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ABSTRACT

We propose a novel knowledge distillation (KD) method to selectively instill
teacher knowledge into a student model motivated by situations where the student’s
capacity is significantly smaller than that of the teachers. In vanilla KD, the teacher
primarily sets a predictive target for the student to follow, and we posit that this
target is overly optimistic due to the student’s lack of capacity. We develop a novel
scaffolding scheme where the teacher, in addition to setting a predictive target,
also scaffolds the student’s prediction by censoring hard-to-learn examples. The
student model utilizes the same information as the teacher’s soft-max predictions
as inputs, and in this sense, our proposal can be viewed as a natural variant of
vanilla KD. We show on synthetic examples that censoring hard-examples leads to
smoothening the student’s loss landscape so that the student encounters fewer local
minima. As a result, it has good generalization properties. Against vanilla KD, we
achieve improved performance and are comparable to more intrusive techniques
that leverage feature matching on benchmark datasets.

1 INTRODUCTION

A fundamental problem in machine learning is to design efficient and compact models with near
state-of-the-art (SOTA) performance. Knowledge Distillation (KD) (Zeng & Martinez, 2000; Bucila
et al., 2006; Ba & Caruana, 2014; Hinton et al., 2015) is a widely used strategy for solving this
problem wherein the knowledge from a large pre-trained teacher model with SOTA performance is
distilled onto a small student network.

Vanilla KD. Hinton et al. (2015) proposed the popular variant of KD by matching the student soft
predictions, s(x) with that of the pre-trained teacher, t(x) on inputs x. Informally, during student
training, an additional loss term, DKL(t(x), s(x)) is introduced that penalizes the difference between
student and teacher predictive distributions using Kullback-Leibler (KL) divergence. This promotes
inter-class knowledge learned by the teacher. We will henceforth refer to Vanilla KD as KD.

Capacity mismatch between student and teacher. One of the primary issues in Vanilla KD is that
the loss function is somewhat blind to the student’s capacity to interpolate. In particular, when the
student’s capacity is significantly lower than the teacher’s, we expect the student to follow the teacher
only on those inputs realizable by the student.

We are led to the following question: What can the teacher provide by way of predictive hints for
each input, so that the student can leverage this information to learn to its full capacity?

Our Proposal: Scaffolding a Student to Distill Knowledge (DiSK). To address this question, we
propose that the teacher, during training, not only set a predictive target, t(x), but also provide hints
on hard to learn inputs. Specifically, the teacher utilizes its model to output a guide function, g(x),
such that the student can selectively focus only on those examples that it can learn.

• if g(x) ≈ 1, teacher discounts loss incurred by the student on the input x.
• if g(x) ≈ 0, teacher signals the input x as learnable by student.

With this in mind we modify the KL distance in the Vanilla KD objective and consider,
DKL(t(x), ϕ(s(x), g(x))), where ϕ(s, g), which will be defined later, is such that, ϕ(s, 0) = s
if g offers no scaffolding. However, we must impose constraints on the guide function g to ensure that
only hard-to-learn examples are scaffolded - in the absence of such constraints, the guide can declare
all examples to be hard, and the student would no longer learn. We propose to do so by means of a
budget constraint B(s, g) ≤ δ to ensure that the guide can only help on a small fraction of examples.
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While more details are described in Sec. 3, we note that, in summary, our proposed problem is to take
the empirical linear combination of the aforementioned KL distance and a cross-entropy term as the
objective, and minimize it under the empirical budget constraint.

We emphasize that g(x) is used only during training . The inference logic for the student remains the
same as there is no need for g(x) during inference. The guide function supported student training has
three principal benefits. The benefits are explored in Sec. 2.

• Censoring Mechanism. Our guide function censors examples that are hard to learn for the student.
In particular, when there is a large capacity gap, it is obvious that the student cannot fully follow the
teacher. For this reason, the teacher must not only set an expectation for the student to predict, but
also selectively gather examples that the student has the ability to predict.
• Smoothen the Loss landscape. We also notice in our synthetic experiments that whenever
scaffolding is powerful, and can correct student’s mistakes, the loss landscape undergoes a dramatic
transformation. In particular, we notice fewer local minima in the loss viewed by the guided student.
• Good Generalization. The solution to our constrained optimization problem in cases where
the guide function is powerful can ensure good student generalization. Specifically, we can bound
the statistical error essentially in terms of student complexity, and as such do not suffer additional
complexity due to the teacher.

Contributions. We summarize our main results.

• We develop a novel approach to KD that exploits teacher representations to adjust the predictive
target of the student by scaffolding hard-to-learn points. This novel scaffolding principle has wider
applicability across other KD variants, and is of independent interest.
• We design a novel response-matching KD method (Gou et al., 2021) which is particularly relevant
in the challenging regime of large student-teacher capacity mismatch. We propose an efficient
constrained optimization approach that produces powerful training scaffolds to learn guide functions.
• Using synthetic experiments, we explicitly illustrate the structural benefits of scaffolding. In
particular, we show that under our approach, guides learn to censor difficult input points, thus
smoothening the student’s loss-landscape and often eliminating suboptimal local minima in it.
• Through extensive empirical evaluation, we demonstrate that the proposed DiSK method
– yields large and consistent accuracy gains over vanilla KD under large student-teacher capacity

mismatch (upto 5% and 2% on CIFAR-100 and Tiny-Imagenet).
– produces student models that can get near-teacher accuracy with significantly smaller model

complexity (e.g. 8× computation reduction with ∼ 2% accuracy loss on CIFAR-100).
– improves upon vanilla KD even under small student-teacher capacity mismatch, and is even

competitive with modern feature matching approaches.

