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Abstract

A common approach to learning mobile health (mHealth) intervention poli-
cies is linear Thompson sampling. Two desirable features of an mHealth
policy are (1) pooling information across individuals and time and (2) model-
ing the differential reward linear model with a time-varying baseline reward.
Previous approaches focused on pooling information across individuals but
not time, thereby failing to capture trends in treatment effects over time.
In addition, these approaches did not explicitly model the baseline reward,
which limited the ability to precisely estimate the parameters in the differ-
ential reward model. In this paper, we propose a novel Thompson sampling
algorithm, termed “DML-TS-NNR” that leverages (1) nearest-neighbors
to efficiently pool information on the differential reward function across
users and time and (2) the Double Machine Learning (DML) framework
to explicitly model baseline rewards and stay agnostic to the supervised
learning algorithms used. By explicitly modeling baseline rewards, we obtain
smaller confidence sets for the differential reward parameters. We offer the-
oretical guarantees on the pseudo-regret, which are supported by empirical
results. Importantly, the DML-TS-NNR algorithm demonstrates robustness
to potential misspecifications in the baseline reward model.

1 Introduction

At each decision point in a contextual bandit algorithm, a learner receives a context, chooses
an action, and observes a reward. The goal is to maximize the expected cumulative reward.
High-quality bandit algorithms achieve rewards comparable to those of an optimal policy.
To achieve near-optimal performance in mobile health (mHealth), bandit algorithms must
account for (1) the time-varying nature of the outcome variable, (2) nonlinear relationships
between states and outcomes, (3) the potential for intervention efficacy to change over time
(due, for instance, to habituation as in Psihogios et al. (2019)), and (4) the fact that similar
participants tend to respond similarly to interventions (Künzler et al., 2019).

Traditional mHealth intervention development—including just-in-time adaptive interventions
(JITAIs), which aim to tailor the timing and content of notifications to maximize treatment
effect (Nahum-Shani et al., 2018)—has centered on the use of treatment policies pre-defined
at baseline (e.g., Battalio et al. (2021); Nahum-Shani et al. (2021); Bidargaddi et al. (2018);
Klasnja et al. (2019)). As the development of JITAIs shifts towards the online learning
setting (e.g., Trella et al. (2022); Liao et al. (2020); Aguilera et al. (2020)), we are presented
with new opportunities for incorporating the four key characteristics listed above into the
development of optimal treatment policies through algorithms such as contextual bandits.

Although some solutions to these problems have been presented in various settings, no
existing method offers a comprehensive solution that simultaneously addresses all four
challenges in a satisfactory manner. The purpose of this paper is to fill this gap with a
method that performs well in the mHealth setting where data is high-dimensional, highly
structured, and often exhibits complex nonlinear relationships. To that end, this paper offers
three main contributions: (1) A novel algorithm, termed as “DML-TS-NNR” that flexibly
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models the baseline reward via the double machine learning (DML) framework and pools
efficiently across both users and time via nearest-neighbor regularization; (2) theoretical
results showing that DML-TS-NNR achieves reduced confidence set sizes and an improved
regret bound relative to existing methods; and (3) empirical analysis demonstrating the
superior performance of DML-TS-NNR relative to existing methods in simulation and two
recent mHealth studies.

The paper proceeds as follows. Section 2 summarizes related work. Section 3 describes the
model and problem statement. Section 4 describes the algorithm along with the resulting
theoretical results. Section 5 describes experimental results for simulations and two mobile
health studies. Section 6 concludes with a discussion of limitations and future work.

2 Related Work

The most closely related works are Choi et al. (2022) and Tomkins et al. (2021). Choi
et al. (2022) employs a semi-parametric reward model for individual users and incorporates
a penalty term based on the random-walk normalized graph Laplacian. However, limited
information is provided regarding the explicit estimation of baseline rewards and the pooling
of information across time. In contrast, Tomkins et al. (2021) carefully handles the issue
of pooling information across users and time in longitudinal settings, but their approach
(intelligentpooling) requires the baseline rewards to be linear and does not leverage network
information. Below, we provide a summary of other relevant work in this area.

Thompson Sampling. Abeille & Lazaric (2017) showed that Thompson Sampling (TS) can
be defined as a generic randomized algorithm constructed on the regularized least-squares
(RLS) estimate rather than an algorithm sampling from a Bayesian posterior. At each step t,
TS samples a perturbed parameter, where the additive perturbation is distributed so that
TS explores enough (anti-concentration) but not too much (concentration). Any distribution
satisfying these two conditions introduces the right amount of randomness to achieve the
desired regret without actually satisfying any Bayesian assumption. We use the high-level
proof strategy of Abeille & Lazaric (2017) in this work to derive our regret bound, although
we need additional tools to handle our longitudinal setting with baseline rewards.

Partially-linear bandits. Greenewald et al. (2017) introduced a linear contextual bandit
with a time-varying baseline and a TS algorithm with Õ(d2

√
T ) regret, where they used the

inverse propensity-weighted observed reward as a pseudo-reward. By explicitly modeling
the baseline, we obtain a pseudo-reward with lower variance. Krishnamurthy et al. (2018)
improved this to Õ(d

√
T ) regret using a centered RLS estimator, eliminating sub-optimal

actions, and choosing a feasible distribution over actions. Kim & Paik (2019) proposed a less
restrictive, easier to implement, and faster algorithm with a tight regret upper bound. Our
regret bound (see Section 4) involves similar rates but is based on a different asymptotic
regime that is not directly comparable due to the presence of an increasing pool of individuals.

Nonlinear bandits. (Li et al., 2017; Wang et al., 2019; Kveton et al., 2020) discussed
generalized linear contextual bandit algorithms that accommodate nonlinear relationships
via parametric link functions in a similar fashion to generalized linear models Nelder &
Wedderburn (1972); McCullagh (2019). Other work (e.g., Snoek et al. (2015); Riquelme
et al. (2018); Zhang et al. (2019); Wang & Zhou (2020)) has allowed for non-parametric
relationships in both the baseline reward model and advantage function via deep neural
networks; however, these approaches typically lack strong theoretical guarantees and are not
designed for longitudinal settings in which pooling offers substantial benefit.

Graph bandits. In the study conducted by Cesa-Bianchi et al. (2013), individual-specific
linear models were employed, accompanied by a combinatorial Laplacian penalty to encourage
similarity among users’ learned models. This approach yielded a regret bound of Õ(nd

√
T ).

Building upon this work, Yang et al. (2020) made further improvements by utilizing a
penalty involving the random walk graph Laplacian. Their approach offers the following
benefits: (1) it achieves a regret bound of Õ(Ψd

√
nT ) for some Ψ ∈ (0, 1) and (2) it reduces

computational complexity from quadratic to linear by utilizing a first-order approximation
to matrix inversion.
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Double Machine Learning. Chernozhukov et al. (2018) introduced the DML framework,
which provides a general approach to obtain

√
n-consistency for a low-dimensional parameter

of interest in the presence of a high-dimensional or “highly complex” nuisance parameter.
This framework combines Neyman orthogonality and cross-fitting techniques, ensuring that
the estimator is insensitive to the regularization bias produced by the machine learning model.
Moreover, it allows us to stay agnostic towards the specific machine learning algorithm while
considering the asymptotic properties of the estimator. Later, a number of meta-learner
algorithms were developed to leverage the DML framework and provide more precise and
robust estimators (Hill, 2011; Semenova & Chernozhukov, 2021; Künzel et al., 2019; Nie &
Wager, 2021; Kennedy, 2020).

3 Model and Problem Statement

We consider a doubly-indexed contextual bandit with a control action (a = 0) and K
non-baseline arms corresponding to different actions or treatments. Individuals i = 1, 2, . . .
enter sequentially with each individual observed at a sequence of decision points t =
1, 2, . . .. For each individual i at time t, a context vector Si,t ∈ S is observed, an action
Ai,t ∈ {0, . . . ,K} := [K] is chosen, and a reward Ri,t ∈ R is observed. In this paper,
we assume the conditional model for the observed reward given state and action, i.e.,
E [Ri,t|Si,t = s,Ai,t = a] := ri,t(s, a), is given by

ri,t(s, a) = x(s, a)⊤θi,tδa>0 + gt(s), (1)

where x(s, a) ∈ Rp×1 is a vector of features of the state and action, and gt(s) is a baseline
reward that is an arbitrary, potentially nonlinear function of state s and time t. Equation (1)
is equivalent to assuming a linear differential reward for any a > 0; i.e., ∆i,t(s, a) :=
ri,t(s, a)− ri,t(s, 0) is linear in x(s, a), whose parameter θi,t ∈ Rp is allowed to depend both
on the individual i and time t.

To mimic real-world recruitment where individuals may not enter a study all at once, we
consider a study that proceeds in stages. Figure 3 in Appendix A visualizes this sequential
recruitment. At stage 1, the first individual is recruited and observed at time t = 1. At stage
k, individuals j ≤ k have been observed for k − j + 1 decision times respectively. Then each
individual j ∈ [k + 1] is observed in a random order at their next time step. Let Hi,t denote
the observation history up to time t for individual i.

We make the following two standard assumptions as in Abeille & Lazaric (2017).
Assumption 1. The reward is observed with additive error ϵi,t,conditionally mean 0 (i.e.,
E[ϵi,t|Hi,t] = 0) sub-Gaussian with variance σ2: E[exp(ηϵi,t)|Hi,t] ≤ exp(η2σ2/2) for η > 0.
Assumption 2. We assume ∥x(s, a)∥ ≤ 1 for all contexts and actions and that there
exists B ∈ R+ such that ∥θi,t∥ ≤ B, ∀i, t and |gt(s)| ≤ B ∀s, t and B is known.

Here we consider stochastic policies πi,t : Hi,t × S → P([K]), which map the observed
history Hi,t and current context to a distribution over actions [K]. Let πi,t(a|s) denote the
probability of action a ∈ [K] given current context s ∈ S induced by the map πi,t for a fixed
(implicit) history.

3.1 DML and Doubly Robust Differential Reward

We first consider a single individual i under a time-invariant linear differential reward, so
that θi,t = θ ∈ Rp. If the differential reward ∆(si,t, ai,t) was observed, we could apply
ridge regression with a linear model of the form x(si,t, ai,t)

⊤θ and a ridge penalty of λ∥θ∥22.
However, the differential reward is unobserved: we instead consider an inverse-probability
weighted (IPW) estimator of the differential reward based on the available data:

E
[(

δAi,t=ā

1− πi,t(0|s)
−

δAi,t=0

πi,t(0|s)

)
Ri,t|si,t, āi,t

]
= ∆i,t(si,t, āi,t) (2)

where āi,t ∈ [K] denotes the potential non-baseline arm that may be chosen if the baseline
arm is not chosen; i.e., randomization is restricted to be between Ai,t = āi,t and 0. Given
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the probabilities in the denominators are known, the estimator is unbiased and therefore can
replace the observed reward in the Thompson sampling framework.

