Expertise-Centric Prompting Framework for Financial Tabular Data Generation using Pre-trained Large Language Models

Subin Kim*1, Jungmin Son*1, Minyoung Jung*2, Youngjun Kwak1

¹KakaoBank ²Korea Electronics Technology Institute

> Subin Kim, kakao**bank**

- 1. Motivation
- 2. Proposed methods
- Expertise-Centric Prompting Framework
- Evaluation Metrics
- 3. Experiment Results
- 4. Application : Today's mini diary
- 5. Future work

1. Motivation

2. Proposed methods

- Expertise-Centric Prompting Framework
- Evaluation Metrics
- 3. Experiment Results
- 4. Application : Today's mini diary
- 5. Future work

1. Motivation

- Shortage of authentic and accessible financial tabular datasets
 - Privacy and security concerns limit access to real-world data
 - Anonymized public datasets lose realism and fail to reflect real-world scenarios
 - Impedes AI development using financial tabular data
- Challenge of generating pseudo-financial datasets
 - Complex attribute relationships and diverse data ranges
 - Requires expert knowledge for accurate data validation

Figure 1. (a) Comparison of financial data

Anony	mous data		onymous lata	Personal data		
Age: Income: CS:	37~50 \$30,000 ~\$40,000 900~1,000	Name: Birth: Income: CS:	J764566 x1.j4.874f 975	Birth:	Jane Doe 13.07.1975 \$35,460 975	
	LMs Domain	n knowled	lge & LLMs	finan Name: Birth:		

Figure 1. (b) Example of pseudo-financial data

1. Motivation

- Goals \rightarrow *How*?
 - a. Generate realistic and accessible pseudo-financial datasets
 - → Collaboration between financial experts and LLM
 - b. Minimize experts' efforts in generating and validating financial data
 - → Prompt-based dataset generation framework with quantitative evaluation metrics

- 1. Motivation
- 2. Proposed methods
- Expertise-Centric Prompting Framework
- Evaluation Metrics
- 3. Experiment Results
- 4. Application : Today's mini diary
- 5. Future work

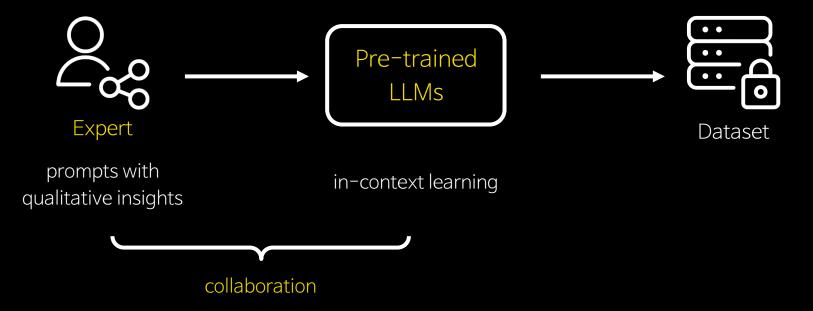
- Expertise-centric prompting (ECP) framework
 - Addressing limited accessibility of realistic financial data

• Evaluation metrics

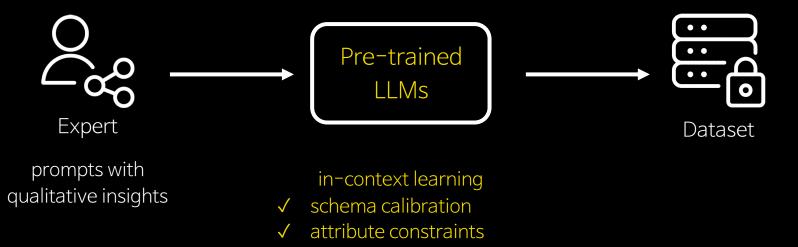
- Validating the quality of generated financial tabular datasets in terms of:
 - Dataset diversity
 - Constraint satisfaction

- 1. Motivation
- 2. Proposed methods
- Expertise-Centric Prompting Framework
- Evaluation Metrics
- 3. Experiment Results
- 4. Application : Today's mini diary
- 5. Future work

