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A PROOF OF THE PROPOSITION
A.1 Proposition 1
Proposition 1. Suppose we perform SVD on a matrix 𝑮𝑡 ∈ R𝑡𝑚×𝑛 :

SVD (𝑮𝑡 ) =
[
˜𝑼 𝑡 , 𝑼 𝑡

] [𝚺𝑡 0
0 0

] [
˜𝑽 𝑡 , 𝑽 𝑡

]⊤
. (1)

Where 𝑼 𝑡 =
[
𝑼 𝑡 , 𝑼 𝑡

]
∈ R𝑡𝑚×𝑡𝑚 and 𝑽 𝑡 =

[
𝑽̃ 𝑡 , 𝑽 𝑡

]
∈ R𝑛×𝑛 are the

left singular matrix and right singular matrix respectively. Then
we have the proposition that 𝑰 −˜𝑽 𝑡˜𝑽

⊤
𝑡 is the null space of 𝑮𝑡 .

Proof. We prove the proposition by verifying whether the prod-
uct of 𝑮𝑡 and 𝑰 − ˜𝑽 𝑡˜𝑽

⊤
𝑡 equals zero matrix. We know that ˜𝑽 𝑡 ∈

R𝑛×min{𝑡𝑚,𝑛} and˜𝑽 𝑡˜𝑽
⊤
𝑡 ∈ R𝑛×𝑛 , then we have:

𝑮𝑡 (𝑰−˜𝑽 𝑡˜𝑽
⊤
𝑡 ) = (˜𝑼 𝑡𝚺𝑡˜𝑽

⊤
𝑡 ) (𝑰 −˜𝑽 𝑡˜𝑽

⊤
𝑡 )

= (˜𝑼 𝑡𝚺𝑡˜𝑽
⊤
𝑡 ) − (˜𝑼 𝑡𝚺𝑡˜𝑽

⊤
𝑡 )˜𝑽 𝑡˜𝑽

⊤
𝑡

= ˜𝑼 𝑡𝚺𝑡˜𝑽
⊤
𝑡 − ˜𝑼 𝑡𝚺𝑡˜𝑽

⊤
𝑡 = 0.

(2)

Thus, 𝑰 −˜𝑽 𝑡˜𝑽
⊤
𝑡 is the null space of 𝑮𝑡 according to Definition 3.

A.2 Proposition 2
Proposition 2. Supposewe perform SVDon amatrix𝑯 𝑡 ∈ R𝑛×(ℎ𝑡−1+𝑘𝑡 ) :

SVD (𝑯 𝑡 ) = 𝑼 𝑡,𝐻𝑡

[
𝚺𝑡,𝐻𝑡 0
0 0

]
𝑽⊤𝑡,𝐻𝑡 . (3)

Where 𝑼 𝑡,𝐻𝑡 =
[
˜𝑼 𝑡,𝐻𝑡 , 𝑼 𝑡,𝐻𝑡

]
∈ R𝑛×𝑛 and 𝑽 𝑡,𝐻𝑡 =

[
˜𝑽 𝑡,𝐻𝑡 , 𝑽 𝑡,𝐻𝑡

]
∈

R(ℎ𝑡−1+𝑘𝑡 )×(ℎ𝑡−1+𝑘𝑡 ) . Then we have the proposition that ˜𝑼 𝑡,𝐻𝑡 is
the range space of 𝑯 𝑡 .
Proof. We prove Proposition 2 by examining whether 𝑯 𝑡 can be
represented by ˜𝑼 𝑡,𝐻𝑡 . We denote the product of 𝚺𝑡,𝐻𝑡 and˜𝑽

⊤
𝑡,𝐻𝑡

as
𝑸𝑡,𝐻𝑡 , namely 𝑸𝑡,𝐻𝑡 = 𝚺𝑡,𝐻𝑡

˜𝑽
⊤
𝑡,𝐻𝑡
∈ Rmin{𝑡𝑚,𝑛}×𝑛 . Then, we have

𝑯 𝑡 = ˜𝑼 𝑡,𝐻𝑡 𝚺𝑡,𝐻𝑡˜𝑽
⊤
𝑡,𝐻𝑡

= ˜𝑼 𝑡,𝐻𝑡𝑸𝑡,𝐻𝑡 . (4)

Thus, ˜𝑼 𝑡,𝐻𝑡 is the range space of 𝑯 𝑡 according to Definition 2.