We refer to these ∆i,t(si,t, āi,t) as the differential reward. Below, we define a pseudo-
reward with the same expectation in reference to pseudo-outcomes from the causal inference
literature (Bang & Robins, 2005; Kennedy, 2020). Let fi,t(s, a) be a working model for the
true conditional mean ri,t(s, a). Then, following connections to pseudo-outcomes and doubly-
robust (DR) estimators (Kennedy, 2020; Shi & Dempsey, 2023), we define the pseudo-reward
R̃f

i,t(s, ā) given state Si,t = s and potential arm ā

R̃f
i,t(s, ā) ≡

(Ri,t − fi,t(s,Ai,t))

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā) (3)

where ∆f
i,t(s, ā) = fi,t(s, ā)− fi,t(s, 0). Going forward we will often abbreviate using R̃f

i,t,
with the state and action implied. Equation (3) presents a Doubly Robust estimator for
the Differential Reward; i.e., if either πi,t or fi,t are correctly specified, (3) is a consistent
estimator of the differential reward—so we refer to it as a DR2 bandit. See Appendix G.1
for a proof of double robustness. The primary advantage of this pseudo-reward is that by
including the fi,t, it has lower variance than if we simply used the inverse propensity-weighted
observed reward as our pseudo-reward, which was done in Greenewald et al. (2017). Lemma
5 and Remark 2 in Appendix G.2 show proofs and discuss why this pseudo-reward lowers
variance compared to Greenewald et al. (2017).

After exploring the properties of the pseudo-reward, an important question arises regarding
how we can learn the function f(s, a) using observed data. We hereby provide two options,
each based on different assumptions. Option 1 utilizes supervised learning methods and
cross-fitting to accurately learn the function while avoiding overfitting as demonstrated in
Chernozhukov et al. (2018) and Kennedy (2020). Our model (2) admits sample splitting
across time under the assumption of additive i.i.d. errors and no delayed or spill-over effects.
Such an assumption is plausible in the mHealth setting where we do not expect an adversarial
environment.

In the following, we explain sample splitting as a function of time t as we currently consider
a single individual i. Step 1: Randomly assign each time t to one of M -folds. Let Im(t) ⊆
{1, . . . , t} denote the m-th fold as assigned up to time t and I∁m(t) denote its complement.
Step 2: For each fold at each time t, use any supervised learning algorithm to estimate
the working model for ri,t(s, a) denoted f̂

(m)
i,t (s, a) using I∁m. Step 3: Construct the pseudo-

outcomes using (3) and perform weighted, penalized regression estimation by minimizing
the loss function:

M∑
m=1

∑
t∈Im(T )

σ̃2
i,t

(
R̃f̂(m)

i,t − x(si,t, ai,t)
⊤θ

)2

(4)

with ridge penalty λ∥θ∥22, where σ̃2
i,t = πi,t(0|si,t) · (1 − πi,t(0|si,t)). The weights are a

consequence of unequal variances due to the use of DR estimators; i.e., var(R̃f
i,t) is inversely

proportional to (σ̃2
i,t)

2.

We explore an alternative, Option 2, based on recent work that avoids sample splitting
via the use of stable estimators Chen et al. (2022). To relax the i.i.d. error assumption to
Assumption 1, we only update fi,t(s, a) using observed history data in an online fashion,
fixing pseudo-outcomes at each stage based on the current estimate of the nonlinear baseline.
See Appendix C for further discussion.

Finally, in order to obtain guarantees for this DML approach, we make the following
assumption on the convergence of our estimate f̂ to the true mean reward:
Assumption 3. For some m > 0, at stage k, for any δ > 0, there exists C > 0 s.t.

P

(
∥f̂i,t − ri,t∥∞
k−1/4 logm k

> C

)
≤ δ
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That is, ∥f̂i,t − ri,t∥∞ = ÕP (k
−1/4). Further, f̂i,t is uniformly bounded ∀i, t and stage k.

Note that while L∞ convergence is strong, a number of machine learning models such as
KNN (Jiang, 2019) are known to exhibit it stochastically. We leave relaxing this assumption
to the weaker L2 (mean squared) convergence assumption for future work.

3.2 Nearest Neighbor Regularization

Above, we considered a single individual i under a time-invariant linear differential reward
function; i.e., x(si,t, ai,t)⊤θ where θ ∈ Rp. Here, we consider the setting of N independent
individuals and a time-invariant linear differential reward with individual-specific parameter;
i.e., θi ∈ Rp. If θi were known a priori, then one could construct a network based on
L2-distances {d(i, j) := ∥θi − θj∥22}j ̸=i.

Specifically, define a graph G = (V,E) where each user represents a node, e.g., V := [N ],
and (i, j) is in the edge set E for the smallest M ≪ N distances. The working assumption is
that connected users share similar underlying vectors θi, implying that the rewards received
from one user can provide valuable insights into the behavior of other connected users.
Mathematically, (i, j) ∈ E implies that ∥θi − θj∥ is small.

We define the Laplacian via the N ×MN incidence matrix B. The element Bv,e corresponds
to the v-th vertex (user) and e-th edge. Denote the vertices of e as vi and vj with i > j.
Bve is then equal to 1 if v = vi, -1 if v = vj , and 0 otherwise. The Laplacian matrix is then
defined as L = BB⊤. We can then adapt (4) by summing over participants and including a
network cohesion penalty similar to Yang et al. (2020):

tr(Θ⊤LΘ) =
∑

(i,j)∈E

∥θi − θj∥22,

where Θ := (θ1, . . . , θN )⊤ ∈ RN×p. The penalty is small when θi and θj are close for
connected users. Following Assumption 2 and above discussion, we further assume:
Assumption 4. There exists D ∈ R+ such that ∥θi − θj∥22 ≤ D, ∀i, j, and D is known.

4 DML Thompson Sampling with Nearest Neighbor
Regularization

4.1 Algorithm

Based on Section 3, we can now formally state our proposed DML Thompson Sampling
with Nearest Neighbor Regularization (DML-TS-NNR) algorithm. In our study, we adopt a
sequential recruitment setting in which individuals’ enrollment occurs in a staggered manner
to mimic the recruitment process in real mHealth studies. More specifically, we first observe
individual i = 1 at time t = 1. Then we observe individuals i = (1, 2) at times t = (2, 1).
After k time steps, we observe individuals i ∈ [k] at times (k+1− i, k− i, . . . , 1) respectively.
We then observe these individuals in a random sequence one at a time before moving to
stage k + 1. Define Ok = {(i, t) : i ≤ k & t ≤ k + 1− i} be the set of observed time points
across all individuals at stage k. Again see Figure 3 in Appendix A for a visualization.

By performing a joint asymptotic analysis with respect to the total number of individuals
(N) and time points (T ), we can relax the assumption of a single time-invariant linear
advantage function and allow θi,t ∈ Rp to depend on both the individual i and time t. Here,
we let θi,t = θ + θind

i + θtime
t ; i.e., include (i) an individual-specific, time-invariant term θi,

and (ii) a shared, time-specific term θt. This setup is similar to the the intelligentpooling
method of Tomkins et al. (2021); however, rather than assume individuals and time points are
unrelated iid samples, we assume knowledge of some network information (e.g., the similarity
of certain individuals or proximity in time) and regularize these parameters accordingly to
ensure network cohesion.

The DML-TS-NNR algorithm is shown in Algorithm 1. To see the motivation, consider the fol-
lowing. We first assume that we have access to two nearest neighbor graphs, Guser and Gtime,
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where each characterizes proximity in the user- and time-domains respectively. Then at
at stage k, we estimate all parameters, e.g. Θk = vec[

(
θ, θind

1 , . . . , θind
k , θtime

1 , . . . , θtime
k

)
] ∈

Rp(2k+1) , by minimizing the following penalized loss function Lk(Θk;λ, γ), which is defined
as the following expression:

∑
(i,t)∈Ok

σ̃2
i,t

(
R̃f̂(m)

i,t − x(Si,t, Ai,t)
⊤(θ + θind

i + θtime
t )

)2
+

γ

(
∥θ∥22 +

k∑
i=1

∥θind
i ∥22 +

k∑
t=1

∥θtime
t ∥22

)
+ λ

(
tr
(
Θ⊤

userLuserΘuser
)
+ tr

(
Θ⊤

timeLtimeΘtime
))

,

(5)

where Θuser,Θtime ∈ Rp×k. In comparison to existing methods, the primary novelty in Equa-
tion (5) is that (1) the observed outcome Ri,t is replaced by a pseudo-outcome R̃f(k)

i,t and (2)
the doubly-robust pseudo-outcome leads to a weighted least-squares loss with weights σ̃2

i,t.
The network cohesion penalties and time-specific parameters have been considered else-
where (Yang et al., 2020; Tomkins et al., 2021), though, not together. For more details
regarding Algorithm 1, please refer to Appendix B.

Algorithm 1 DML-TS with Nearest Neighbor Regularization (DML-TS-NNR)
Input: δ, σ, c, C, m, λ, γ, L, Bw, Dw

Set L⊗ = L⊗ Ip and B = k λ√
γ (Dind +Dtime) +

√
γn (Bind +Btime)

Initialize: V0 = diag(γIp, λL
ind
⊗ + γIkp, λL

time
⊗ + γIkp) and b0 = 0

for k = 1, . . . ,K do
Option 1: Randomly assign (i, t) ∈ Ok\Ok−1 to one of the M partitions
Observe Context variable Sl = Sil,k+il−1

Set Θ̂k = V −1
k bk

Calculate

βk(δ) = vk

[
2 log

(
det(Vk)

1/2

det(V0)1/2δ/2

)]1/2
+B

where v2k ≡ Cc log2m(k)k−1/2 + σ2c2

Generate ηk ∼ DTS and compute

Θ̃k = Θ̂k + βk(δ
′)V

−1/2
k ηk

For each (i, t) ∈ Ok\Ok−1 select Ai,t that maximizes:

x(Si,t, a)
⊤
(
θ̃ + θ̃ind

i + θ̃time
t

)
Observe rewards Ri,t

Construct feature xt = x(St, At) and ϕi,t = ϕ(xi,t)

Option 1: Re-construct predictions for all f̂ (m) partitions for m = 1, . . . ,M and
re-compute all pseudo-outcomes R̃f̂(m)

i,t for all (i, t) ∈ Ok.
Option 2: Construct predictions for next stage f̂ (k) partitions and compute pseudo-
outcomes R̃f̂(k)

i,t only for those (i, t) ∈ Ok\Ok−1 .
Update Vk = Vk−1 +

∑
(i,t)∈Ok\Ok−1

σ̃2
i,tϕi,tϕ

⊤
i,t and bk = bk−1 +∑

(i,t)∈Ok\Ok−1
σ̃2
i,tR̃

f̂
i,tϕi,t

end for

4.2 Regret Analysis

Given the knowledge of true parameters Θ, the optimal policy is simply to select, at decision
time t for individual i, the action a∗i,t = argmaxa∈A x(Si,t, a)

⊤(θ + θi + θt) given the state
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variable Si,t. This leads us to evaluate the algorithm by comparing to this optimal policy
after each stage. Given both the number of individuals and the number of time points
increases per stage, we define stage k regret to be the average across all individuals at stage
k:

RegretK =

K∑
k=1

1

k

 ∑
(i,t)∈Ok\Ok−1

[
x(Si,t, a

∗
i,t)

⊤(θ∗ + θ⋆i + θ⋆t )− x(Si,t, Ai,t)
⊤(θ∗ + θ⋆i + θ⋆t )

]
This is a version of pseudo-regret Audibert et al. (2003). As compared to the standard regret,
the only randomness of the pseudo-regret is due to {Ai,t}⊤t=1 since the error terms {ϵi,t}⊤t=1
are removed in the definition.
Theorem 1. Under Assumptions 1 and 2. Then, with probability at least 1− δ, the regret
of Algorithm 1 satisfies

(
βK(δ′) + γK(δ′)

[
1 +

4

d

])√
4cHKKd log

(
γ + λM +

K + 1

8d

)
− log det (V0)

+
4γK(δ′)

d

√
8K

λ
log

(
4

δ

)
,

where fK = logdetVK − logdetV0, V0 = λL⊗Ip+γInp, δ′ = δ/4K, min(π(0|s), 1−π(0|s)) >
1/c and HK = O(log(K)) is the harmonic number. βK and γK are defined in Appendix G.