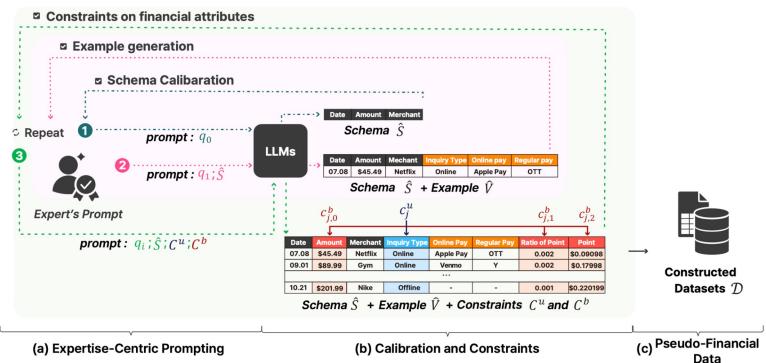
- Expertise-Centric Prompting (ECP) Framework
 - o collaboration between financial experts and LLM
 - i) schema calibration
 - ii) attribute constraints



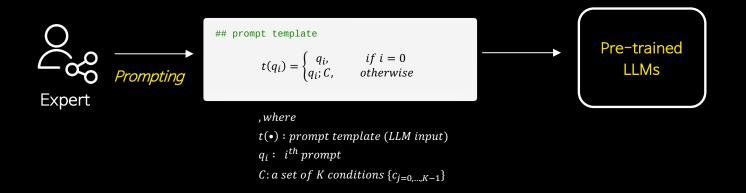
- Expertise-Centric Prompting (ECP) Framework
 - o collaboration between financial experts and LLM
 - i) schema calibration
 - ii) attribute constraints



Expertise-Centric Prompting (ECP) Framework

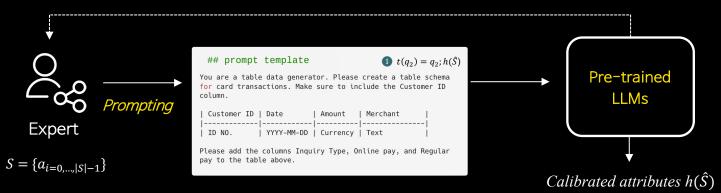


- Expertise-Centric Prompting (ECP) Framework
 - prompt template



- Expertise-Centric Prompting (ECP) Framework
 - schema estimation

- Expertise-Centric Prompting (ECP) Framework
 - schema calibration

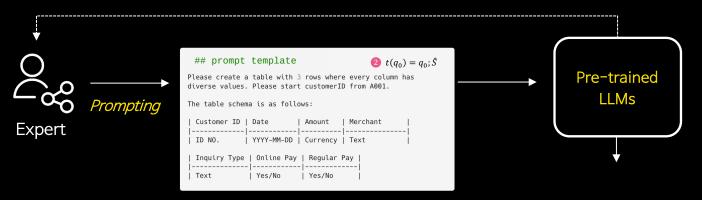


output

Customer ID			Inquiry Type	
	YYYY-MM-DD	 Text		Yes/No

$$h(\hat{S}) = \begin{cases} \hat{S}, & \text{if } S - \hat{S}, = \emptyset\\ S, & \text{otherwise} \end{cases}$$

- Expertise-Centric Prompting (ECP) Framework
 - example generation



output

Customer ID Dat	e Amount	÷.		÷				Regular Pay	
A001 202 A002 202		i	CoffeeShop SuperMart	i	Payment Refund Inguiry	Issue	i	No Yes Yes	

 $\hat{V} = LLM(t(q_1) = q_1; \hat{S})$

- Expertise-Centric Prompting (ECP) Framework
 - attribute constraints

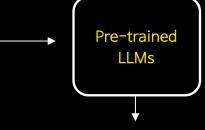
Q	
\sim	Promptil
Expert	

- unary constraints $C^{u} = \left\{ c_{j=0,\dots,K^{u}-1}^{u} \right\}$
- binary constraints $C^{b} = \left\{ c^{b}_{j=0,..,K^{b}-1} \right\}$

prompt template $(a, b) = q_i; C = q_i; \hat{S}; C^u; C^b$
Please create a table with 3 rows where every column has jiverse values. Please start customerID from A001.
The table schema is as follows: Customer ID Date Amount Merchant
Inquiry Type Online Pay Regular Pay
Constraints for each column:
Inquiry Type: Indicates whether the payment is online or offline.
Regular Payment Status: Whether the payment was a regular vayment or not (Y/N). When the regular payment status is 'Y', the payment is made on the same date every month. For example, insurance fees, OTT services like Netflix, or apartment maintenance fees are regular payments.

Ratio Point: The payment accrual rate for the payment amount. The rate is a 3-digit decimal between 0 and 1, and the accrual rate will be less than 5%.

