneficial to use a sparse matrix format which scales with sparsity. Such a
matrix format (e.g. CSR) stores only the non-zero indices but each index (e.g. uint8) requires multiple bits.

Sparsity pattern. FLASC uses an unstructured mask where each bit corresponds to a single parameter.
For LoRA adapters of dimension d×r and r×k, an unstructured mask stores r(d+k) bits, while a structured
(feature-level) mask only stores d + k bits which correspond to the rows of B and columns of A. While
FLASC can be extended to structured (i.e. feature-level) sparsity, unstructured sparsity is more expressive
and results in better utility. To support this, we ran an experiment which shows that (1) structured sparsity
saves only a little total communication and (2) harms model training. Structured sparsity can be effective if
some features are naturally sparse over all the data of a client, but this is unlikely in practice.

Mask Structure 20NewsGroups (↑) Reddit (↓) Parameter size Mask size Total upload
Unstructured (weights) 81.4 46.7 0.6 MB 0.0750 MB 270 MB

Structured (features) 64.4 47.9 0.0047 MB 242 MB

Table 5: Comparison of applying different sparsity structures to FLASC with rank 16 and 0.25 density.
Using structured sparsity reduces the storage cost of the mask, but significantly harms performance. Total
upload (per client) is the parameter size + mask size, multiplied by 400 FL rounds.

Sparsity criteria. For practical reasons, we choose the ℓ1 norm of the delta (local weight update) over more
complex importance metrics such as historical information across rounds (which is not available in stateless
cross-device settings), or gradients (which are already incorporated during finetuning). The theoretical
justification is that our goal is to sparsify the model update while remaining close to the updated model,
which makes the delta ℓ1 the most natural choice. To validate this intuition, we ran an experiment which
shows that delta ℓ1 performs better than two more complex baselines: gradient and gradient-delta product.

ℓ1 Criteria 20NewsGroups (↑) Reddit (↓)
Delta 81.4 46.7

Gradient 78.9 47.2
Delta-Gradient Product 80.6 46.9

Table 6: Comparison of ℓ1 mask criteria. We report the best performance over 400 FL rounds.

Compute benefit of sparsity. As discussed in Section 3, prior sparse LoRA works have marginal benefits
because most of the computation occurs in the model backbone. Therefore, a key takeaway of our work is
that combining sparsity with LoRA is uniquely beneficial for reducing communication. In Table 7, we profile
the FLOPs used by various model sizes during one forward-backward pass on a 128-token input sequence.

Parameters GFLOPs Ratio vs. Base
Model Base r = 1 r = 64 Base r = 1 r = 64 r = 1 r = 64

GPT2-Small 124M 37K 2.4M 62.86 0.04 1.81 0.07% 2.88%
GPT2-Medium 355M 98K 6.3M 180.33 0.11 4.84 0.05% 2.69%

GPT2-Large 812M 184K 11.8M 394.39 0.20 9.10 0.05% 2.31%

Table 7: We use the PyTorch profiler to compare the cost of the base model vs. LoRA adapters of rank r.
“GFLOPs” is 109× the number of floating-point operations involving base model or LoRA parameters.
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A.3 FL LoRA methods.

SLoRA. FLoRA and SLoRA (Babakniya et al., 2023a) are two-stage methods that run multiple rounds
of full-rank finetuning (Stage 1), apply SVD decomposition and truncation to the model update, and then
train LoRA using the truncated weights as an initialization (Stage 2). The motivation is that when data in
FL is more heterogeneous, a higher effective rank is beneficial for capturing the diversity in client updates.
Unfortunately, full-rank finetuning (as used in FLoRA) can be expensive and dominates communication
costs (see Sec. 4.3). To reduce this cost, SLoRA is a modification that applies weight-level sparsity i.e. 90%
of the full-rank parameters are frozen at the start of Stage 1.