B BASIC CONCEPTS IN VECTOR SPACE
Definition 1 (Subspace) Suppose vectors 𝒂1, · · · , 𝒂𝑛 ∈ R𝑚 , all the
linear combinations of these vectors constitute a subspace, which
is called the span of {𝒂1, · · · , 𝒂𝑛}:

span{𝒂1, · · · , 𝒂2} =

𝑛∑︁
𝑗=1

𝛽 𝑗𝒂 𝑗 : 𝛽 𝑗 ∈ R
 . (5)

Definition 2 (Range Space (Golub and Van Loan [1], pg.64)) Sup-
pose 𝑨 ∈ R𝑚×𝑛 is a matrix. The range space of 𝑨 is defined by:

R(𝑨) = {𝒚 ∈ R𝑚 : 𝒚 = 𝑨𝒙 for some 𝒙 ∈ R𝑛}. (6)

Where R(𝑨) represents the range space of 𝑨.
Definition 3 (Null Space (Golub and Van Loan [1], pg.64)) Suppose
𝑨 ∈ R𝑚×𝑛 is a matrix. The null space of 𝑨 is defined by:

N(𝑨) = {𝒙 ∈ R𝑛 : 𝑨𝒙 = 0}. (7)

Where N(𝑨) represents the null space of 𝑨.
Lemma 1 (Relation between R(𝑨) and N(𝑨) (Meyer [2], pg.405))
Suppose R(𝑨) and N(𝑨) are the range space and null space of
matrix 𝑨 ∈ R𝑚×𝑛 respectively, then we have:

R(𝑨)⊥ = N(𝑨⊤); N(𝑨)⊥ = R(𝑨⊤). (8)

C ALGORITHM OF THE COLLABORATIVE
FRAMEWORK FOR FSCLP AND GPCNS

Algorithm 1 Algorithm for FSCLP + GPCNS

Require: Datasets {D1,D2, · · · ,D𝑇 } for each tasks; A neural net-
work 𝑓𝑾 parameterized by 𝑾 with 𝐿 layers, learning rate 𝜂,
threshold 𝜖 and scale coefficient 𝛼 .

Ensure: 𝑓𝑾 , 𝑺𝑇 , 𝚲𝑇 ;
initialization 𝑓𝑾
for 𝑡 = 1, 2, · · · ,𝑇 do

while not converged do
𝑩𝑡 ∼ D𝑡
∇L𝑡 ← 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (𝑩𝑡 , 𝑓𝑾 )
∇ ˜L𝑡 ← 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 (∇L𝑡 , 𝑺𝑡,𝐶𝑡 ,𝚲𝑡,𝐶𝑡 )
𝑾𝑡 ←𝑾𝑡 − 𝜂∇ ˜L𝑡

end while
for 𝑙 = 1, 2, · · · , 𝐿 do

𝑮𝑙𝑡 ← 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑆𝑡𝑎𝑐𝑘

(
𝑮𝑙
𝑡−1,∇ ˜L

𝑙

𝑡

)
𝚺
𝑙
𝑡 , (˜𝑽

𝑙
𝑡 )⊤ ← SVD

(
𝑮𝑙𝑡

)
˜𝑽
𝑙
𝑡 ← 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 ((˜𝑽 𝑙𝑡 )⊤)

𝑘𝑙𝑡 ← 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎(𝚺𝑙𝑡 , 𝜖𝑙𝑡 )
̂𝑽
𝑙
𝑡 ← ˜𝑽

𝑙
𝑡 [:, 0 : 𝑘𝑙𝑡 ]

// Construct Feature Space
𝑩𝑡 ∼ D𝑡
𝑹𝑙𝑡 ← 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 (𝑩𝑡 , 𝑓𝑾 )
𝑴𝑙
𝑡 ← 𝐹𝑆𝐶𝐿𝑃 (𝑹𝑙𝑡 )

// Space Merging
𝑪𝑙𝑡 ← 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑆𝑡𝑎𝑐𝑘 (̂𝑽 𝑙𝑡 ,𝑴𝑙