Point: The points accrued from the payment. This is calculated by multiplying the values in the Amount and Ratio Point columns, with the unit in dollars.



output

Customer ID	Date	Amount	Merchant
A001 A002 A003 C ^U _j	2024-12-01 2024-11-28 2024-11-30	150.00 300.50 79.99	CoffeeShop SuperMart BookStore
Inquiry Type	Online Pay	Regular	Pay
Online Offline Online C ^b _{j,1}	Yes No Yes C <mark>b</mark>	No Yes No	
Ratio Point	Point		
0.035 0.045 0.02	5.25 13.52 1.60		

- 1. Motivation
- 2. Proposed methods
- Expertise-Centric Prompting Framework
- Evaluation Metrics
- 3. Experiment Results
- 4. Application : Today's mini diary
- 5. Future work

• Evaluation Metrics

Diversity

- o Variety of generated datasets
 - avoid redundancy in data caused by repetition
 - ensure a variety of customer
 behaviors reflecting real-world
 scenarios

Constraint Satisfaction

- Alignment between generated datasets and constraints
 - ensure that data properties of specific attributes are met (e.g., value ranges, categories, etc.)
 - ensure logical and numerical consistency among the attributes

• Evaluation Metrics

Diversity

- o Variety of generated datasets
 - Inter-Instance Diversity
 - : diversity among instances
 - uniformity metric
 - principal component (PC) analysis
 - Intra-Instance Diversity
 - : diversity within individual attributes
 - entropy

Constraint Satisfaction

- Alignment between generated datasets and constraints
 - Unary constraint satisfaction
 - Binary constraint satisfaction

• Evaluation Metrics

Diversity

- o Variety of generated datasets
 - Inter-Instance Diversity
 - : diversity among instances
 - uniformity metric
 - principal component (PC) analysis
 - Intra-Instance Diversity
 - : diversity within individual attributes
 - entropy

Constraint Satisfaction

• Alignment between generated datasets and constraints

 $\begin{array}{l} \textit{Unif} & \simeq f_{unif} \left(\operatorname{concat}[e_h] \right) \\ e_h : \textit{embedding of } h^{th} \textit{row} \end{array}$

def f_unif(e, t=2): pdst = torch.pdist(e, p=2).pow(2) return pdst.mul(-t).exp().mean().log()

Figure 3: Implementation of f_{unif} using PyTorch.

• Evaluation Metrics

Diversity

- o Variety of generated datasets
 - Inter-Instance Diversity
 - : diversity among instances
 - uniformity metric
 - principal component (PC) analysis
 - Intra-Instance Diversity
 : diversity within individual attributes
 entropy

Constraint Satisfaction

- Alignment between generated datasets and constraints
 - Unary constraint satisfaction
 - Binary constraint satisfaction

 $\begin{aligned} \mathcal{H} &= -\sum_{i \in I} p_i * \log p_i \\ I &: a \text{ set of unique examples on a certain attribute} \\ p_i &: \text{ probability of each distinct value i} \end{aligned}$

• Evaluation Metrics

Diversity

- o Variety of generated datasets
 - Inter-Instance Diversity
 idiversity among instances
 - urversity annong instance
 - uniformity metric
 - principal component (PC) analysis
 - Intra-Instance Diversity
 - : diversity within individual attributes
 - entropy

Constraint Satisfaction

- Alignment between generated datasets and constraints
 - Unary constraint satisfaction

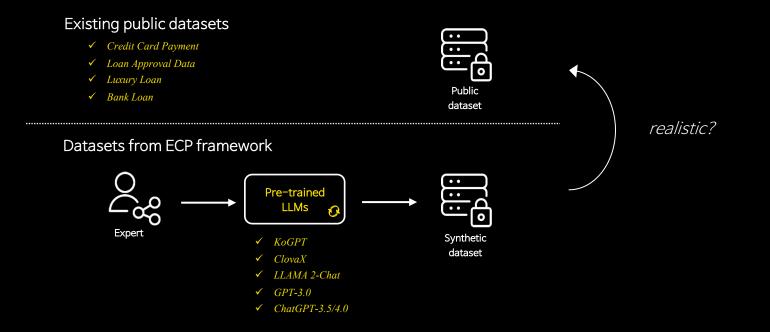
$$\rho = \frac{1}{K^u} \sum_{c_j^u \in C^u} \mathbb{1}\left(\Psi(c_j^u)\right)$$

