Supplementary Materials: Introducing Common Null Space of
Gradients for Gradient Projection based Continual Learning

A PROOF OF THE PROPOSITION
A.1 Proposition 1

Proposition 1. Suppose we perform SVD on a matrix G; € R™*".

svD (60 = [0.0 3 | Fe¥il " 0

Where U; = [ﬁt,ﬁt] e RIMXIM gnd v, = Wt"_/t] € R™" are the
left singular matrix and right singular matrix respectively. Then
we have the proposition that I — V{V: is the null space of G;.
Proof. We prove the proposition by verifying whether the prod-
uct of Gy and I — VtVtT equals zero matrix. We know that vV, €
Rmin{tmn} 5ng %VI € R™", then we have:
= =T = =T = =T
G (I-V,V,) = U2V, )T -V,V,y)
= =T = =T = =T
= (UZtVy ) = (U V, )ViV, (2)
= ﬁtztv: - ﬁtztv: =0.
Thus, I — VtVtT is the null space of G, according to Definition 3.

A.2 Proposition 2

Proposition 2. Suppose we perform SVD on a matrix H; € R"* (herthe),

) 0
SVD (Ht)=Ut’Ht[ t.H; ]VZHt. (3)

0 0
WhereU, p, = [U;p,,Urp, | € R andV, g, = [V 11,.Vim,| €
R(he-1+ke)X(he-1+ki) Then we have the proposition that ﬁt,H, is
the range space of H;.

Proof. We prove Proposition 2 by examining whether H; can be
represented by ﬁ[,Ht. We denote the product of X 77, and VIHz as

~T .
O, g, namely Q, . =% g,V gy, € RMIn{EmR}XN Then, we have

— ~T —
Hy=Urp, % n,Vem =UeH,QrH,- (4)

Thus, ﬁt, H, is the range space of H; according to Definition 2.

B BASIC CONCEPTS IN VECTOR SPACE

Definition 1 (Subspace) Suppose vectors ay, - - - ,a, € R™, all the
linear combinations of these vectors constitute a subspace, which
is called the span of {ay, - - - ,an}:

n
span{ay,- - ,az} = Zﬁjaj:ﬂj eRy. (5)
j=1
Definition 2 (Range Space (Golub and Van Loan [1], pg.64)) Sup-
pose A € R™*" js a matrix. The range space of A is defined by:

R(A) = {y € R™ : y = Ax for some x € R"}. (6)

Where R(A) represents the range space of A.
Definition 3 (Null Space (Golub and Van Loan [1], pg.64)) Suppose
A € R™ "™ i5 a matrix. The null space of A is defined by:

N(A) = {x eR" : Ax = 0}. @)

Where N (A) represents the null space of A.

Lemma 1 (Relation between R(A) and N (A) (Meyer [2], pg.405))
Suppose R(A) and N (A) are the range space and null space of
matrix A € R™*" respectively, then we have:

R(A)T = N(AT); N(A)* =R(AT). ®)

C ALGORITHM OF THE COLLABORATIVE
FRAMEWORK FOR FSCLP AND GPCNS

Algorithm 1 Algorithm for FSCLP + GPCNS

Require: Datasets {D1, Dy, - - -, Dr} for each tasks; A neural net-
work fy parameterized by W with L layers, learning rate 5,
threshold € and scale coefficient «.

Ensure: fyw, ST, AT;
initialization fy
fort=1,2---,Tdo

while not converged do
B; ~ Dy
VL; « Optimizer(By, fw)
V.L; < Project(VL:,Sic,, Arc,)
Wy —W;-nVL,;
end while
forl=1,2---,Ldo
Gi «— VerticalStack (Gltil,Vfi)

5L (V)T « svD (Gﬁ)

Vﬁ — Transpose((Vi)T)

kg — Criteria(Zi, e%)

Vﬁ %Vi[:,o : kf]

/] Construct Feature Space

B; ~ Dy, _

th « Forward(By, fw)

M. « FSCLP(R!)

// Space Merging

C% — HorizontalStack(Vlt, Mﬁ)

Upc,. T, —SVD(Ch

rl{ — Criteria(Zi’ct,eg)
=1

Si,C, — Ut,C, [50: rg]

Al[ — Scaling(Zl @)

£Cy
end for

end for
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D SIZE OF REPRESENTATION AND GRADIENTS

D.1 Matrix Transformed from Tensor

We reshape the gradient matrix on each convolutional layer from four dimensions to two dimensions, namely V.L; € Rdoxdrxdixdi —
VL; € Rdox(dixdkxdk) Where dg and dj are output and input channels, respectively. dx X dk is the kernel size. The gradient matrix
mentioned in the main paper are all two-dimensional, and we denote their size as V.L; € R™*" for the convenience of representation.