𝑡 )
˜𝑼
𝑙
𝑡,𝐶𝑡

, 𝚺𝑙
𝑡,𝐶𝑡
← 𝑆𝑉𝐷 (𝑪𝑙𝑡 )

𝑟 𝑙𝑡 ← 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎(𝚺𝑙
𝑡,𝐶𝑡

, 𝜖𝑙𝑡 )

𝑺𝑙
𝑡,𝐶𝑡
← ˜𝑼

𝑙
𝑡,𝐶𝑡
[:, 0 : 𝑟 𝑙𝑡 ]

𝚲
𝑙
𝑡 ← 𝑆𝑐𝑎𝑙𝑖𝑛𝑔(𝚺𝑙

𝑡,𝐶𝑡
, 𝛼)

end for
end for



ACM MM, 2024, Melbourne, Australia

D SIZE OF REPRESENTATION AND GRADIENTS
D.1 Matrix Transformed from Tensor
We reshape the gradient matrix on each convolutional layer from four dimensions to two dimensions, namely ∇L𝑡 ∈ R𝑑𝑂×𝑑𝐼 ×𝑑𝐾 ×𝑑𝐾 ⇒
∇L𝑡 ∈ R𝑑𝑂×(𝑑𝐼 ×𝑑𝐾 ×𝑑𝐾 ) . Where 𝑑𝑂 and 𝑑𝐼 are output and input channels, respectively. 𝑑𝐾 × 𝑑𝐾 is the kernel size. The gradient matrix
mentioned in the main paper are all two-dimensional, and we denote their size as ∇L𝑡 ∈ R𝑚×𝑛 for the convenience of representation.

D.2 Size of Representation and Gradient on Each Layer
In Table 1, we demonstrate the sizes of representation matrices and gradient matrices constructed to determine the projection space when
applying a ResNet-18 as the backbone for continual learning on 20-Split MiniImageNet. The representation matrices carry feature information,
and the method to compute representation is the same as GPM, CGP, TRGP, and SGP. We can find that the size of the gradient matrix is
much smaller than that of representation matrix on each layer. Therefore, constructing orthogonal spaces through gradient information
requires less training time and memory overhead.

Table 1: The sizes of the representation matrices and gradient matrices for each layer when applying a ResNet-18 on Mini-
ImageNet. Where Repres and Grad are the abbreviation of Representation and Gradient respectively. Pixels in Repres is the
number of elements in the representation matrix, and Pixels in Grad is the number of elements in the gradient matrix. R/G
represents the pixel ratio of representation and gradient.

Layer Size of Repres Size of Grad Pixels in Repres Pixels in Grad Repres/Grad

1 27×17640 20×27 476280 540 882.0
2 180×17640 20×180 3175200 3600 882.0
3 180×17640 20×180 3175200 3600 882.0
4 180×17640 20×180 3175200 3600 882.0
5 180×17640 20×180 3175200 3600 882.0
6 180×4410 40×180 793800 7200 110.25
7 360×4410 40×360 1587600 14400 110.25
8 20×4410 40×20 88200 800 110.25
9 360×4410 40×360 1587600 14400 110.25
10 360×22050 40×360 7938000 14400 551.25
11 360×6050 80×360 2178000 28800 75.625
12 720×6050 80×720 4356000 57600 75.625
13 40×6050 80×40 242000 3200 75.625
14 720×12100 80×720 8712000 57600 151.25
15 720×12100 80×720 8712000 57600 151.25
16 720×3600 160×720 2592000 115200 22.5
17 1440×3600 160×1440 5184000 230400 22.5
18 80×3600 160×80 288000 12800 22.5
19 1440×3600 160×1440 5184000 230400 22.5
20 1440×3600 160×1440 5184000 230400 22.5

E COMPUTATIONAL ISSUE AND SOLUTION
E.1 Computational Issue
In the main paper, we propose GPCNS based on a novel design idea, which constructs projection spaces with the help of gradient information
from previous tasks. We construct a common gradient matrix 𝑮𝑡 by stacking the projected gradients under all previous tasks vertically, and
the first dimension of 𝑮𝑡 ∈ R𝑡𝑚×𝑛 will increase with increasing tasks. Since the size of gradient matrix is much smaller than representation
matrix, GPCNS has a shorter training time and occupies less memory in the experiments. However, GPCNS needs to store the gradient
matrix for each task, which will cause its advantage in computational cost to diminish or even disappear as the number of tasks increases.

