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1 Training and Evaluation Robot Teams1

This section describes the design of the training teams, and the sampling of evaluation teams for2

the heterogeneous sensor network environment. To learn generalized coordination behavior, the3

training teams were required to be diverse in terms of composition and capture the underlying dis-4

tribution of robot capabilities. To design these training teams we first binned robot capabilities5

into small, medium, and large sensing radii with bin ranges [0.2m, 0.33m], [0.33m, 0.46m], and6

[0.46m, 0.60m] respectively. We then generated all possible combinations with replacement for7

teams composed of four robots of small, medium, and large robots for a total of 15 total teams.8

Each robot assigned to one of the bins small, medium, and large had it’s capability (i.e. sensing9

radius) uniformly sampled within the bin range. This resulted in 15 total teams, for which we hand-10

selected 5 sufficiently diverse teams to be the training teams. The resulting training teams are given11

in Table 1.12

Training Team Number Robot Sensing Radii in Meters
1 (0.2191, 0.2946, 0.2608, 0.3668)
2 (0.2746, 0.2746, 0.5824, 0.5756)
3 (0.3178, 0.3467, 0.5317, 0.6073)
4 (0.2007, 0.5722, 0.5153, 0.4622)
5 (0.4487, 0.5526, 0.5826, 0.58343)

Table 1: Training teams. 5 teams of 4 robots

The evaluation robot teams were sampled differently for the different experimental evaluations per-13

formed. In the training evaluation experiment, the teams were the same as the training teams in14

Table 1. Teams for the generalization experiment to new team compositions, but not new robots,15

were sampled randomly from the 20 robots from the training teams (with replacement). Each robot16

from the pool of 20 robots was sampled with equal probability. In contrast, teams for the gener-17

alization experiment to new robots were generated by randomly sampling new robots, where each18

robot’s sensing radius was sampled from a uniform distribution independently U(0.2m, 0.6m). For19

the two generalization experiments, 100 total teams were sampled. Each algorithm was evaluated20

on the same set of sampled teams by fixing the pseudo random number generator’s seed.21

2 Graph Neural Networks22

We employ a graph convolutional network (GCN) architecture for the decentralized policy πi, which23

enables robots to communicate for coordination according to the robot communication graph G.24

A GCN is composed of L layers of graph convolutions, followed by non-linearity. In this work, we
consider a single graph convolution layer applied to node i is given by

h
(l)
i = σ(

∑
j∈N (i)∪i

φθ(h
(l−1)
j ))
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where h(l−1)j ∈ RF is the node feature of node j,N (i) = {j|(vi, vj) ∈ E} are all nodes j connected25

to i, φθ is node feature transformation function with parameters θ, σ is a non-linearity (e.g. Relu),26

and hli ∈ RG is the output node feature.27

3 Policy Architectures28

Each of the graph neural networks in the GNN-based policy architectures evaluated are composed of29

an input encoder network, a message passing network, and an action output network. The encoder30

network is a 2-layer MLP with hidden dimensions of size 64. For the message passing network, a31

single graph convolution layer composed of 2-layer MLPs with ReLU non-linear activations. The32

action output network is additionally a 2-layer MLP with hidden dimensions of size 64. The learning33

rate is 0.005.34

MLP(ID)/MLP(CA): The MLP architectures compose of a 4-layer multi-layer perceptron with 6435

hidden units at each layer and ReLU() non-linearities.36

CA(GNN)/CA+CC(GNN)/ID(GNN): Each of the graph neural networks compose of an input “encoder”37

network, a message passing network, and an action output network. The encoder network and the38

action output network are multi-layer perceptrons with hidden layers of size 64, ReLU non-linear39

activations, and with one and two hidden layers respectively. The message passing network is a40

graph convolution layer wherein the linear transformation of node features (i.e. observations) is done41

by a 2-layer MLP with ReLU non-linear activations and 64 dimensional hidden units, followed by a42

summation of the transformed neighboring node features. The ouptut node features a concatenated43

with the output feature from the encoder network. This concatenated features is the input to the two44

out action network. The CA(GNN) network doesn’t communicate the robot’s capabilities with the45

graph convolution layers. Rather, the capabilities are appended to the output of the encoder network46

and output of node features of the graph convolution layer just before the the action network. Thus,47

the the action network is the only part of this model that is conditioned on robot capabilities.48

4 Policy Training Hyper parameters49

We detail the hyperparameters used to train each of the policies using proximal policy optimization50

(PPO) [1] in Table 2.51

Hyperparameter Value
Action Selection (Training) soft action selection
Action Selection (Testing) hard action selection

Critic Network Update Interval 200 steps
Learning Rate 0.0005

Entropy Coefficient 0.01
Epochs 4

Clip 0.2
Q Function Steps 5

Buffer Length 64
Number of training steps 20× 106

Table 2: Training hyperparameters.

5 Environment52

Robots have five available actions: they can move left, right, up, down, or stop. After selecting an53

action, the robots move in their selected direction for slightly less than a second before selecting54

a new action. The robots start at random locations least 30cm apart from each other, move at55

∼21cm/second, and utilize barrier certificates [2] that takes effect at 17cm away to ensure they do56

not collide when running in the physical Robotarium.57
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(a) Our agents running in Simulation (b) Our agents running in the physical Robotarium

The reward from the heterogeneous sensor network environment is a shared reward. We describe
the reward below:

D(i, j) = ||p(i)− p(j)|| − (ci + cj)58

r(i, j) =

{
−0.9 ∗ |D(i, j)|+ 0.05, if D(i, j) < 0

−1.1 ∗ |D(i, j)| − 0.05, otherwise

R =

N∑
i<j

r(i, j)

where i and j are robots, p(i) is the position of robot i, ci is the (capability) sensing radius of robot59

i, and R is the cumulative team reward shared by all the robots. The above reward is designed to60

reward the team when robots connected their sensing regions while minimizing overlap so as to61

maximize the total sensing area.62

6 Robotarium Experiment Pictures63

We show figures from real robot demonstrations of the trained capability-aware communication64

policy:65

(a) Beginning of episode (3 robots). (b) End of episode (3 robots).

(c) Beginning of episode (4 robots). (d) End of episode (4 robots).

Figure 2: Demonstrations of CA+CC(GNN) policy deployed to real robot teams in the Robotarium
testbed.
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