• Binary constraint satisfaction

$$\tau = \frac{1}{K^b} \sum_{c_j^b \in C^b} \mathbbm{1}\left(\Phi(c_j^b)\right)$$

- 1. Motivation
- 2. Proposed methods
- Expertise-Centric Prompting Framework
- Evaluation Metrics
- 3. Experiment Results
- 4. Application : Today's mini diary
- 5. Future work

- Experimental Setting
 - We evaluated the generated datasets using various *backbone LLMs and existing public datasets* while keeping both the framework and the evaluation metrics fixed



• Evaluation results - <u>diversity</u>

- Card Transactions			Diversity of Instance			Diversity of <u>Attribute</u> ↑					
Language	Dataset	ECP	Embedding-Level		Categorical-Level		Binary-Level		Numerical-Level		
	Dataset		Uniformity↓	PC↑	$Avg(\mathcal{H})$	$Max(\mathcal{H})$	$Avg(\mathcal{H})$	$Max(\mathcal{H})$	$Avg(\mathcal{H})$	$Max(\mathcal{H})$	
	Credit Card Payment [12]		0.351	0.056	3.714	3.714	N/A	N/A	8.287	8.287	
-	KoGPT [52]	~	0.365	0.040	2.652	5.174	1.072	1.284	4.823	4.823	
	ClovaX [44]	~	0.369	0.003	1.953	2.574	1.093	1.119	2.574	2.574	
English	LLAMA 2-Chat [45]	~	0.339	0.036	3.737	4.934	0.971	0.971	5.057	5.057	
-	GPT-3.0 [19]	~	0.340	0.060	3.190	5.461	0.963	1.000	3.874	3.874	
	ChatGPT-3.5 [20]	~	0.320	0.080	4.627	6.115	0.998	1.000	4.689	4.689	
	ChatGPT-4.0 [53]	~	0.327	0.081	3.987	6.483	0.954	0.990	5.751	5.751	
	KoGPT [52]	~	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	ClovaX [44]	~	0.396	0.006	1.807	2.722	0.961	1.000	3.322	3.322	
Korean	LLAMA 2-Chat [45]	~	0.379	0.028	3.718	4.663	1.526	1.640	3.715	3.715	
Korean	GPT-3.0 [19]	~	0.396	0.053	2.743	4.941	0.993	1.133	4.060	4.060	
	ChatGPT-3.5 [20]	~	0.388	0.107	3.412	6.723	1.024	1.101	6.096	6.096	
	ChatGPT-4.0 [53]	~	0.387	0.082	3.879	7.085	0.321	0.584	6.176	6.176	

[Table 2]

- Dataset generated through our approach is comparable in diversity to existing datasets
- ChatGPT-based series outperformed other LLMs
- Robustness of our framework in generating multilingual datasets

Evaluation results – <u>constraints satisfaction</u>

Datasets	Lang.	Pre-trained LLMs	ρ	au
		KoGPT [52]	0.92	0.86
		ClovaX [44]	0.97	0.97
	EN	LLAMA 2-Chat [45]	1.00	1.00
	EIN	GPT-3.0 [19]	1.00	1.00
		ChatGPT-3.5 [20]	1.00	0.99
Card		ChatGPT-4.0 [53]	1.00	1.00
Transactions		KoGPT [52]	N/A	N/A
		ClovaX [44]	0.95	0.95
	VD	LLAMA 2-Chat [45]	0.82	0.67
	KR	GPT-3.0 [44]	0.97	0.96
		ChatGPT-3.5 [20]	0.97	0.94
		ChatGPT-4.0 [53]	1.00	1.00

Tal	b	Δ	5	1
l d	0	C	\mathcal{C}	

- o Close to 1.0 indicates strong adherence to these constraints
- o Datasets generated by GPT series demonstrate strong alignment with unary constraints
- o Binary constraints lower than unary constraints
- A need for further development for understanding the complex operations and calculations of the current LLMs

• Ablation study

[Table 6]

		Diversity of in	istance	Div	Constraint Satisfaction			
		Embedding-I	Level	Categorical-Level	Categorical-Level Binary-Level		Consul	ant Sausiacuon
Dataset	ECP	Uniformity↓	PC↑	$Avg(\mathcal{H})$	$Avg(\mathcal{H})$	$\operatorname{Avg}(\mathcal{H})$	ρ	au
Loan Statements Dataset		0.42	0.06	5.33	0.90	3.82	0.6	0.5
Loan Statements Dataset	~	0.43	0.06	6.33	0.93	3.39	1.0	0.7
Deposits and Savings Dataset		0.39	0.06	2.99	1.48	4.48	0.1	0.4
Deposits and Savings Dataset	~	0.41	0.08	3.47	0.95	3.46	1.0	0.9