In most continual learning settings, the number of tasks is less than or equal to 20. In this scenario, GPCNS is lightweight. Taking the
experiment on MiniImageNet as an example, representation matrice on each layer are more than 20 times larger than the gradient matrices,
with the largest gap even reaching 882 times (see Table 1). Therefore, even if the gradients under all tasks are stored at last task, the size of
these gradients concatenated together is still smaller than the representation matrix of one task.

Nevertheless, we still need to consider situations when the number of tasks is extraordinarily large. Thus, we propose the following
solution.
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E.2 Solution and Future Work
A possible solution is to construct a novel type of common gradient matrix that

𝑮𝑡 = ∇L𝒕
∗𝑽 1𝑽 2 · · · 𝑽 𝑡−1 (9)

instead of 𝑮𝑡 in the main paper. Under such a condition, we can obtain that 𝑽 𝑡 is the null space of 𝑮𝑡 if SVD is performed on 𝑮𝑡 and
𝑽 𝑡 =

[
˜𝑽 𝑡 , 𝑽 𝑡

]
is obtained according to Eq.(1). Furthermore, (𝑽 1𝑽 2 · · · 𝑽 𝑡−1)𝑽 𝑡 is the common null space of ∇L𝝉

∗, 𝜏 = 1, 2, · · · , 𝑡 , and the
reason is as follow. From Eq.(9), we have 

𝑮1𝑽 1 = ∇L∗1𝑽 1 = 0
𝑮2𝑽 2 = (∇L∗2𝑽 1)𝑽 2 = 0

.

.

.

𝑮𝑡𝑽 𝑡 = (∇L∗𝑡 𝑽 1𝑽 2 · · · 𝑽 𝑡−1)𝑽 𝑡 = 0

. (10)

By multiplying the same term on both sides of the sub-equation in each row, we can obtain

∇L∗1𝑽 1 (𝑽 2 · · · 𝑽 𝑡 ) = 0 · (𝑽 2 · · · 𝑽 𝑡 )
∇L∗2 (𝑽 1𝑽 2) (𝑽 3 · · · 𝑽 𝑡 ) = 0 · (𝑽 3 · · · 𝑽 𝑡 )

.

.

.

∇L∗𝑡−1 (𝑽 1 · · · 𝑽 𝑡−1)𝑽 𝑡 = 0 · 𝑽 𝑡
∇L∗𝑡 (𝑽 1 · · · 𝑽 𝑡−1𝑽 𝑡 ) = 0

. (11)

Therefore, (𝑽 1𝑽 2 · · · 𝑽 𝑡−1)𝑽 𝑡 is the common null space of ∇L∗𝜏 , 𝜏 = 1, 2, · · · , 𝑡 and 𝑽 𝑡 is the null space of 𝑮𝑡 .
The memory overhead will be significantly reduced since there is no stacking operation of gradient matrices in Eq.(9). Nevertheless, the

above solution will result in at least three major problems. (1) The size of 𝑽 𝑡 will be altered, which also leads to variations on the size of the
matrices that depends on 𝑽 𝑡 (e.g. 𝑯 𝑡 and 𝑪𝑡 ). (2) The calculation error will be transfered and amplified in multiple matrix multiplication
operations, which results in a decrease on ACC. (3) The second dimension of matrix 𝑽 𝑡 will continue to decrease until it reachs zero. The
above issues make the situation quite complex, which will be considered as a part of the next study.

F ADDITIONAL RESULTS AND ANALYSIS
In Figure 1, we demonstrate the ablation experiment on gradient scaling in task level. The results indicate that gradient scaling has a certain
improvement on test accuracy in most tasks, while the increase is limited to a small margin.

(a) 10-Split CIFAR-100 (b) 20-Split CIFAR-100 Superclass (c) 20-Split MiniImageNet

Figure 1: Task level ablation study on gradient scaling.