Proof of Theorem 1 is in Appendix G. The regret bound is similar to prior work by Abeille
& Lazaric (2017); however, our bound differs in three ways: (1) the harmonic number HK

enters as an additional cost for considering average regret per stage with the regret being
O(

√
K log2(K)) having an additional log(K) factor; (2) the bound depends on the dimension

of the differential reward model rather than the dimension of the overall model which can
significanlty improve the regret bound; and (3) the βK(δ′) depends on rate of convergence
of the model f to the true mean differential reward r as discussed in Appendix G.2, which
demonstrates the benefits of good models for this term and how it impacts regret.

5 Experiments

This section shows results from applying our proposed method in simulations and two case
studies. Simulations were implemented using Python, and the results were generated using
individual compute nodes with two 3.0 GHz Intel Xeon Gold 6154 processors and 180 GB of
RAM. Case studies were implemented using R 4.2.2 and results were generated on a cluster
composed of individual compute nodes with 2.10 GHz Intel Xeon Gold 6230 processors and
192 GB of RAM.

5.1 Competitor Comparison Simulation

In this section, we test three versions of our proposed method: (1) DML-TS-NNR-BLM:
Our algorithm using an ensemble of Bagged Linear Models, (2) DML-TS-NNR-BT: Our
algorithm using an ensemble of Bagged stochastic gradient Trees (Gouk et al., 2019; Mastelini
et al., 2021), and (3) DML-TS-SU-BT: Same as (2) but treating the data as if it were derived
from a Single User.

We implemented these using River (Montiel et al., 2021) and SuiteSparse (Davis & Hu, 2011),
and compare to four related methods: (1) Standard: Standard Thompson sampling for linear
contextual bandits, (2) AC: Action-Centered contextual bandit algorithm (Greenewald et al.,
2017), (3) IntelPooling: The intelligentpooling method of Tomkins et al. (2021) fixing the
variance parameters close to their true values, and (4) Neural-Linear: a method that uses a
pre-trained neural network to transform the feature space for the baseline reward (similar to
the Neural Linear method of Riquelme et al. (2018), which in turn was inspired by Snoek

7



Under review as a conference paper at ICLR 2024

et al. (2015)). In general, we expect our method to outperform these methods because it
is the only one that can (1) efficiently pool across users and time, (2) leverage network
information, and (3) accurately model a complex, nonlinear baseline reward.

We compare these seven methods under three settings that we label as Homogeneous Users,
Heterogeneous Users, and Nonlinear. The first two settings involve a linear baseline model
and time-homogeneous parameters, but they differ in that the users in the second setting
have distinct parameters. The third setting is more general and includes a nonlinear baseline,
user-specific parameters, and time-specific parameters. Across all three settings, we simulate
125 stages following the staged recruitment regime depicted in Figure 3 in Appendix A, and
we repeat the full 125-stage simulation 50 times. Appendix D provides details on the setup
and a link to our implementation.

Figure 1: Cumulative regret in the (a) Homogeneous Users, (b) Heterogeneous Users, and
(c) Nonlinear settings. The DML methods perform competitively in all three settings and
appear to be achieving sublinear regret as expected based on our theoretical results. The
DML-TS-NNR-BLM and DML-TS-NNR-BT algorithms perform best, and their final regret
is statistically indistinguishable (see Table 1 in Appendix D.2).

Figure 1 shows the cumulative regret for each method at varying stages. The DML methods
perform competitively against the benchmark methods in all three settings and appear to
be achieving sublinear regret as expected based on our theoretical results. Across all three
settings, the best-performing method is either DML-TS-NNR-BLM or DML-TS-NNR-BT.
In the first setting, the difference between our methods and IntelPooling is not statistically
meaningful because IntelPooling is properly specified and network information is not relevant.
In the other two settings, however, our methods offer substantial and statistically meaningful
improvement over the other methods. Appendices D.2 and D.3 shows detailed pairwise
comparisons between methods and an additional simulation study using a rectangular array
of data.

5.2 Valentine Results

In parallel with the simulation study, we conducted a comparative analysis on a subset of
participants from the Valentine Study (Jeganathan et al., 2022), a prospective, randomized-
controlled, remotely-administered trial designed to evaluate an mHealth intervention to
supplement cardiac rehabilitation for low- and moderate-risk patients. In the analyzed subset,
participants were randomized to receive or not receive contextually tailored notifications
promoting low-level physical activity and exercise throughout the day. The six algorithms
being compared include (1) Standard, (2) AC, (3) IntelPooling, (4) Neural-Linear, (5) DML-
TS-SU-RF (RF stands for Random Forest (Breiman, 2001)), and (6) DML-TS-NNR-RF.
Figure 2 shows the estimated improvement in average reward over the original constant
randomization, averaged over stages (K = 120) and participants (N=108).

To demonstrate the advantage of our proposed algorithm in terms of average reward compared
to the competing algorithms, we conducted a pairwise paired t-test with a one-sided alternative
hypothesis. The null hypothesis (H0) stated that two algorithms achieve the same average
reward, while the alternative hypothesis (H1) suggested that the column-indexed algorithm
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achieves a higher average reward than the row-indexed algorithm. Figure 2 displays the
p-values obtained from these pairwise t-tests. Since the alternative hypothesis is one-sided,
the resulting heatmap is not symmetric. More details on implementation can be found in
Appendix E.

Figure 2: (left) Boxplot of unbiased estimates of the average per-trial reward for all six
competing algorithms, relative to the reward obtained under the pre-specified Valentine
randomization policy across 100 bootstrap samples. Within each box, the asterisk (∗)
indicates the mean value, while the mid-bar represents the median. (right) Heatmap of
p-values from the pairwise paired t-tests. The last column’s dark shade indicates that the
proposed DML-TS-NNR-RF algorithm achieves significantly higher rewards than the other
five competing algorithms, and DML-TS-SU-RF displays the second-best performance.

To further enhance the competitive performance of our proposed DML-TS-NNR algorithm,
we conducted an additional comparative analysis using a real-world dataset from the Intern
Health Study (IHS) (NeCamp et al., 2020). Further details regarding the analysis can be
found in Appendix F.

6 Discussion and Future Work

In this paper, we have presented the DML Thompson Sampling with Nearest Neighbor
Regularization (DML-TS-NNR) algorithm, a novel contextual bandit algorithm specifically
tailored to the mHealth setting. By leveraging the DML framework and network cohesion
penalties, DML-TS-NNR is able to accurately model complex, nonlinear baseline rewards
and efficiently pool across both individuals and time. The end result is increased statistical
precision and, consequently, the ability to learn effective, contextually-tailored mHealth
intervention policies at an accelerated pace.

While DML-TS-NNR achieves superior performance relative to existing methods, we see
several avenues for improvement. First, the algorithm considers only immediate rewards
and, as such, may not adequately address the issue of treatment fatigue. Second, the
current algorithm involves computing a log-determinant and matrix inverse, which can
be computationally expensive for large matrices. Third, we have made the simplifying
assumption that the differential reward is linear in the context vectors. Fourth, we have
assumed that the network structure is known and contains only binary edges. Fifth, our
algorithm involves several hyperparameters whose values may be difficult to specify in
advance. Future work will aim to address these practical challenges in applied settings.
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A Recruitment Regime Illustration
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Figure 3: Illustration of the staged recruitment scheme. At each recruitment stage (each
time point), a new participant is recruited and observed; at the same time, all participants
who were recruited prior to the current stage are also observed again. Observations are not
collected from participants who have yet to be recruited. For simplicity, we assume one
participant is recruited at each stage.

B Additional Details for Algorithm 1

The inclusion of γ > 0 ensures a unique solution at each step, while λ controls smoothness
across the individual-specific and time-specific parameters. In particular, when λ = 0, no
information is shared across individuals or across time. A positive value of λ introduces
the smoothness of these estimates, e.g., if (i, j) ⊂ Eind then ∥θind

i − θind
j ∥2 tends to be

small. It can be shown that
∑

(i,j)⊂Eind
∥θind

i − θind
j ∥22 = θ⊤indL⊗θind, where L⊗ = L⊗ Ip and

θind = (θind
1 , . . . , θind

k ) is the vector of individual-specific parameters. Let xi,t := x(Si,t, Ai,t)
and V0 = diag(γIp, λL

ind
⊗ + γIkp, λL

time
⊗ + γIkp). Let Φk be the design matrix of features

ϕ(xi,t), Wk be the diagonal matrix of weights σ̃2
i,t, and Rk the vector of pseudo-rewards

R̃f(k)

i,t . In all of these (i, t) ∈ Ok. Then the minimizer Θ̂k of (5) is

[Φ⊤
k WkΦk + V0]

−1[Φ⊤
k WkRk] =

[ ∑
(i,t)∈Ok

σ̃2
i,tϕ(xi,t)ϕ(xi,t)

⊤ + V0

]−1

︸ ︷︷ ︸
V −1
k−1

[ ∑
(i,t)∈Ok

σ̃2
i,tR̃

f(k)

i,t ϕ(xi,t)
]

︸ ︷︷ ︸
bk−1

.

where ϕ(xi,t) ∈ Rp(2k+1) for any (i, t) ∈ Ok is defined as

ϕ(xi,t) = (xi,t,0̄(i−1)p,xi,t, 0̄(k−i)p, 0̄(t−1)p,xi,t, 0̄(k−t)p).

The first location of non-zero entries is for the global parameters, the second for the individual
parameters and the third for the time parameters.

Remark 1 (Computationally efficient estimation). Direct calculation of Θ̂k leads to a
computationally expensive inversion of the (2k + 1) · p dimensional matrix Vt−1 at each stage
k. To avoid this, we observe Vk = Vk−1 +

∑
(i,t)∈Ok\Ok−1

σ̃2
i,tϕ(xi,t)ϕ(xi,t)

⊤ and apply the
Sherman-Morrison formula for more efficient computation.

Next, we consider a generic randomized algorithm based on the RLS estimate by sampling
a perturbed parameter Θ̃k and then selecting an action by simply maximizing the linear
differential reward x(s, a)⊤(θ̃ + θ̃i + θ̃t). This construction includes standard Thompson
sampling as an important special case. Specifically, we construct Θ̃k = Θ̂k + βk(δ

′)V
−1/2
k ηk

where ηk is a random sample drawn i.i.d. from a suitable multivariate distribution DTS and
βk(δ

′) is a term from the self-normalization bound (Theorem 2) developed in Abbasi-Yadkori
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et al. (2011). Because of our use of fi,t to approximate ri,t, βk(δ
′) is smaller, and thus our

distribution for Θ̂k has lower variance than if we did not use fi,t. We discuss this in detail
in Appendix G.2. To ensure small regret, we must choose the random variable ηk to ensure
sufficient exploration but not too much. Definition 1 is from Abeille & Lazaric (2017) and
formalizes the properties of the random variable ηk.