FFA-LoRA. FFA-LoRA (Sun et al., 2024) is a method which freezes the A matrix of LoRA. The
communication savings of FFA-LoRA depends on the relative size of the A, B matrices, which varies across
layers and model architectures. In our experiments, we apply LoRA to the K,V (CIFAR10 / FLAIR) or
K,V,Q (20NewsGroups, Reddit) projections in the attention layers. For these two settings, FFA-LoRA uses
2/3 and 3/4 of the original communication respectively. This savings is smaller than 1/4 density we typically
apply to FLASC.

We present an additional experiment which shows that the optimization method can affect the performance
of FFA-LoRA vs. LoRA. The original FFA-LoRA work uses FedAvg, while our work uses FedAdam.
We chose FedAdam because it is a state-of-the-art FL optimizer which is commonly used in practice and
generally outperforms FedAvg. With FedAvg, FFA-LoRA slightly improves over LoRA when using a
large batch size and significantly improves when using a small batch size. We hypothesize that LoRA can
fail to train in a small-batch setting due to noise from stochastic gradients compounding with the inexact
aggregation of LoRA. However, FedAdam appears to mitigate these issues. When using FedAdam with
a small batch size (16), both LoRA and FFA-LoRA outperform their FedAvg counterparts and LoRA
performs better than FFA-LoRA.

Method FedAvg, Batch=200 FedAvg, Batch=16 FedAdam, Batch=16
LoRA 91.45 50.00 93.65
FFA-LoRA 91.74 90.77 92.68

Table 8: Comparison of FFA-LoRA vs. LoRA on a 3-client IID partition of QNLI. FFA-LoRA performs
better with FedAvg, but LoRA performs better with FedAdam. Additionally, FedAdam generally
outperforms FedAvg and can tolerate a smaller batch size.

FFA-LoRA is designed for the stronger notion of local (as opposed to global) differential privacy. In local
DP, clients locally run DP-SGD, which is only feasible in cross-silo FL settings where each client has a large
number of local examples. In contrast, we focus on cross-device settings which assume a large widespread
pool of clients with few examples per client.

Differentially Private (DP)-FedAdam. To apply global DP to FedAdam, clients upload updates
computed by non-private SGD. The server clips these updates, aggregates them, normalizes by the clipping
norm, and then adds Gaussian noise with scale σ (De et al., 2022). This protects client privacy at a
coarse-grained level where the “neighboring datasets” definition of DP applies to the addition or removal of
one client’s local dataset rather than a single example (McMahan et al., 2017b).

To obtain reasonable privacy guarantees when using DP-FedAdam, we must bound the sensitivity of the
aggregate update with respect to any individual client. The most obvious way to achieve this is to sample
a large cohort of clients (Charles et al., 2021). However, when running experiments with private FL, this
can make training costs prohibitively expensive. To make simulation feasible in terms of wall-clock time,
a common trick is to select a large (‘simulated’) client cohort size, compute the noise scale according to
the privacy constraints, and then linearly scale it down according to a smaller cohort size actually used for
experiments. For instance, Song et al. (2022) (Sec. 5.1, p.7) uses “200 users sampled per round to simulate
the noise-level with a cohort size of 5,000”. We follow this simulation setup for our experiments on FLAIR.
For Reddit, we sample 10 users per round and simulate the noise-level with a cohort size of 1,000. Simulating
a larger cohort size has two effects: (1) our models are less private than the reported privacy budget, but (2)
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provide a lower bound on the accuracy we would obtain from training with the true cohort size / privacy
budget.

B Experiment Details

Dataset Task Partition #Clients #Examples #Classes
CIFAR10 Image Classification Dirichlet 500 50K 10
20NewsGroups Sequence Classification Dirichlet 350 20K 20
Reddit Next Token Prediction Natural 32K 1.1M 50257
Subreddits Sequence Classification Natural 100 35K 50
FLAIR Object Detection Natural 41K 345K 17 (multilabel)

Table 9: More detailed information on the datasets used in the experiments.

B.1 Artifacts

We provide the code in the supplementary material of our submission.

B.2 Compute Resources

We simulate FL training on a single NVIDIA L40S GPU and parallelize trials over multiple GPUs.