- Our approach increased instance and attribute diversities but slightly decreased binary and numerical diversities
- These adjustments were necessary to improve constraint satisfaction through ECP
- This demonstrates the effectiveness of our ECP framework in balancing diversity with realistic dataset adjustments

• Ablation study

[Table 7]

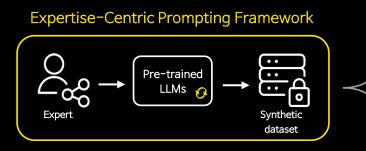
Method	$h(\hat{S})$	C^u	u Cb	D	D_{ls}		ds	Avg(Std)
Wiethou	n(S)	U	U	ρ	au	ρ	au	Avg(Stu)
	×	~	~	1.00	0.73	0.93	0.92	$0.90^{\ddagger}(\pm 0.12)$
ChatCDT 2 5	~	×	V	1.00	0.76	1.00	0.88	$0.91(\pm 0.15)$
ChatGPT-3.5 [20]	~	V	X	1.00	0.74	1.00	0.73	$0.87(\pm 0.11)$
[20]	~	x	X	1.00	0.75	0.66	0.39	$0.70^{\dagger}(\pm 0.25)$
	V	V	V	1.00	0.77	1.00	0.90	0.92 (±0.11)

- Schema calibration $h(\hat{S})$, unary constraints C^u , binary constraints C^b
- The highest average values of ρ and τ are achieved when all components are utilized across all combinations
- The average constraint satisfaction decreased by 23.91% (from 0.92 to 0.70⁺) when both constraints were removed, whereas the average decreased by only 2.17% (from 0.92 to 0.90[‡]) when schema calibration was removed

- 1. Motivation
- 2. Proposed methods
- Expertise-Centric Prompting Framework
- Evaluation Metrics
- 3. Experiment Results
- 4. Application : Today's mini diary
- 5. Future work

4. Application: *Today's mini diary*

• Develop an LLM-powered financial service



Synthetic Dataset Design

- Diverse financial scenarios
- Exclusion from privacy regulations
- Realistic attributes for customer behavior modeling

Train, fine-tune with synthetic tabular datasets

• Ensuring data privacy and compliance with synthetic data

Performance Evaluation

- Latency optimization
- Quality assurance test

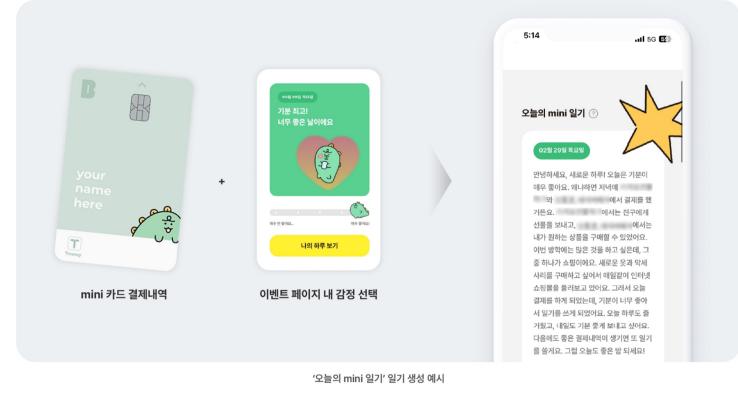


Figure 6: Example of the Today's Mini Diary service in action.

Copyright © KakaoBank Corp. All rights reserved.

- 1. Motivation
- 2. Proposed methods
- Expertise-Centric Prompting Framework
- Evaluation Metrics
- 3. Experiment Results
- 4. Application : Today's mini diary

5. Future work

5. Future work

LLM Safety and Privacy Issue

- Integrating guardrail technologies to prevent sensitive data output, enhancing robustness and security
- Prevent risks of harmful content or training data leakage in LLMs

Customize evaluation metrics in framework

- Tailored aspects for target dataset
- o Apply customized formulas for constraint satisfaction validation
 - Constraint satisfaction evaluation metrics potentially cover more real-world arithmetic formulas, conceptual relationships, and specific statistical distributions

EOD

Paper