Definition 1. DTS is a multivariate distribution on Rd absolutely continuous with respect to
Lebesgue measure which satisfies: 1. (anti-concentration) that there exists a strictly positive
probability p such that for any u ∈ Rd with ∥u∥ = 1, P(u⊤η ≥ 1) ≥ p; and 2. (concentration)
there exists c, c′ positive constants such that ∀δ ∈ (0, 1), P (∥η∥ ≤

√
cd log(c′d/δ)) ≥ 1− δ.

While a Gaussian prior satisfies Definition 1, this approach allows us to move beyond
Bayesian posteriors to generic randomized policies. In practice, the true parameter values
Θ are unknown, so βk(δ

′) is not available. Thus one needs to insert upper bounds for
∥Lind

⊗ θind∥2 and ∥θind∥2 and similarly for time-specific parameters. For example, ∥L⊗θ∥2 ≤
M · N max(i,j)∈E ∥θi − θj∥2. Similarly, based on ∥θ∥2 ≤

√
kmaxi ∥θi∥2, by Assumption 2,

we have ∥θ∥2 ≤
√
kB.

C Option 1 & 2

In Algorithm 1, we provide two options for constructing f̂ and the corresponding pseudo-
outcomes R̃f̂

i,t. Option 1 assumes i.i.d. additive error and recomputes the pseudo-rewards,

R̃f̂(m)

i,t , at each stage for all i, t using an updated estimate of f , which can be estimated using
either (a) sample splitting or (b) stable estimators, such as bagged ensembles constructed via
sub-sampling. Option 2 uses historical data to generate predictions in an online fashion, and
calculates the pseudo-rewards only once without updating them for all subsequent stages.

Our simulations have confirmed that both options result in comparable regret. In reality,
however, it’s important to note that the decisions made for individual i at time t may depend
on all previous data. Based on this argument, Option 2 was used in both case studies and
simulations, highlighting the benefits of our approach in numerical as well as real-world
mHealth studies, as detailed in the manuscript.

C.1 Option 1

Sample splitting has been widely used in the DML-related literature (Chernozhukov et al.,
2018; Kennedy, 2020) to relax modeling constraints in constructing f̂ . This approach allows
the flexibility of the model to increase with the sample size while protecting against overfitting.
As a result, complex machine learning algorithms can be utilized to estimate the function
f , resulting in accurate estimation of the differential reward ∆f and, consequently, precise
estimates of the θ’s in the linear differential reward function.

When implemented as part of our proposed algorithm, sample splitting randomly partitions all
available data into M folds. This step relies heavily on the assumption of i.i.d additive errors,
as the random splits are formed on a per-observation basis. Theoretical findings outlined
in Chernozhukov et al. (2018) demonstrate the crucial role of sample splitting in achieving√
n-consistency and ensuring the validity of inferential statements for the parameters in the

linear differential reward function.

As an alternative to sample splitting, one can instead construct f̂ via stable estimators that
exhibit a o(n−1/2) leave-one-out stability. A recent study by Chen et al. (2022) demonstrated
that estimators based on predictive models that satisfy this condition can achieve

√
n-

consistency and asymptotic normality without relying on the Donsker property or employing
sample splitting.

The stability conditions outlined in Theorem 5 of Chen et al. (2022) are satisfied by bagging
estimators formed with sub-sampling. We leverage this result in Section 5 by testing several
versions of our method based on bagged estimators: two based on bagged stochastic gradient
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trees (DML-TS-NNR-BT and DML-TS-SU-BT) and one based on bagged linear models
(DML-TS-NNR-BLM).

As long as the errors are i.i.d., methods based on either (a) sample splitting or (b) stable
estimators are permissible within our method. In both cases, we are able to leverage both
current and previous observations to construct the latest estimation of f̂ .

C.2 Option 2

In the mobile health setting, deviations from the expected reward typically represent the
effects of idiosyncratic error as opposed to adversarial actions. Consequently, the i.i.d.
assumption is more plausible in mobile health than in general contextual bandit settings.
However, due to the sequential design of mobile health studies, one challenge that may arise
is dependence across time within individual users. Option 2 adapts our method to address
this challenge.

When considering errors that exhibit temporal dependence, it is reasonable to utilize past
observations to create future pseudo-rewards but not the other way around. For instance,
at stage k, we train the model f̂ (k) using all the history observed up until stage k − 1 and
construct pseudo-rewards for the rewards observed in stage k; however, we do not use f̂ (k)

to update pseudo-rewards for previous stages.

Fixing the pseudo-rewards in this manner enables us to move beyond the assumption of i.i.d.
additive errors. This approach is compatible with both the sample splitting and bagging
approaches discussed previously. As a computational convenience, researchers may choose to
update f̂ in an online fashion as we did in Section 5.1. The primary tradeoff in doing so is
that the online predictive model may not perform as well as a model trained in one batch,
especially in the early stages.

D Additional Details for Simulation Study

The code for the simulation study is fully containerized and publicly available at https:
//redacted/for/anonymous/peer/review.

D.1 Setup Details

We consider a generative model of the following form for user i at time t:

Rit = g(Sit) + x(Sit, Ait) θit + ϵit, ϵit ∼ N (0, 1)

Here Sit = (s1, s2) ∈ R2 is a context vector, with both dimensions iid∼ U(−1, 1). We set
x(s, a) = a (1, s1, s2). For simplicity, we set g to a time-homogeneous function. The specific
nature of the function varies across the following three settings mentioned in Section 5.1:

• Homogeneous Users: Standard contextual bandit assumptions with a linear baseline
and no user- or time-specific parameters. The linear baseline is g(Sit) = 2−2s1+3s2,
and the causal parameter is θit = (1, 0.5,−4) such that the optimal action varies
across the state space.

• Heterogeneous Users: Same as the above but each user’s causal parameter has iid
N (0, 1) noise added to it.

• Nonlinear: The general setting discussed in the paper with a nonlinear baseline,
user-specific parameters, and time-specific parameters. The base causal parameter
and user-specific parameters are the same as in the previous two settings. The
nonlinear baseline and time-specific parameter are shown in Figure 4.

We assume that the data are observed via a staged recruitment scheme, as illustrated
in Figure 3 in Appendix A. For computational convenience, we update parameters and
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select actions in batches. If, for instance, we observe twenty users at a given stage, we
update our estimates of the relevant causal parameters and select actions for all twenty
users simultaneously. This strategy offers a slight computational advantage with limited
implications in terms of statistical performance.

For simplicity, we assume that the nearest neighbor network is known and set the relevant
hyperparameters accordingly. We took care to set γ such that our method performs a similar
amount of shrinkage compared to other methods, such as IntelPooling, which effectively uses
a separate penalty matrix for users and time. To do so, we set a separate value of γ for both
users and time and set it to the maximum eigenvalue of the penalty matrix (random effect
precision matrix) used by IntelPooling. We use 5 neighbors within the DML methods and
set the other hyperparameters as follows: σ = 1, λ = 1, and δ = 0.01.

For the Neural-Linear method, we generate a 125 × 125 array of baseline rewards (no
action-specific component) to train the neural network prior to running the bandit algorithm.
Consequently, the results shown in the paper for Neural-Linear are better than would be
observed in practice because we allowed the Neural-Linear method to leverage data that we
did not make available to the other methods. This setup offers the computational benefit of
not needing to update the neural network within bandit replications, which substantially
reduces the necessary computation time.

Aside from the input features used, the Neural-Linear method has the same implementation
as the Standard method. The Neural-Linear method uses the output from the last hidden
layer of a neural network to model the baseline reward. However, we use the original features
(the state vectors) to model the advantage function because the true advantage function is,
in fact, linear in these features.

Our neural networks consisted of four hidden layers with 10, 20, 20, and 10 nodes, respectively.
The first two employ the ReLU activation function (Nair & Hinton, 2010) while the latter
two employ the hyperbolic tangent. We chose to use the hyperbolic tangent for the last
two layers because Snoek et al. (2015) found that smooth activation functions such as the
hyperbolic tangent were advantageous in their neural bandit algorithm. The loss function
was the mean squared error between the neural networks’ output and the baseline reward
on a simulated data set. We trained our networks using the Adam optimizer (Kingma &
Ba, 2014) with batch sizes of 200 for between 20 and 50 epochs. We simulated a separate
validation data set to ensure to check that our model had converged and was generating
accurate predictions.

Figure 5 compares the true baseline reward function in the nonlinear setting (left) to that
estimated by the neural network (right). We see that neural network produced an accurate
approximation of the baseline reward, which helps explain the good performance of the
Neural-Linear method relative to other baseline approaches, such as Standard.

We include the Neural-Linear method primarily to demonstrate that correctly modeling
the baseline is not sufficient to ensure good performance. In the mobile health context,
algorithms should also be able to (1) efficiently pool data across users and time and (2)
leverage network information. The Neural-Linear method satisfies neither of these criteria.
Note that a neural network could be used to model the baseline rewards as part of our
algorithm. Future work could consider allowing the differential rewards themselves to also be
complex nonlinear functions, which could be accomplished by combining our method with
Neural-Linear. We leave the details to future work.

D.2 Pairwise Comparisons for Main Simulation

Table 1 shows pairwise comparisons between methods across the three settings. The individual
cells indicate the percentage of repetitions (out of 50) in which the method listed in the row
outperformed the method listed in the column. The asterisks indicate p-values below 0.05
from paired two-sided t-tests on the differences in final regret. The Avg column indicates the
average pairwise win percentage.

The DML-TS-NNR-BLM and DML-TS-NNR-BT methods perform well across all three
settings and the difference between them is statistically indistinguishable. These methods
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Figure 4: (left) The baseline reward function g(Sit) used in the simulation study. The
proposed method allows this function to be a nonlinear function of the context vectors. The
baseline was generated using a combination of recursive partitioning and by summing scaled,
shifted, and rotated Gaussian densities. (right) The time-specific parameters used in the
simulation study. These parameters cause the advantage function to vary over time. We set
them such that the advantage function changes quickly at the beginning of the study then
stabilizes.

Figure 5: (left) The baseline reward function g(Sit) used in the simulation study compared
to (right) the estimated baseline reward from our neural network in the nonlinear setting.
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perform about equally well compared to IntelPooling in the first setting, but they perform
better in the other settings because the DML methods (1) can leverage network information
and (2) can accurately model the nonlinear baseline reward in the third setting.

DML-TS-NNR-BLM and DML-TS-NNR-BT perform especially well in the nonlinear setting,
the more general setting for which they were designed. They achieve pairwise win percentages
of 91% and 87%, respectively, compared to only 48% for the next-best non-DML method
(IntelPooling).

