
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials:
Fractional Correspondence Framework in Detection Transformer

Anonymous Authors

1 IMPLEMENTING SINGLE SHOT MULTIBOX
DETECTOR (SSD)

The SSD [2] is an object detection framework designed to predict ob-
ject bounding boxes and corresponding class probabilities in a single
forward pass of the network. It uses a matching cost based on the In-
tersection over Union (IoU) between the predefined anchor boxes 𝑏𝑖
and the ground truth boxes 𝑏 𝑗 . Specifically, the matching cost is de-
fined as𝐶match (𝑜 𝑗 , 𝑜∗𝑖 ) = 1−IoU(𝑏𝑖 , 𝑏 𝑗 ), where a lower cost indicates
a better match. The matching process initially pairs each ground
truth with the nearest anchor box. Subsequently, anchor boxes are
matched to ground truth objects if the IoU surpasses a threshold of
0.5. Within our framework, this initial matching phase is equivalent
to setting 𝜅1 = 0 and 𝜅2 = 100, which focuses on ensuring that all
ground truths are matched. In the second phase, the parameters
are switched 𝜅1 = 100 and 𝜅2 = 0, prioritizing that predictions are
matched to unique ground truths, akin to enforcing a one-to-one
matching as in the Hungarian algorithm. By incorporating entropic
regularization, we use the Sinkhorn algorithm to resolve this match-
ing process. It is critical to differentiate the matching cost used
during the detection process from the loss function used for train-
ing the model. The training loss 𝐿train combines a cross-entropy
term for classification 𝐿𝐶𝐸 and a smooth 𝑙1 loss for bounding
box regression 𝐿smooth 𝑙1 , such that 𝐿train (𝑜 𝑗 , 𝑜∗𝑖 ) =𝜆CE𝐿CE (𝑐 𝑗 , 𝑐

∗
𝑖
)

+ 𝜆smooth 𝑙1𝐿smooth 𝑙1 (𝑏 𝑗 , 𝑏∗𝑖 ). This dual-component loss function
ensures that the model is trained to both correctly classify ob-
jects and accurately predict their bounding box locations. We set
𝜆smooth 𝑙1 = 1, 𝜆𝑙1 = 5, and 𝜆𝐶𝐸 = 1.

2 DISCUSSION ON TRANSPORT PLANS
Optimal transport involves the task of minimizing transportation
costs between two distributions (prediction and ground truth ob-
jects) 𝜈 ∈ 𝑃+ (𝑋 ) and 𝜇 ∈ 𝑃+ (𝑌 ) with equal mass, i.e.,

∫
𝑋
𝜈 𝑑𝑥 =∫

𝑌
𝜇 𝑑𝑦. This is achieved using a cost function 𝑐 : 𝑋 ×𝑌 → [0, +∞],

formalized as:

inf
{∫

𝑋×𝑌
𝑐 (𝑥,𝑦) 𝑑Γ(𝑥,𝑦) : Γ ∈ 𝑈 (𝜈, 𝜇)

}
,

where𝑈 (𝜈, 𝜇) denotes the set of possible transport plans,

𝑈 (𝜈, 𝜇) =
{
Γ ∈ 𝑃+ (𝑋 × 𝑌 ) :

∫
𝑌

𝑑Γ = 𝜈 and
∫
𝑋

𝑑Γ = 𝜇

}
.

The optimal solution is termed the optimal transport plan Γ. In our
framework, the probability simplex Δ𝑁 is replaced by the space
of probability distributions 𝑃+ (𝑋 ) on 𝑋 . The transport plans are
defined as the set of joint probability distributions Γ ∈ 𝑃+ (𝑋 × 𝑌 ),
whose marginal distributions are 𝜈 and 𝜇, and cost function 𝑐 =

𝐶match. This optimization defines the Wasserstein distance between
𝜈 and 𝜇, as𝑊𝑝 (𝜈, 𝜇), assuming the cost function 𝑐 represents a dis-
tance 𝑐 = 𝑑𝑝 for some exponent 𝑝 ≥ 1 [4]. However, our matching
cost, 𝐶match does not meet the criteria necessary for discussing a
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Figure 1: Training convergence curves evaluated on COCO
val2017 for the recent state-of-the-art DINO-DETR and our
RTP-DINO with ResNet-50 backbone. The x-axis denotes
the number of epochs, and the y-axis indicates mAP. Our
model not only achieving a better AP but also by doing so in
a shorter span of training epochs, thus demonstrating an im-
proved learning efficiency over DINO. The key to our model
fast convergence is the integration of entropy regularization
— a feature absent in the DINOmodel. Entropy regularization
facilitates a smoother and more stable optimization, allow-
ing for faster adaptation during training iterations.

Wasserstein distance, as it lacks properties like triangular inequality
and symmetry. Thus, we cannot discuss the Wasserstein distance
in this context [1, 3]. Indeed, triangular inequality ensures that the
direct route between two points is always the shortest. In other
words, for any three points 𝑎, 𝑏, and 𝑐 , the cost of going from 𝑎 to
𝑐 should hold the inequality 𝑑 (𝑎, 𝑐) ≤ 𝑑 (𝑎, 𝑏) + 𝑑 (𝑏, 𝑐) [3]. 𝐶match
does not satisfy this condition because the sum of individual dis-
tances between predictions and ground truths may not accurately
reflect the collective distance. Additionally, symmetric means that
the cost from point 𝑎 to point 𝑏 should be the same as from point
𝑏 to point 𝑎, i.e., 𝑑 (𝑎, 𝑏) = 𝑑 (𝑏, 𝑎). Matching costs derived from
functions like cross-entropy are asymmetric as they depend on the
order of the arguments (predicted vs. actual labels), reflecting a
directed discrepancy rather than a mutual distance. This aspect has
been discussed more extensively in [5].

3 EXPERIMENT RESULTS
Figure 1 shows the training convergence of our RTP-DETR model
alongside DINO-DETR. Our model not only improves average pre-
cision (AP) but also reaches these improvements faster, within a few
epochs. In Figure 2, we investigate the adaptability of our match-
ing strategy under the influence of different parameter settings.
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b)  ε = 0.2,  k1=300,  k2=0.001 c)   ε = 1,   k1=300,  k2=0.001 d)   ε = 4,   k1=300,  k2=0.001

e)   ε = 0.2,  k1=0.001,  k2=300 f)   ε = 1,  k1=0.001,  k2=300 g)   ε = 4,  k1=0.001,  k2=300 

h)   ε = 0.2,  k1=10,  k2=300 i)   ε = 1,  k1=10,  k2=300 j)   ε = 4,  k1=10,  k2=300 

a)   Costs of matching predictions (rows 1-5) 
with ground truth objects (column A, B, C) 
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Figure 2: Different configuration of our model based on varying parameter values. (a) presents the matching cost, where each
prediction is denoted by a number and each ground truth object by a letter. The costs are represented using a color gradient,
darker colors indicate higher costs, and lighter colors, approaching to white, signify lower costs (better match). The background
cost (column D) is set at 0.48, penalizes predictions that do not match any ground truth objects (acting as a threshold for
determining mismatches). Subfigures (b)-(m) illustrate the actual matching outcomes where a black square represents a full
match between a prediction and a ground truth (Γ𝑖 𝑗 = 1), and a white square indicates no match.
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The figure illustrates how different parameter values lead to dis-
tinct matching outcomes, each providing insight into the complex
relationships between predictions and ground truth objects.
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