B.3 Training Details

We apply LoRA to the attention layers only, specifically the K,V mappings for ViT, and K,V,Q mappings for
GPT2. For CIFAR10 and FLAIR, we train a classification layer and the LoRA parameters. On 20NewsGroups
and Subreddits, we do not train a classification layer. Instead, we format the dataset such that the model
outputs the label in text form. We freeze the language modeling (embedding) head and only finetune LoRA
parameters. Reddit is a next-token prediction task so we do not perform any additional modification to the
model or data.

B.4 Hyperparameters

FedAdam hyperparameters:

• Learning rates ηserver, ηclient:

– CIFAR10: 5e-3, 1e-3
– 20NewsGroups: 1e-2, 1e-3
– Reddit: 1e-2, 1e-3
– FLAIR: 1e-3, 1e-2

• Betas: β1 = 0.9, β2 = 0.999

• Clients per round: 10 (CIFAR10, 20Newsgroups, Reddit), 200 (FLAIR)

• Training rounds:

– CIFAR10: 200
– 20NewsGroups: 200 (Fig. 1, 7, Tab. 3), 400 (Fig. 3)
– Reddit: 200 (Fig. 6), 400 (Fig. 4, 8, 9)
– FLAIR: 5000

• Client optimizer: SGD (batch size= 16, momentum= 0.9)
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Figure 1:

1. 1 GB budget:

• LoRA rank r: 4
• FLASC, Adapter LTH, SparseAdapter rank r: 16
• FLASC, SparseAdapter density: 0.25
• Adapter LTH density: 0.98
• Training rounds: 200

2. 128 MB budget:

(a) LoRA rank r: 1
(b) FLASC, Adapter LTH, SparseAdapter rank r: 4
(c) FLASC, SparseAdapter density: 0.25
(d) Adapter LTH density: 0.96
(e) Training rounds: 100

Figure 3:

• LoRA rank r: 16

• Adapter LTH density: dLTH ∈ [0.97, 0.98, 0.99] (based on num. of rounds ∈ [100, 200, 400] respectively)
We prune each round for all datasets besides FLAIR, and prune once every 25 rounds for FLAIR with
density 0.98.

• SparseAdapter density d: 1/4

• FLASC density: pdown = dup ∈ 1/4. For 20NewsGroups and Reddit, we set ddown = 1.

• Label heterogeneity α: CIFAR10: 0.1, 20NewsGroups: 0.01

Figure 4 (Reddit):

• Adapter LTH density: pLTH = 0.99

• SparseAdapter density: p = 1/4

• FLASC density: pdown = 1/4, pup ∈ [1/16, 1/4]

Figure 5 (CIFAR10):

• LoRA rank: r = 16

• Density (all methods): d ∈ [1, 1/4, 1/16, 1/64, 1/256]

Figure 7 (20NewsGroups):

• SLoRA Stage 1 LR: 1e-3

• Stage 1 rounds: 50 (25% of 200 total rounds)

Table 3 (20NewsGroups): Details in text of Sec. 4.4.

Figure 8 (FLAIR):
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• Noise multiplier: σ ∈ [0, 0.34]

• Clipping norm: C = 5 ∗ 10−3

Figure 8,9 (Reddit):

• Client learning rate: ηclient = 5 ∗ 10−4

• Noise multiplier: σ ∈ [0, 0.013, 0.072, 0.58]

• Clipping norm: C = 10−4

B.5 Tabular Results

For completeness, we provide the exact numbers from all the figures besides those where such numbers are
already provided (Figures 1, 4, 8 (right) and Tables 1, 3).

CIFAR10 20NewsGroups Reddit (↓) FLAIR
Upload budget 100MB 230MB 230MB 2300MB

Performance at 20% of budget
LoRA 89.6 17.2 52.8 64.9

Adapter LTH 85.4 46.5 50.2 60.8
SparseAdapter 83.4 51.5 52.3 55.8

FLASC 97.2 65.6 49.4 73.9
Performance at 100% of budget

LoRA 97.7 66.5 48.8 76.3
Adapter LTH 97.5 73.3 48.0 74.9

SparseAdapter 85.5 79.6 49.0 60.2
FLASC 98.0 80.8 47.6 77.9

Table 10: Tabular results for accuracy (perplexity for Reddit) from Figure 3.