Homogeneous Users

1 2 3 4 5 6 7 Avg

1. IntelPooling - 54% 46% 58% 100%* 100%* 100%* 76%
2. DML-TS-NNR-BLM 46% - 50% 52% 100%* 100%* 100%* 75%
3. DML-TS-NNR-BT 54% 50% - 58% 100%* 100%* 100%* 77%
4. DML-TS-SU-BT 42% 48% 42% - 100%* 100%* 100%* 72%
5. AC 0%* 0%* 0%* 0%* - 0%* 0%* 0%
6. Standard 0%* 0%* 0%* 0%* 100%* - 0%* 17%
7. Neural-Linear 0%* 0%* 0%* 0%* 100%* 100%* - 33%

Heterogeneous Users

1 2 3 4 5 6 7 Avg

1. IntelPooling - 0%* 10%* 10%* 100%* 100%* 84%* 51%
2. DML-TS-NNR-BLM 100%* - 54% 66%* 100%* 100%* 100%* 87%
3. DML-TS-NNR-BT 90%* 46% - 64% 100%* 100%* 100%* 83%
4. DML-TS-SU-BT 90%* 34%* 36% - 100%* 100%* 100%* 77%
5. AC 0%* 0%* 0%* 0%* - 0%* 0%* 0%
6. Standard 0%* 0%* 0%* 0%* 100%* - 0%* 17%
7. Neural-Linear 16%* 0%* 0%* 0%* 100%* 100%* - 36%

Nonlinear

1 2 3 4 5 6 7 Avg

1. IntelPooling - 2%* 6%* 24%* 100%* 94%* 62%* 48%
2. DML-TS-NNR-BLM 98%* - 56% 94%* 100%* 100%* 100%* 91%
3. DML-TS-NNR-BT 94%* 44% - 84%* 100%* 100%* 98%* 87%
4. DML-TS-SU-BT 76%* 6%* 16%* - 100%* 100%* 90%* 65%
5. AC 0%* 0%* 0%* 0%* - 0%* 0%* 0%
6. Standard 6%* 0%* 0%* 0%* 100%* - 10%* 19%
7. Neural-Linear 38%* 0%* 2%* 10%* 100%* 90%* - 40%

Table 1: Pairwise comparisons between methods in the three settings of the main simulation.
Each cell indicates the percent of repetitions (out of 50) in which the method listed in the
row outperformed the method listed in the column in term of final regret. Asterisks indicate
p-values below 0.05 from paired two-sided t-tests on the differences in final regret. The
full DML methods (DML-TS-NNR-BLM and DML-TS-NNR-BT) perform best in all three
settings and their final regret is statistically indistinguishable.

D.3 Simulation with Rectangular Data Array

The main simulation involves simulating data from a triangular data array. At the 125-th
(final) stage, the algorithm has observed 125 rewards for user 1, 124 rewards for user 2, and
so on.
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In this section, we simulate actions and rewards under a rectangular array with 100 users
and 100 time points. Although we still follow the staged recruitment regime depicted in
Figure 3 in Appendix A, at stage 100 we stop sampling actions and rewards for user 1; at
stage 101 we stop sampling for user 2; and so on until we have sampled 100 time points
for all 100 users. Aside from the shape of the data array, the setup is the same for this
simulation as for the main simulation.

Figure 6: Cumulative regret in the (a) Homogeneous Users, (b) Heterogeneous Users, and (c)
Nonlinear settings using a rectangular array of data in which we observe 100 time points for
100 users in a stagewise fashion as depicted in Figure 3 in Appendix A. Similar to Figure 1,
the full DML methods (DML-TS-NNR-BLM and DML-TS-NNR-BT) are highly competitive
in all three settings and substantially outperform the other methods in the nonlinear setting.

The cumulative regret for these methods as a function of time—not stage—is shown in
Figure 6. The qualitative results are quite similar to those from the main simulation. DML-
TS-NNR-BLM and DML-TS-NNR-BT are highly competitive in all three scenarios and
substantially outperform the other methods in the nonlinear setting; in fact, compared to
the main simulation, the improvement of these methods over the others is even larger.

Table 2 displays the results from pairwise method comparisons, similar to those shown in
Table 1. Again the results are qualitatively similar to those from the main simulation. In
26/30 pairwise comparisons, DML-TS-NNR-BLM and DML-TS-NNR-BT outperform the
other methods in 100% of replications. The four remaining pairwise comparisons are not
statistically significant and result from comparisons with DML-TS-SU-BT and IntelPooling
in the “Homogeneous Users” setting. DML-TS-NNR-BLM and DML-TS-NNR-BT offer little
or no benefit compared to these methods in that setting because (1) the baseline is linear, (2)
no network information is available, (3) no time effects are present, and (4) partial pooling
(employed by DML-TS-NNR-BLM, DML-TS-NNR-BT, and IntelPooling) offers no benefit
compared to full pooling (employed by DML-TS-SU-BT) because the causal effects are
exactly the same among users.

In summary, our methods substantially outperform the other methods in complex, general
settings and perform competitively with the other methods in simple settings.

E Additional Details for Valentine Study

Personalizing treatment delivery in mobile health is a common application for online learning
algorithms. We focus here on the Valentine study, a prospective, randomized-controlled,
remotely administered trial designed to evaluate an mHealth intervention to supplement
cardiac rehabilitation for low- and moderate-risk patients (Jeganathan et al., 2022). We aim
to use smart watch data (Apple Watch and Fitbit) obtained from the Valentine study to
learn the optimal timing of notification delivery given the users’ current context.

E.1 Data from the Valentine Study

Prior to the start of the trial, baseline data was collected on each of the participants (e.g.,
age, gender, baseline activity level, and health information). During the study, participants
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Homogeneous Users

1 2 3 4 5 6 7 Avg

1. IntelPooling - 62% 60% 58% 100%* 100%* 100%* 80%
2. DML-TS-NNR-BLM 38% - 50% 44% 100%* 100%* 100%* 72%
3. DML-TS-NNR-BT 40% 50% - 44% 100%* 100%* 100%* 72%
4. DML-TS-SU-BT 42% 56% 56% - 100%* 100%* 100%* 76%
5. AC 0%* 0%* 0%* 0%* - 0%* 0%* 0%
6. Standard 0%* 0%* 0%* 0%* 100%* - 0%* 17%
7. Neural-Linear 0%* 0%* 0%* 0%* 100%* 100%* - 33%

Heterogeneous Users

1 2 3 4 5 6 7 Avg

1. IntelPooling - 0%* 0%* 8%* 100%* 100%* 86%* 49%
2. DML-TS-NNR-BLM 100%* - 48% 100%* 100%* 100%* 100%* 91%
3. DML-TS-NNR-BT 100%* 52% - 100%* 100%* 100%* 100%* 92%
4. DML-TS-SU-BT 92%* 0%* 0%* - 100%* 100%* 100%* 65%
5. AC 0%* 0%* 0%* 0%* - 0%* 0%* 0%
6. Standard 0%* 0%* 0%* 0%* 100%* - 0%* 17%
7. Neural-Linear 14%* 0%* 0%* 0%* 100%* 100%* - 36%

Nonlinear

1 2 3 4 5 6 7 Avg

1. IntelPooling - 0%* 0%* 12%* 100%* 100%* 18%* 38%
2. DML-TS-NNR-BLM 100%* - 44% 100%* 100%* 100%* 100%* 91%
3. DML-TS-NNR-BT 100%* 56% - 100%* 100%* 100%* 100%* 93%
4. DML-TS-SU-BT 88%* 0%* 0%* - 100%* 100%* 64% 59%
5. AC 0%* 0%* 0%* 0%* - 0%* 0%* 0%
6. Standard 0%* 0%* 0%* 0%* 100%* - 0%* 17%
7. Neural-Linear 82%* 0%* 0%* 36% 100%* 100%* - 53%

Table 2: Pairwise comparisons between methods in the three settings of the simulation with
a rectangular array of data. As in Table 1, each cell indicates the percent of repetitions
(out of 50) in which the method listed in the row outperformed the method listed in the
column in term of final regret. Asterisks indicate p-values below 0.05 from paired two-sided
t-tests on the differences in final regret. The full DML methods (DML-TS-NNR-BLM and
DML-TS-NNR-BT) perform best in all three settings in terms of pairwise win percentages
and are not significantly different from each other.

21



Under review as a conference paper at ICLR 2024

are randomized to either receive a notification (At = 1) or not (At = 0) at each of 4 daily
time points (morning, lunchtime, mid-afternoon, evening), with probability 0.25. Contextual
information was collected frequently (e.g., number of messages sent in prior week, step count
variability in prior week, and pre-decision point step-counts).

Since the goal of the Valentine study is to increase participants’ activity levels, we thereby
define the reward, Rt, as the step count for the 60 minutes following a decision point
(log-transformed to eliminate skew). Our application also uses a subset of the baseline and
contextual data; this subset contains the variables with the strongest association to the
reward. Table 3 shows the features available to the bandit in the Valentine study data set.

Feature Description Interaction Baseline Model

Phase II 1 if in Phase II, 0 o.w.
√ √

Phase III 1 if in Phase II, 0 o.w.
√ √

Steps in prior 30 minutes log transformed
√ √

Pre-trial average daily steps log transformed ×
√

Device 1 if Fitbit, 0 o.w. ×
√

Prior week step count variability SD of the rewards in prior week ×
√

Table 3: List of features available to the bandit in the Valentine study. The features available
to model the action interaction (effect of sending an anti-sedentary message) and to model
the baseline (reward under no action) are denoted via a “

√
” in the corresponding column,

otherwise ×.

For baseline variables, we use the participant’s device model (Z1, Fitbit coded as 1), the
participant’s step count variability in the prior week (Z2), and a measure of the participant’s
pre-trial activity level based on an intake survey (Z3, with larger values corresponding to
higher activity levels).

At every decision point, before selecting an action, the learner sees two state variables: the
participant’s previous 30-minute step count (S1, log-transformed) and the participant’s phase
of cardiac rehabilitation (S2, dummy coded). The cardiac rehabilitation phase is defined
based on a participant’s time in the study: month 1 represents Phase I, month 2-4 represents
Phase II, and month 5-6 represents Phase III.

E.2 Evaluation

The Valentine study collected the sensor-based features at 4 decision points per day for each
study participant. The reward for each message was defined to be log(0.5 + x), where x is
the step count of the participant in the 60 minutes following the notification. As noted in the
introduction, the baseline reward, i.e. the step count of a subject when no message is sent,
not only depends on the state in a complex way but is likely dependent on a large number of
time-varying observed variables. Both these characteristics (complex, time-varying baseline
reward function) suggest using our proposed approach.

We generated 100 bootstrap samples and ran our contextual bandit on them, considering
the binary action of whether or not to send a message at a given decision point based on the
contextual variables S1 and S2. Each user is considered independently and with a cohesion
network, for maximum personalization and independence of results. To guarantee that
messages have a positive probability of being sent, we only sample the observations with
notification randomization probability between 0.01 and 0.99. In the case of the algorithm
utilizing NNR, we chose four baseline characteristics (gender, age, device, and baseline
average daily steps) to establish a measure of “distance" between users. For this analysis, the
value of k representing the number of nearest neighbors was set to 5. To utilize bootstrap
sampling, we train the Neural-Linear method’s neural network using out-of-bag samples. The
neural network architecture comprises a single hidden layer with two hidden nodes. The input
contains both the baseline characteristics and the contextual variables and the activation
function applied here is the softplus function, defined as softplus(x) = log(1 + exp (x)).
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We performed an offline evaluation of the contextual bandit algorithms using an inverse
propensity score (IPS) version of the method from Li et al. (2010), where the sequence of
states, actions, and rewards in the data are used to form a near-unbiased estimate of the
average expected reward achieved by each algorithm, averaging over all users.