G DATASET STATISTICS AND MORE EXPERIMENTAL DETAILS
We give the statistics of three datasets applied to conduct experiments in Table 2. In addition, the settings of hyperparameters for all the
considered methods are demonstrated in Table 3. Where CIFAR-100, Superclass and MiniImageNet denote 10-Split CIFAR-100, 20-Split
CIFAR-100 Superclass and 20-Split MiniImageNet respectively.
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Table 2: Statistics of three datasets used in the experiment.

10-Split CIFAR-100 20-Split CIFAR-100 Superclass 20-Split MiniImageNet

Total Number of Tasks 10 20 20
Total Number of Classes 100 100 100

Size of Input Data 3×32×32 3×32×32 3×84×84
Number of Classes / Task 10 5 5

Sample Size of Training Set / Task 4750 2375 2450
Sample Size of Valid Set / Task 250 125 50
Sample Size of Test Set / Task 1000 500 500

Table 3: List of hyperparameter settings in baseline approaches and our methods. Where ’lr’ represents the initial learning rate,
and 𝑛𝑠 is the sample size sampled from the previous tasks in order to construct the projection space for current task.

Methods Hyperparameter Settings

Multitask lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet)

OWM lr: 0.01 (CIFAR-100), 0.1 (MiniImageNet)

A-GEM lr : 0.05 (CIFAR-100, Superclass), 0.1 (MiniImageNet)
memory size (samples) : 2000 (CIFAR-100, Superclass), 500 (MiniImageNet)

ER_Res lr: 0.05 (CIFAR-100, Superclass), 0.1 (MiniImageNet)

Adam-NSCL lr: 10−4 (CIFAR-100, Superclass), 5 × 10−5 (MiniImageNet)

GPM lr: 0.01 (CIFAR-100, Superclass), 0.1 (MiniImageNet)
𝑛𝑠 : 125 (CIFAR-100, Superclass), 100 (MiniImageNet)

FS-DGPM lr, 𝜂3: 0.01 (CIFAR-100, Superclass), 0.1 (MiniImageNet)
lr for sharpness, 𝜂1 : 0.001 (CIFAR-100), 0.01 (Superclass, MiniImageNet)
lr for DGPM, : 0.01 (CIFAR-100, Superclass, MiniImageNet)
memory size (samples) : 1000 (CIFAR-100, Superclass, MiniImageNet)
𝑛𝑠 : 125 (CIFAR-100, Superclass), 100 (MiniImageNet)

CGP lr: 0.04 (CIFAR-100), 0.03 (Superclass), 0.1 (MiniImageNet)
𝑛𝑠 : 125 (CIFAR-100, Superclass), 100 (MiniImageNet)

TRGP lr: 0.01 (CIFAR-100, Superclass), 0.1 (MiniImageNet)
𝑛𝑠 : 125 (CIFAR-100, Superclass), 100 (MiniImageNet)

SGP
lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet)
𝑛𝑠 : 125 (CIFAR-100, Superclass), 100 (MiniImageNet)
𝛼 : 5 (CIFAR-100), 3 (Superclass), 1 (MiniImageNet)

GPCNS lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet)
𝛼 : 5 (CIFAR-100), 4.5 (Superclass), 3 (MiniImageNet)

GPM + GPCNS
lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet)
𝛼 : 1.5 (CIFAR-100), 4.5 (Superclass), 1 (MiniImageNet)
𝑛𝑠 : 125 (CIFAR-100, Superclass), 100 (MiniImageNet)

TRGP + GPCNS
lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet)
𝛼 : 1.5 (CIFAR-100), 4.5 (Superclass), 1 (MiniImageNet)
𝑛𝑠 : 125 (CIFAR-100, Superclass), 100 (MiniImageNet)

SGP + GPCNS
lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet)
𝛼 : 1.5 (CIFAR-100), 4.5 (Superclass), 1 (MiniImageNet)
𝑛𝑠 : 125 (CIFAR-100, Superclass), 100 (MiniImageNet)
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H SOFTWARE AND HARDWARE
We implemented GPCNS and FSCLP + GPCNS in python (version 3.10.9) with pytorch (version 1.13.1) and torchvision (version 0.14.1)
libraries. All the experiments were performed on a single machine with Ubuntu 18.04, 40 Intel(R) Xeon(R) Silver 4210R CPUs @ 2.40GHz and
a NVIDIA A100 GPU (CUDA Version: 11.6).
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