Density 1/4 1/16 1/64 1/256
IID (α = 100)

LoRA (density=1) 99.0
Federated Select 85.0 70.7 62.8 61.3

SparseAdapter 86.5 81.1 78.3 76.9
FLASC 98.1 98.1 97.9 88.4

NIID (α = 0.01)
LoRA (density=1) 98.5

Federated Select 83.0 67.8 58.2 56.4
SparseAdapter 85.7 80.1 77.2 75.1

FLASC 97.6 97.0 97.4 86.1

Table 11: Tabular accuracy results for CIFAR10 from Figure 5.
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Rank Density
↗↙ 1/8 1/4 1/2 1
1 30.5 32.5 39.4 39.3
2 26.4 50.1 51.8 50.1
4 32.5 57.1 62.6 61.7
8 43.9 63.3 62.8 63.0
16 45.6 63.5 63.0 61.7
32 50.8 62.8 64.5 63.9
64 57.9 63.9 62.9 63.4

Table 12: Tabular Subreddits accuracy results from Figure 6 (left). Cells along a common diagonal (NE-SW)
have the same communication cost. Bolded cells are searched by FLASC-S.

Upload budget 0.5GB 1GB 2GB 4GB 8GB 16GB
LoRA 39.3 39.3 50.1 61.7 63.0 63.0

FLASC 39.4 39.4 51.8 57.1 63.3 63.5
Adapter LTH 35.8 39.3 55.8 57.5 64.0 64.0

FLASC-S 50.1 57.1 63.3 63.5 63.5 64.0

Table 13: Tabular Subreddits accuracy results from Figure 6 (right).

IID, α = 100 NIID, α = 0.1 Upload cost (GB)
Rank 1 4 16 1 4 16 1 4 16

LoRA 77.0 79.9 80.5 68.4 75.7 77.8 0.3 1.2 4.7
SLoRA 74.9 75.6 77.8 60.4 62.4 65.1 4.5 5.1 7.8
FLoRA 75.0 77.4 80.2 61.0 71.1 74.7 42.7 43.4 46.0
FLASC 76.8 80.0 79.9 61.7 73.6 77.0 0.1 0.3 1.2

Table 14: Tabular 20NewsGroups accuracy results from Figure 7.

Upload budget 0.5GB 1GB 2GB 4GB 8GB 16GB
LoRA 39.3 39.3 50.1 61.7 63.0 63.0

FLASC 39.4 39.4 51.8 57.1 63.3 63.5
Adapter LTH 35.8 39.3 55.8 57.5 64.0 64.0

FLASC-S 50.1 57.1 63.3 63.5 63.5 64.0

Table 15: Tabular Subreddits accuracy results from Figure 6 (right).
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Under review as submission to TMLR

Non-private (ϵ =∞)
Upload budget (MB) 100 200 300 400

LoRA 49.8 49.3 48.1 47.9
FFA-LoRA 52.2 50.9 50.1 49.9

FLASC 48.1 46.8 46.8 46.4
Private (ϵ = 1)

Upload budget (MB) 50 100 150 200
LoRA 56.2 54.9 54.0 53.6

FFA-LoRA 59.0 57.8 56.4 55.8
FLASC 53.4 52.7 52.5 52.9

Table 16: Tabular Reddit perplexity (↓) results from Figure 8.

Rank 1 4 16 64
Non-private (ϵ =∞)

LoRA 48.4 47.9 47.8 47.2
FFA-LoRA 50.5 50.0 49.9 49.4

FLASC 49.0 48.7 48.0 47.6
Private (ϵ = 1)

LoRA 53.4 52.6 52.2 52.7
FFA-LoRA 53.8 53.5 54.5 56.1

FLASC 54.0 53.0 52.5 52.9

Table 17: Tabular Reddit perplexity (↓) results from Figure 9. Note that for the same rank, FFA-LoRA
uses 75% of the communication of LoRA, while FLASC uses 25% (3× less than FFA-LoRA).
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