E.3 Inverse Propensity Score (IPS) offline evaluation

In the implemented Valentine study, the treatment was randomized with a constant probability
pt = 0.25 at each time t. To conduct off-policy evaluation using our proposed algorithm and
the competing variations of the TS algorithm, we outline the IPS estimator for an unbiased
estimate of the per-trial expected reward based on what has been studied in Li et al. (2010).

Given the logged data D = {st = st, At = at, Rt = rt}Tt=1 collected under the policy
p = {pt}Tt=1, and the treatment policy being evaluated π = {πt}Tt=1, the objective of this
offline estimator is to reweight the observed reward sequence {Rt}Tt=1 to assign varying
importance to actions based on the propensities of both the original and new policies in
selecting them.
Lemma 1 (Unbiasedness of the IPS estimator). Assuming the positivity assumption in
logging, which states that for any given s and a, if pt(a|s) > 0, then we also have πt(a|s) > 0,
we can obtain an unbiased per-trial expected reward using the following IPS estimator:

R̂IPS =
1

T

T∑
t=1

πt(at|st)
pt(at|st)

rt (6)

As mentioned in the previous section, we restrict our sampling to observations with notification
randomization probabilities ranging from 0.01 to 0.99. This selection criterion ensures the
satisfaction of the positivity assumption. The proof essentially follows from definition, we
have:

Proof.

E[RIPS] = Ep

[
1

T

T∑
t=1

πt(at|st)
pt(at|st)

Rt(at, st)

]

=
1

T

T∑
t=1

πt(at|st)
pt(at|st)

Rt(at, st)× pt(at|st)

=
1

T

T∑
t=1

πt(at|st)Rt(at, st)

= Eπ

[
1

T

T∑
t=1

Rt(at, st)

]

To address the instability issue caused by re-weighting in some cases, we use a Self-Normalized
Inverse Propensity Score (SNIPS) estimator. This estimator scales the results by the empirical
mean of the importance weights, and still maintains the property of unbiasedness.

R̂SNIPS =
R̂IPS

1
T

∑T
t=1

πt(at|st)
pt(at|st)

=

∑T
t=1

πt(at|st)
pt(at|st) rt∑T

t=1
πt(at|st)
pt(at|st)

(7)

F Additional Details for the Intern Health Study (IHS)

To further enhance the competitive performance of our proposed DML-TS-NNR algorithm,
we conducted an additional comparative analysis using a real-world dataset from the Intern
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Health Study (IHS) (NeCamp et al., 2020). This micro-randomized trial investigated the use
of mHealth interventions aimed at improving the behavior and mental health of individuals
in stressful work environments. The estimates obtained represent the improvement in average
reward relative to the original constant randomization, averaging across stages (K = 30) and
participants (N = 1553). The available IHS data consist of 20 multiple-imputed data sets.
We apply the algorithms to each imputed data set and perform a comparative analysis of the
competing algorithms. The results presented in Figure 7 shows our proposed DML-TS-NNR-
RF algorithm achieved significantly higher rewards than the other three competing ones and
demonstrated comparable performance to the AC algorithm. These findings further support
the advantages of our proposed algorithm.

F.1 Data from the IHS

Prior to the start of the trial, baseline data was collected on each of the participants (e.g.,
institution, specialty, gender, baseline activity level, and health information). During the
study, participants are randomized to either receive a notification (At = 1) or not (At = 0)
every day, with probability 3/8. Contextual information was collected frequently (e.g., step
count in prior five days, and current day in study).

We hereby define the reward, Rt, as the step count on the following day (cubic root). Our
application also uses a subset of the baseline and contextual data; this subset contains the
variables with the strongest association to the reward. Table 4 shows the features available
to the bandit in the IHS data set.

Feature Description Interaction Baseline

Day in study an integer from 1 to 30
√ √

Average daily steps in prior five
days

cubic root
√ √

Average daily sleep in prior five
days

cubic root ×
√

Average daily mood in prior five
days

a Likert scale from 1− 10 ×
√

Pre-intern average daily steps cubic root ×
√

Pre-intern average daily sleep cubic root ×
√

Pre-intern average daily mood a Likert scale from 1− 10 ×
√

Sex Gender ×
√

Week category The theme of messages in a
specific week (mood, sleep, ac-
tivity, or none)

×
√

PHQ score PHQ total score ×
√

Early family environment higher score indicates higher
level of adverse experience

×
√

Personal history of depression ×
√

Neuroticism (Emotional experi-
ence)

higher score indicates higher
level of neuroticism

×
√

Table 4: List of features available to the bandit in the IHS. The features available to model
the action interaction (effect of sending a mobile prompt) and to model the baseline (reward
under no action) are denoted via a “

√
” in the corresponding column, otherwise ×.

At every decision point, before selecting an action, the learner sees two state variables: the
participant’s previous 5-day average daily step count (S1, cubic root) and the participant’s
day in study (S2, an integer from 1 to 30).

F.2 Evaluation

We run our contextual bandit on the IHS data, considering the binary action of whether
or not to send a message at a given decision point based on the contextual variables S1
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and S2. Each user is considered independently and with a cohesion network, for maximum
personalization and independence of results. To guarantee that messages have a positive
probability of being sent, we only sample the observations with notification randomization
probability between 0.01 and 0.99. For the algorithm employing NNR, we defined participants
in the same institution as their own “neighbors". This definition enables the flexibility for
the value of k, representing the number of nearest neighbors, to vary for each participant
based on their specific institutional context. Furthermore, in our study setting, we make the
assumption that individuals from the same "institution" enter the study simultaneously as
a group. Due to the limited access to prior data, we are unable to build the neural linear
models as in the Valentine Study.

We utilized 20 multiple-imputed data sets and performed an offline evaluation of the contextual
bandit algorithms on each data set. The result is presented below in Figure 7.

Figure 7: (left) Unbiased estimates of the average per-trial reward for all five competing
algorithms, relative to the reward obtained under the pre-specified Valentine randomization
policy across 20 multiple-imputed data sets. And (right) p-values from the pairwise paired
t-tests. The dark shade in the last column indicates that the proposed DML-TS-NNR-RF
algorithm achieved significantly higher rewards than the other three competing algorithms
while demonstrating comparable performance to the AC algorithm.

G Regret Bound

G.1 Double Robustness of Pseudo-Reward

Lemma 2. If either pi,t = πi,t or fi,t = ri,t, then

E
[
R̃f

i,t|s, ā
]
= ∆i,t(s, ā).

That is, the pseudo-reward is an unbiased estimator of the true differential reward.

Proof. Recall that

R̃f
i,t =

Rit − fi,t(s,Ai,t)

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā)

Case I: π’s are correctly specified

Then

E
[

Rit

δAi,t=ā − πi,t(0|s)

∣∣∣∣s, ā] = ri,t(s, ā)− ri,t(s, 0)

= ∆i,t(s, ā)
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and

E
[

fi,t(s,Ai,t)

δAi,t=ā − πi,t(0|s)

∣∣∣∣s, ā] = fi,t(s, ā)− fi,t(s, 0)

= ∆f
i,t(s, ā)

so that

E
[
Rit − fi,t(s,Ai,t)

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā)

∣∣∣∣s, ā] = ∆i,t(s, ā)−∆f
i,t(s, ā) + ∆f

i,t(s, ā)

= ∆i,t(s, ā)

Case II: f correctly specified

E
[

Rit

δAi,t=ā − πi,t(0|s)

∣∣∣∣s, ā] = 1− pi,t(0|s)
1− πi,t(0|s)

ri,t(s, ā)−
pi,t(0|s)
πi,t(0|s)

ri,t(s, 0)

and

E
[

fi,t(s,Ai,t)

δAi,t=ā − πi,t(0|s)

∣∣∣∣s, ā] = 1− pi,t(0|s)
1− πi,t(0|s)

fi,t(s, ā)−
pi,t(0|s)
πi,t(0|s)

fi,t(s, 0̄)

=
1− pi,t(0|s)
1− πi,t(0|s)

ri,t(s, ā)−
pi,t(0|s)
πi,t(0|s)

ri,t(s, 0̄)

and

E
[
∆f

i,t(s, ā)

∣∣∣∣s, ā] = ∆i,t(s, ā)

E
[
Rit − fi,t(s, Āi,t)

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā)

∣∣∣∣s, ā] = ∆i,t(s, ā)

G.2 Preliminaries

Lemma 3. Let X be a mean-zero sub-Gaussian random variable with variance factor v2

and Y be a bounded random variable such that |Y | ≤ B for some 0 ≤ B < ∞. Then XY is
sub-Gaussian with variance factor v2B2.

Proof. Recall that X being mean-zero sub-Gaussian means that

P (|X| ≥ t) ≤ 2 exp

(
− t2

2v2

)
.

Now note that

|XY | ≤ |X|B

so that if |XY | > t, then |X|B > t. Thus by monotonicity

P (|XY | ≥ t) ≤ P (|X|B ≥ t)

= P

(
|X| ≥ t

B

)
≤ 2 exp

(
− t2

2B2v2

)
as desired.
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Lemma 4. If X,Y are sub-Gaussian with variance factors v2x, v2y, respectively, then αX+βY

is sub-Gaussian with variance factor α2v2x + β2v2y∀α, β ∈ R.

Proof. Recall the equivalent definition of sub-Gaussianity that X,Y are sub-Gaussian iff for
some b, a > 0 and all λ > 0

E exp (λ(X − EX)) ≤ exp(λ2v2x/2)

E exp (λ(Y − EY )) ≤ exp(λ2v2y/2)

Then

E exp (λ(αX + βY − αEX − βEY )) ≤
√

E exp (2αλ(X − EX))
√
E exp (2βλ(Y − EY ))

≤
√

exp(2α2λ2v2x)
√

exp(2β2λ2v2y)

= exp((α2v2x + β2v2y)λ
2)

The following Lemma gives the sub-Gaussianity and variance of the difference between the
pseudo-reward and its expectation. We see that in the variance, all terms except those
involving the inverse propensity weighted noise variance vanish as fi,t becomes a better
estimate of ri,t, as long as fi,t is uniformly bounded. Note that means and variances may be
implicitly conditioned on the history.