D.2 Size of Representation and Gradient on Each Layer

In Table 1, we demonstrate the sizes of representation matrices and gradient matrices constructed to determine the projection space when
applying a ResNet-18 as the backbone for continual learning on 20-Split MinilmageNet. The representation matrices carry feature information,
and the method to compute representation is the same as GPM, CGP, TRGP, and SGP. We can find that the size of the gradient matrix is
much smaller than that of representation matrix on each layer. Therefore, constructing orthogonal spaces through gradient information
requires less training time and memory overhead.

Table 1: The sizes of the representation matrices and gradient matrices for each layer when applying a ResNet-18 on Mini-
ImageNet. Where Repres and Grad are the abbreviation of Representation and Gradient respectively. Pixels in Repres is the
number of elements in the representation matrix, and Pixels in Grad is the number of elements in the gradient matrix. R/G
represents the pixel ratio of representation and gradient.

Layer Size of Repres Size of Grad Pixels in Repres Pixels in Grad Repres/Grad

1 27X17640 20x27 476280 540 882.0
2 180x17640 20x180 3175200 3600 882.0
3 180x17640 20%180 3175200 3600 882.0
4 180x17640 20%180 3175200 3600 882.0
5 180x17640 20x180 3175200 3600 882.0
6 180x4410 40x180 793800 7200 110.25
7 360x4410 40%360 1587600 14400 110.25
8 20Xx4410 40%20 88200 800 110.25
9 360x4410 40x360 1587600 14400 110.25
10 360%x22050 40%360 7938000 14400 551.25
11 360%x6050 80%360 2178000 28800 75.625
12 720X6050 80X720 4356000 57600 75.625
13 40x6050 80x40 242000 3200 75.625
14 72012100 80X720 8712000 57600 151.25
15 720%x12100 80X720 8712000 57600 151.25
16 720%3600 160x720 2592000 115200 22.5

17 1440x3600 160x1440 5184000 230400 22.5

18 80%3600 160x80 288000 12800 22.5

19 1440%3600 160x1440 5184000 230400 22.5

20 1440x3600 160x1440 5184000 230400 22.5

E COMPUTATIONAL ISSUE AND SOLUTION

E.1 Computational Issue

In the main paper, we propose GPCNS based on a novel design idea, which constructs projection spaces with the help of gradient information
from previous tasks. We construct a common gradient matrix G; by stacking the projected gradients under all previous tasks vertically, and
the first dimension of G; € R™*" will increase with increasing tasks. Since the size of gradient matrix is much smaller than representation
matrix, GPCNS has a shorter training time and occupies less memory in the experiments. However, GPCNS needs to store the gradient
matrix for each task, which will cause its advantage in computational cost to diminish or even disappear as the number of tasks increases.

In most continual learning settings, the number of tasks is less than or equal to 20. In this scenario, GPCNS is lightweight. Taking the
experiment on MinilmageNet as an example, representation matrice on each layer are more than 20 times larger than the gradient matrices,
with the largest gap even reaching 882 times (see Table 1). Therefore, even if the gradients under all tasks are stored at last task, the size of
these gradients concatenated together is still smaller than the representation matrix of one task.

Nevertheless, we still need to consider situations when the number of tasks is extraordinarily large. Thus, we propose the following
solution.
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E.2 Solution and Future Work

A possible solution is to construct a novel type of common gradient matrix that
G, =VLVVy- Vg 9)

instead of G; in the main paper. Under such a condition, we can obtain that V; is the null space of G; if SVD is performed on G; and
V= [Vt,‘_/t] is obtained according to Eq.(1). Furthermore, (V1V2---V;_1)V; is the common null space of VL, *,7 = 1,2, ,t, and the
reason is as follow. From Eq.(9), we have
Gl‘_ll = VLTVI =0
GoVa = (VLV)V2=0

(10)
GVi=(VLViVy- Vi)V =0
By multiplying the same term on both sides of the sub-equation in each row, we can obtain
VLVI(Vz---V)) =0-(Vy---Vy)
VL, (ViV2)(V3---Vy) =0-(V3---Vy)
: (11)

VL (Vi Vi)V =0-V,
VL (Vi ViVy) =0

Therefore, (V1V3 - - - V;_1)V; is the common null space of VL, 7=1,2,--- ,t and V, is the null space of G;.

The memory overhead will be significantly reduced since there is no stacking operation of gradient matrices in Eq.(9). Nevertheless, the
above solution will result in at least three major problems. (1) The size of V; will be altered, which also leads to variations on the size of the
matrices that depends on V; (e.g. H; and C;). (2) The calculation error will be transfered and amplified in multiple matrix multiplication
operations, which results in a decrease on ACC. (3) The second dimension of matrix V; will continue to decrease until it reachs zero. The
above issues make the situation quite complex, which will be considered as a part of the next study.