Lemma 5. If πi,t is correctly specified and σ̃2
i,t ≥ 1

c , the difference between the pseudo-reward
and its expectation (taken wrt the action and noise) is mean zero sub-Gaussian with variance

v2 ≡ (ri,t(s, ā)− fi,t(s, ā))
2 + Var(ϵi,t)

1− πi,t(0|s)
+

(ri,t(s, 0)− fi,t(s, 0))
2 + Var(ϵi,t)

πi,t(0|s)
+ 2(∆i,t(s, ā)−∆f

i,t(s, ā))∆
f
i,t(s, ā)

Proof. We need to show that it is sub-Gaussian and upper bound its variance. We write the
difference as

R̃f
i,t(s, ā)− E[R̃f

i,t|s, ā] = R̃f
i,t(s, ā)−∆i,t(s, ā)

=
Rit − fi,t(s,Ai,t)

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā)−∆i,t(s, ā)

=
ri,t(s,Ai,t)− fi,t(s,Ai,t) + ϵi,t

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā)−∆i,t(s, ā)

Note that |ri,t(s,Ai,t)| ≤ max (|ri,t(s, ā)|, |ri,t(s, 0)|) and |fi,t(s,Ai,t)| ≤
max (|fi,t(s, ā)|, |fi,t(s, 0)|). Thus since

∣∣∣ 1
δAi,t=ā−πi,t(0|s)

∣∣∣ is upper bounded by c > 0,

we have that ri,t(s,Ai,t)−fi,t(s,Ai,t)
δAi,t=ā−πi,t(0|s) is bounded and thus (not necessarily mean zero)

sub-Gaussian. Since ϵi,t is sub-Gaussian, its denominator is bounded, and the remaining
terms are deterministic, the entire difference between the pseudo-reward and its mean is
sub-Gaussian. Now

Var(R̃f
i,t(s, ā)− E[R̃f

i,t|s, ā]) = Var
(
R̃f

i,t(s, ā)
)

= E
[
R̃f

i,t(s, ā)
2
]
−∆i,t(s, ā)

2 (8)
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since E[R̃f
i,t|s, ā] is not random. Now we expand the first term on the rhs.

E
[
R̃f

i,t(s, ā)
2
]
= E

[(
ri,t(s,Ai,t)− fi,t(s,Ai,t) + ϵi,t

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā)

)2
]

= E

[(
ri,t(s,Ai,t)− fi,t(s,Ai,t) + ϵi,t

δAi,t=ā − πi,t(0|s)

)2
]

+ 2E
[
ri,t(s,Ai,t)− fi,t(s,Ai,t) + ϵi,t

δAi,t=ā − πi,t(0|s)

]
∆f

i,t(s, ā) + ∆f
i,t(s, ā)

2

= E

[(
ri,t(s,Ai,t)− fi,t(s,Ai,t) + ϵi,t

δAi,t=ā − πi,t(0|s)

)2
]

+ 2(∆i,t(s, ā)−∆f
i,t(s, ā))∆

f
i,t(s, ā) + ∆f

i,t(s, ā)
2 (9)

For the first term on the rhs of Eqn. 9,

E

[(
ri,t(s,Ai,t)− fi,t(s,Ai,t) + ϵi,t

δAi,t=ā − πi,t(0|s)

)2
]

= E

[(
ri,t(s,Ai,t)− fi,t(s,Ai,t)

δAi,t=ā − πi,t(0|s)

)2
]
+ E

[(
ϵi,t

δAi,t=ā − πi,t(0|s)

)2
]

=
(ri,t(s, ā)− fi,t(s, ā))

2 + E[ϵ2i,t]
1− πi,t(0|s)

+
(ri,t(s, 0)− fi,t(s, 0))

2 + E[ϵ2i,t]
πi,t(0|s)

so that plugging this into Eqn. 9, we have

E
[
R̃f

i,t(s, ā)
2
]
=

(ri,t(s, ā)− fi,t(s, ā))
2 + E[ϵ2i,t]

1− πi,t(0|s)
+

(ri,t(s, 0)− fi,t(s, 0))
2 + E[ϵ2i,t]

πi,t(0|s)
+ 2(∆i,t(s, ā)−∆f

i,t(s, ā))∆
f
i,t(s, ā) + ∆f

i,t(s, ā)
2

and plugging this into Eqn. 8 we obtain the variance.

Var
(
R̃f

i,t(s, ā)
)
=

(ri,t(s, ā)− fi,t(s, ā))
2 + E[ϵ2i,t]

1− πi,t(0|s)
+

(ri,t(s, 0)− fi,t(s, 0))
2 + E[ϵ2i,t]

πi,t(0|s)
+ 2(∆i,t(s, ā)−∆f

i,t(s, ā))∆
f
i,t(s, ā)

=
(ri,t(s, ā)− fi,t(s, ā))

2 + Var(ϵi,t)
1− πi,t(0|s)

+
(ri,t(s, 0)− fi,t(s, 0))

2 + Var(ϵi,t)
πi,t(0|s)

+ 2(∆i,t(s, ā)−∆f
i,t(s, ā))∆

f
i,t(s, ā)

as desired.

The next corollary follows immediately and shows the variance factor’s stochastic convergence
rate to the scaled variance factor of the noise.
Corollary 1. If ∥fi,t − ri,t∥∞ = ÕP (k

−1/4), where ∥ · ∥∞ is the L∞ norm, and fi,t is
uniformly bounded, then

v2k = cÕP (k
−1/2) + σ2c2

In the next remark, we show what the variance would be if we did not use DML and
estimate fi,t ≈ ri,t, but used only the inverse propensity weighted observed reward as the
pseudo-reward. This was done in Greenewald et al. (2017). In this case, there are terms
dependent on the mean reward that do not vanish as the number of stages goes to infinity.
Remark 2. If we instead used as our pseudo-reward the inverse propensity weighted observed
reward

R̃i,t(s, ā) =
Rit

δAi,t=ā − πi,t(0|s)
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this would be unbiased with variance

v2k ≡ ri,t(s, ā)
2 + Var(ϵi,t)

1− πi,t(0|s)
+

ri,t(s, 0)
2 + Var(ϵi,t)

πi,t(0|s)

Proof. The unbiasedness is clear from our proof of Lemma 2. For the variance,

Var
(

Rit

δAi,t=ā − πi,t(0|s)

)
= E

[
(ri,t(s, ā) + ϵi,t)

2

1− πi,t(0|s)
+

(ri,t(s, 0) + ϵi,t)
2

πi,t(0|s)

]
=

ri,t(s, ā)
2 + Var(ϵi,t)

1− πi,t(0|s)
+

ri,t(s, 0)
2 + Var(ϵi,t)

πi,t(0|s)

Here we collect three important results. For analysis at stage K, let ϕ(xi,t) encodes the
vector xi,t for the ith individual and the tth time in a vector of length 2d ∗K. At stage k,
let Ok denote the set of observed time points across all individuals at stage k. Let θ̂k denote
the estimates for stage k + 1 using data from Ok. First, we prove a slightly modified version
of Lemma 10 from Abbasi-Yadkori et al. (2011):
Lemma 6. (Determinant-Trace Inequality) Suppose σ̃i,tϕ(xi,t) ∈ Rd. Let Vk+1 =∑

(i,t)∈Ok
σ̃2
i,tϕ(xi,t)ϕ(xi,t)

⊤ + V0. Then

det(Vk+1) ≤
(
4tr(V0) + |Ok|

4d

)d

Proof. Following the arguments for the proof of the original Lemma 11 in Abbasi-Yadkori
et al. (2011), we have

det(Vk+1) ≤
(

tr(Vk+1)

d

)d

.

Now we have tr(σ̃2
i,tϕ(xi,t)ϕ(xi,t)

⊤) ≤ 1/4 since ∥xi,t∥ ≤ 1 and σ̃2
i,t ≤ (1/2)2.

tr(Vk+1) = tr(V0) +
∑

(i,t)∈Ok

σ̃2
i,ttr(ϕ(xi,t)ϕ(xi,t)

⊤)

= tr(V0) +
∑

(i,t)∈Ok

σ̃2
i,t∥ϕ(xi,t)∥22

≤ tr(V0) +
1

4
|Ok|

Plugging this in to the rhs of the determinant inequality in the first step gives the desired
result.

We adapt an important concentration inequality for regularized least-squares estimates. Our
proof follows the same basic strategy as Abbasi-Yadkori et al. (2011), but with modifications
due to 1) the use of weighted least squares 2) the use of pseudo-rewards to estimate differential
rewards 3) replacing the scaled diagonal regularization with Laplacian regularization.
Lemma 7 (Adapted from Theorem 2 in Abbasi-Yadkori et al. (2011)). For any δ > 0, w.p.
at least 1− δ the estimates {Θ̂k}∞k=0 in Algorithm 1 satisfies for any {xk}∞k=0,

|x⊤
k (Θ̂k −Θ∗

k)| ≤ ∥xk∥V −1
k−1

(
vk

√
2 log

(
det(Vk−1)1/2 det(V0)−1/2

δ

)
+ λmax(V0)

1/2kB

)
,

(10)
where v2k is the variance factor for the difference between the pseudo-reward and its mean at
stage k. In particular, setting xk = Vk−1(Θ̂k−1 −Θ∗

k) implies

∥Θ̂k −Θ∗
k∥ ≤ vk

√
2 log

(
det(Vk−1)1/2 det(V0)−1/2

δ

)
+ λmax(V0)

1/2kB

holds w.p. at least 1− δ for all k ≥ 1.
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Proof. Let mi,t = σ̃i,tϕ(xi,t) and ρi,t = σ̃i,t[R̃
f
i,t(s, ā)− E[R̃f

i,t|s, ā]]. Further let

ξk ≡
∑

(i,t)∈Ok

σ̃2
i,t[R̃

f
i,t(s, ā)− E[R̃f

i,t|s, ā]]ϕ(xi,t)

=
∑

(i,t)∈Ok

σ̃i,t[R̃
f
i,t(s, ā)− E[R̃f

i,t|s, ā]]mi,t

=
∑

(i,t)∈Ok

mi,tρi,t

Then noting that Vk =
∑

(i,t)∈Ok
mi,tm

⊤
i,t + V0 and letting Wk be the diagonal matrix of

weights σ̃2
i,t, we have

Θ̂k = V −1
k−1bk

= V −1
k−1(ξk +Φ⊤

k WkE[Rf̂k
k |ā, s])

= V −1
k−1ξk + V −1

k Φ⊤
k Wk∆k by Lemma 2

= V −1
k−1ξk + V −1

k−1Φ
⊤
k WkΦkΘ

∗
k

= V −1
k−1ξk + V −1

k−1(Φ
⊤
k WkΦk + V0)Θ

∗
k − V −1

k−1V0Θ
∗
k

= V −1
k−1ξk +Θ∗

k − V −1
k−1V0Θ

∗
k

and thus
Θ̂k −Θ∗

k = V −1
k−1(ξk − V0Θ

∗
k)

which gives

|x⊤
k Θ̂k − x⊤

k Θ
∗
k| ≤ ∥xk∥V −1

k−1
(∥ξk∥V −1

k−1
+ ∥V0Θ

∗
k∥V −1

k−1
)

Now since ξk is sub-Gaussian with variance factor v2k, by Theorem 1 in Abbasi-Yadkori et al.
(2011), w.p. 1− δ,

∥ξk∥2V −1
k−1

≤ 2v2k log

(
det(Vk−1)

1/2det(V0)
−1/2

δ

)
Further note

∥V0Θ
∗
k∥2V −1

k−1

= Θ∗⊤
k V ⊤

0 V −1
k−1V0Θ

∗
k

≤ ∥V ⊤
0 V −1

k−1V0∥2∥Θ∗
k∥22

≤ ∥V0∥22∥V −1
k−1∥2∥Θ

∗
k∥22

≤ λmax(V0)∥Θ∗
k∥22

≤ λmax(V0)k
2B2

and thus

|x⊤
k Θ̂k − x⊤

k Θ
∗
k| ≤ ∥xk∥V −1

k−1

vk

√√√√2 log

(
det(V −1

k−1)
1/2det(V0)−1/2

δ

)
+ λmax(V0)

1/2kB


Corollary 2. If ∥fi,t − ri,t∥u = ÕP (k

−1/4), then for any δ > 0, there exists C > 0 s.t. w.p.
at least 1− δ the estimates {Θ̂k}∞k=0 in Algorithm 1 satisfies for any {xk}∞k=0,

|x⊤
k (Θ̂k −Θ∗

k)| ≤ ∥xk∥V −1
k−1

((
C log2m(k)

k1/2
+ σ2c2

)√
2 log

(
det(Vk−1)1/2 det(V0)−1/2

δ/2

)
+ λmax(V0)

1/2kB

)
,

(11)

In particular, setting xk = Vk−1(Θ̂k−1 −Θ∗
k) implies

∥Θ̂k −Θ∗
k∥ ≤

(
C

k1/2
+ σ2c2

)√
2 log

(
det(Vk−1)1/2 det(V0)−1/2

δ/2

)
+ λmax(V0)

1/2kB

holds w.p. at least 1− δ for all k ≥ 1.
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Proof. Use Corollary 1 and Lemma 7, each with δ/2. Then w.p. at least 1 − δ the result
holds.