F ADDITIONAL RESULTS AND ANALYSIS

In Figure 1, we demonstrate the ablation experiment on gradient scaling in task level. The results indicate that gradient scaling has a certain
improvement on test accuracy in most tasks, while the increase is limited to a small margin.
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Figure 1: Task level ablation study on gradient scaling.

G DATASET STATISTICS AND MORE EXPERIMENTAL DETAILS

We give the statistics of three datasets applied to conduct experiments in Table 2. In addition, the settings of hyperparameters for all the
considered methods are demonstrated in Table 3. Where CIFAR-100, Superclass and MinilmageNet denote 10-Split CIFAR-100, 20-Split
CIFAR-100 Superclass and 20-Split MinilmageNet respectively.
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Table 2: Statistics of three datasets used in the experiment.

10-Split CIFAR-100 20-Split CIFAR-100 Superclass 20-Split MinilmageNet

Total Number of Tasks 10 20 20
Total Number of Classes 100 100 100
Size of Input Data 3x32x32 3x32x32 3x84x84
Number of Classes / Task 10 5 5
Sample Size of Training Set / Task 4750 2375 2450
Sample Size of Valid Set / Task 250 125 50
Sample Size of Test Set / Task 1000 500 500

Table 3: List of hyperparameter settings in baseline approaches and our methods. Where ’Ir’ represents the initial learning rate,
and n; is the sample size sampled from the previous tasks in order to construct the projection space for current task.

Methods Hyperparameter Settings
Multitask Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet)
OWM Ir: 0.01 (CIFAR-100), 0.1 (MinilmageNet)
A-GEM Ir : 0.05 (CIFAR-100, Superclass), 0.1 (MinilmageNet)
memory size (samples) : 2000 (CIFAR-100, Superclass), 500 (MinilmageNet)
ER_Res Ir: 0.05 (CIFAR-100, Superclass), 0.1 (MinilmageNet)
Adam-NSCL Ir: 10~* (CIFAR-100, Superclass), 5 x 107> (MinilmageNet)
GPM Ir: 0.01 (CIFAR-100, Superclass), 0.1 (MinilmageNet)
ns: 125 (CIFAR-100, Superclass), 100 (MinilmageNet)
FS-DGPM Ir, n3: 0.01 (CIFAR-100, Superclass), 0.1 (MinilmageNet)
Ir for sharpness, 11 : 0.001 (CIFAR-100), 0.01 (Superclass, MinilmageNet)
Ir for DGPM, : 0.01 (CIFAR-100, Superclass, MinilmageNet)
memory size (samples) : 1000 (CIFAR-100, Superclass, MinilmageNet)
ng: 125 (CIFAR-100, Superclass), 100 (MinilmageNet)
CGP Ir: 0.04 (CIFAR-100), 0.03 (Superclass), 0.1 (MinilmageNet)
ng: 125 (CIFAR-100, Superclass), 100 (MinilmageNet)
TRGP Ir: 0.01 (CIFAR-100, Superclass), 0.1 (MinilmageNet)
ng: 125 (CIFAR-100, Superclass), 100 (MinilmageNet)
Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet)
SGP ns: 125 (CIFAR-100, Superclass), 100 (MinilmageNet)
a: 5 (CIFAR-100), 3 (Superclass), 1 (MinilmageNet)
GPCNS Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet)
a: 5 (CIFAR-100), 4.5 (Superclass), 3 (MinilmageNet)
Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet)
GPM + GPCNS  a: 1.5 (CIFAR-100), 4.5 (Superclass), 1 (MinilmageNet)

ng: 125 (CIFAR-100, Superclass), 100 (MinilmageNet)

TRGP + GPCNS

Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet)
a: 1.5 (CIFAR-100), 4.5 (Superclass), 1 (MinilmageNet)
ns: 125 (CIFAR-100, Superclass), 100 (MinilmageNet)

SGP + GPCNS

Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet)
a: 1.5 (CIFAR-100), 4.5 (Superclass), 1 (MinilmageNet)
ns: 125 (CIFAR-100, Superclass), 100 (MinilmageNet)
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H SOFTWARE AND HARDWARE

We implemented GPCNS and FSCLP + GPCNS in python (version 3.10.9) with pytorch (version 1.13.1) and torchvision (version 0.14.1)
libraries. All the experiments were performed on a single machine with Ubuntu 18.04, 40 Intel(R) Xeon(R) Silver 4210R CPUs @ 2.40GHz and
a NVIDIA A100 GPU (CUDA Version: 11.6).
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