We next state a slightly modified form of a standard result of RLS (Lemma 11 in Abbasi-
Yadkori et al. (2011)) that helps to guarantee that the prediction error is cumulatively small.
This bounds the sum of quadratic forms where the matrix is the inverse Gram matrix and
the arguments are the feature vectors. We use such terms to construct a martingale in the
regret bound so that we can bound such terms and the martingale.
Proposition 1. Let λ ≥ 1 and γ ≥ 1. For any arbitrary sequence (xi,t)(i,t)∈Ok

, let

Vk+1 ≡
∑

(i,t)∈Ok

σ̃2
i,tϕ(xi,t)ϕ(xi,t)

⊤ + V0,

be the regularized Gram matrix. Then
K∑

k=1

∑
(i,t)∈Ok\Ok−1

∥ϕ(xi,t)∥2V −1
k

≤ 2c log

(
det(VK+1)

det(V0)

)
.

where c is a constant such that 0 < 1
c < σ̃2

i,t∀i, t ∈ N. Further,

log det(VK+1) ≤ 2Kd log

([
γ + λM +

K + 1

8d

])
Proof. By Lemma 11 in Abbasi-Yadkori et al. (2011), we have

K∑
k=1

∑
(i,t)∈Ok\Ok−1

σ̃2
i,t∥ϕ(xi,t)∥2V −1

k

≤ 2 log

(
det(VK+1)

det(V0)

)
.

The lower bound on the weights implies
K∑

k=1

∑
(i,t)∈Ok\Ok−1

∥ϕ(xi,t)∥2V −1
k

≤ 2c log

(
det(VK+1)

det(V0)

)
as desired.

By definition, we have tr(σ̃2
i,tϕ(xi,t)ϕ(xi,t)

⊤) ≤ 2/4 since ∥xi,t∥ ≤ 1 and σ̃2
i,t ≤ (1/2)2; and

tr(L⊗) = tr(L) · tr(I) = KMd. Then by Hadamard’s inequality we have

log det(VK+1) ≤ 2Kd log

(
1

2Kd
tr (VK+1)

)
= 2Kd log

(
1

2Kd

[
γ2Kd+ λ2KMd+

2

4
K · (K + 1)/2

])
= 2Kd log

([
γ + λM +

K + 1

8d

])

Finally, we state Azuma’s concentration inequality which describes concentration of super-
martingales with bounded differences and is useful in controlling the regret due to the
randomization of Thompson sampling.
Proposition 2 (Azuma’s concentration inequality). If a super-martingale (Yt)t≥0 corre-
sponding to a filtration Ft satisfies |Yt −Yt−1| < ct some constant ct for all t = 1, . . . , T then
for any α > 0:

P (YT − Y0 ≥ α) ≤ exp

(
− α2

2
∑T

t=1 c
2
t

)
.
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G.3 Proof of Theorem 1

The proof follows closely from Abeille & Lazaric (2017) with several adjustments. Assump-
tion 2 implies that we only need to consider the unit ball X = {∥x∥ ≤ 1}. Then the regret
can be decomposed into

K∑
k=1

1

k

∑
(i,t)∈Ok\Ok−1

(
(ϕ(x⋆

i,t))
⊤Θ⋆

k − ϕ(xi,t)
⊤Θ̃k

)
︸ ︷︷ ︸

RTS(K)

+

K∑
k=1

1

k

∑
(i,t)∈Ok\Ok−1

(
ϕ(xi,t)

⊤Θ̃k − ϕ(xi,t)
⊤Θ⋆

k

)
︸ ︷︷ ︸

RRLS(K)

where ϕ(x⋆
i,t) is the context vector under the optimal action and Θ⋆

k is the true parameter
value. The first term is the regret due to the random deviations caused by sampling Θ̃k

and whether it provides sufficient useful information about the true parameter Θ⋆
k. The

second term is the concentration of the sampled term around the true linear model for the
advantage function.
Definition 2. We define the filtration Fk as the information accumulated up to stage k
before the sampling procedure, that is, Fk = (F1, σ(x1, r2, x2, . . . , xk−1, rk−1)), and filtration
Fx

k as the information accumulated up to stage k and including the sampled context, that is,
Ft = (F1, σ(x1, r2, x2, . . . , xk−1, rk−1, xk)).

Bounding RRLS(T ). We decompose the second term into the variation of the point
estimate and the variation of the random sample around the point estimate:

K∑
k=1

1

k

∑
(i,t)∈Ok\Ok−1

(
ϕ(xi,t)

⊤Θ̃k − ϕ(xi,t)
⊤Θ̂k

)
+

K∑
k=1

1

k

∑
(i,t)∈Ok\Ok−1

(
ϕ(xi,t)

⊤Θ̂k − ϕ(xi,t)
⊤Θ⋆

k

)
The first term describes the deviation of the TS linear predictor from the RLS one, while
the second term describes the deviation of the RLS linear predictor from the true linear
predictor. The first term is controlled by the construction of the sampling distribution DTS ,
while the second term is controlled by the RLS estimate being a minimizer of the regularized
cumulative squared error in (5). In particular, the first term will be small when the TS
estimate concentrates around the RLS one, while the second will be small when the RLS
estimate concentrates around the true parameter vector. The next proposition gives a lower
bound on the probability that, for all stages, both the RLS parameter vector concentrates
around the true parameter vector and the TS parameter vector concentrates around the
RLS one.

Recall that

βk(δ) = vk

[
2 log

(
det(Vk)

1/2

det(V0)1/2δ/2

)]1/2
+B

Proposition 3. Let Êk denote the event that Θ̂k concentrates around the true parameter
for all l ≤ k, i.e., Êk = {∀l ≤ k, ∥Θ̂l−Θ⋆

l ∥Vl
≤ βl(δ

′)}. Let γk(δ) ≡ βk(δ
′)
√

cd log c′d
δ Let Ẽk

denote the event that Θ̃l concentrates around the estimated parameter for all l ≤ k, i.e., Ẽk =
{∀l ≤ k, ∥Θ̃l − Θ̂l∥Vl

≤ γl(δ
′)}. Let Ek = Êk ∩ Ẽk. Then P (Ek) ≥ 1− δ/2.

Proof. Let δ′ = δ/4K, then Lemma 7 and a union bound give us

P (ÊK) = P (∩K
k=1{∥Θk −Θ⋆∥Vk

≤ βk(δ
′)})

= 1−
K∑

k=1

P (∥Θk −Θ⋆∥Vk
> βk(δ

′))

= 1−
K∑

k=1

δ′ = 1− δ′K = 1− δ/4.
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Applying the TS sampling distribution and Θ̃k = Θ̂k + βk(δ
′)V

−1/2
k ηk where ηt is drawn

i.i.d. from DTS we have

P

(
∥Θ̃k − Θ̂k∥Vk

≤ βk(δ
′)

√
cd log

(
c′d

δ′

))
= P

(
∥ηk∥ ≤

√
cd log

(
c′d

δ′

))
≥ 1− δ′.

by Definition 1. A union-bound argument yields the conclusion.

We can then bound RRLS(K) by leveraging Lemma 7 and decomposing the error via

RRLS(K) ≤
K∑

k=1

1[EK ]

k

 ∑
(i,t)∈Ok\Ok−1

|ϕ(xi,t)
⊤(Θ̃k − Θ̂k)|


+

K∑
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1[EK ]

k
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|ϕ(xi,t)
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
By definition of the event EK , we have

|ϕ(xi,t)
⊤(Θ̃k−Θ̂k)|1[Ek] ≤ ∥ϕ(xi,t)∥V −1

k
γk(δ

′), |ϕ(xi,t)
⊤(Θ̂k−Θ⋆)|1[Ek] ≤ ∥ϕ(xi,t)∥V −1

k
βk(δ

′)

so from Proposition 1, we have

K∑
k=1

1[EK ]

k
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(i,t)∈Ok\Ok−1

|ϕ(xi,t)
⊤(Θ̃k − Θ̂k)|
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≤ γK(δ′)

K∑
k=1
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(i,t)∈Ok\Ok−1

1
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≤ γK(δ′)
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1
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2c log
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.

Using a similar derivation for the βk(δ
′) case, we obtain

RRLS(K) ≤ (βK(δ′) + γK(δ′))

√√√√ K∑
k=1

∑
(i,t)∈Ok\Ok−1

1

k2

√
2c log

(
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det (V0)
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1
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√
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2Kd log
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− log det (V0)

]
with probability at least 1− δ/2 by Proposition 3, where HK is the harmonic number. Note
that HK ∼ log(K) for large K.

33



Under review as a conference paper at ICLR 2024

Bounding RTS(T ). Leveraging Abeille & Lazaric (2017), Definition 1 lets us bound
RTS(K) under the event Ek by

RTS(K) ≤
K∑

k=1

1

k
RTS

k 1[Ek] ≤
4γK(δ′)

d

K∑
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1
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|Fk

]
(12)

We re-write the sum in (12) as:
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− ∥ϕ(xi,t)∥V −1

k

)
︸ ︷︷ ︸

RTS
2

The first term is bounded by Proposition 1:

K∑
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1
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∑
(i,t)∈Ok\Ok−1

∥ϕ(xi,t)∥V −1
k

≤

√
2cHK log

(
det(VK+1)
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)
The second term is a martingale by construction and so we can apply Azuma’s inequality.
Under Assumption 2, so since Vk ≤ 1

λI we have

E
[
∥ϕ(xi,t)

⋆(Θ̃)∥V −1
k

|Ft

]
− ∥ϕ(xi,t)∥V −1

k
≤ 2√

λ
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This provides the upper-bound
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.

Overall bound. Putting together the two bounds under a union bound argument yields
the upper bound in Theorem 1; specifically, we have(

βK(δ′) + γK(δ′)

[
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4
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])√
4cHKKd log
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)
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