2 ILLUSTRATIVE EXAMPLES

We present two synthetic examples to illustrate the structural phenomena of the censoring mechanism
and smoothening of student’s loss landscape enabled by the scaffolding approach DiSK, which lead
to globally optimal test errors. We defer exact specification of the algorithm to Sec.3.

Example 1 (1D Intervals). Consider a toy dataset with one dimensional features x ∈ [0, 9] and
binary class labels y ∈ {Red,Blue} as shown in Figure 1. There are two Blue labelled clusters as in
[2, 3] and in [5, 7]. The remaining points are labelled as Red. We sample 1000 i.i.d. data points as
the training set and 100 data points as the test set with balanced data from both classes. We describe
the details of the experiment setup such as models and training details in Appendix A.1.

Teacher T belongs to the 2-interval function class, and the capacity-constrained student S belongs to
the 1-interval function class. Since teacher capacity is sufficient to separate the two classes without
error, it learns the correct classifier (see Figure 1). In contrast, the best possible student hypothesis
cannot correctly separate the two classes. Hence, the student will have to settle onto one of the many
local minima. We show these minima and the contour plot for the student in Figure 1. We present the
results of training student models with different initializations in Table 1.

KD suffers from bad local minima. KD loss landscape contains many local minima (see Figure 1).
Due to a big gap between student and teacher capacity, it is unable to help the student discern between
these minima. Hence, KD fails to distinguish between the different minima (see Table 1).
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(a) (b) (c)
Figure 1: 1a: 1D Intervals. Data distribution on x-axis [0, 9]. Teacher T learns the correct decision boundary
with 2-intervals and it is the global minima for this binary classification task. Student S has many bad local
minima, and one global minima that best describes the decision boundary with 1-interval. 1b: Contour plot for
the KD loss shows the various local minima in the loss landscape. 1c: Contour plot for DiSK shows the bad
local minima no longer exist.
Table 1: The number of times each method lands on various local minima in two toy problems for 100 runs.

Dataset 1D Intervals 2D Gaussians
Minima A B C (Global) A B C D (Global)

Accuracy 67% 83% 87% 70% 80% 90% 100%
Cross-Entropy 35 64 1 73 12 9 6

KD 30 67 3 1 11 31 57
DiSK 9 1 90 0 0 3 97

DiSK censors interval [2, 3] and in addition focuses training on learnable datapoints. If we analyze
the guide function at the end of the training, we see that it covers (censors) the first Blue cluster.
Indeed, both clusters are not simultaneously learnable with available student capacity. However, if
we were to censor the interval [2, 3], then the problem becomes realizable for the student model. The
guide function thus captures the excess capacity of the data.

DiSK smoothens loss landscape. The guide function and the budget constraint enable our method
to have a smooth loss landscape thanks to the guide-function censoring points, which eliminate the
local minima. Hence, DiSK solution lands in the global minimum with high probability.

Example 2 (2D Gaussians). Consider another toy dataset with two dimensional features x ∈ R2

and three class labels y ∈ {Red,Green,Blue}. Here we wish to show that DiSK can allow for
globally optimal solutions reaching 100% accuracy, which appears unachievable with cross-entropy
minimization regardless of data size.

Figure 2a shows the labelled data. There are six cluster centers, two with each class label. Data points
are drawn using Gaussian balls around the cluster centers with small radii. We sample 1000 i.i.d.
data points as the training set and 1000 data points as the test set with equal representation from all
three classes. We provide details (hypothesis classes, learning procedure, etc.) in Appendix. A.2.

The teacher is a 3-layer neural network with 8, 16, and 3 neurons. The student is a 2-layer neural
network with 2 and 3 neurons. We point out that the teacher being an over-parameterized network
in this feature space, easily learns the correct decision boundary. While the student being severely
constrained network suffers in learning the task. Different training runs lead to different local minima.
We show teacher solution and student local minima in Figure 2a. The contour plots for the student
models under KD loss and DiSK loss are shown in Figure 2b-2c using Li et al. (2018).

The results are similar to the 1D example - KD converges to a poor local minimum with at least 43%
of the initializations, while in contrast, DiSK escapes these by focusing on the learnable part of the
input space (Fig. 2c), converging to the global minimum nearly always (Table 1).

To conceptualize our findings in these examples, let us attempt to intuitively infer the example-
censoring, landscape-smoothening, and good generalization, by utilizing the following conditions
that appear to be satisfied for these synthetic examples.

Realizability. Suppose we are in a situation where the guide function g ∈ G is sufficiently powerful
that there is a student and guide function capable of interpolation, i.e., predictions supported by the
guide function, ϕ(s, g), interpolates to mimic the labels.
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(a) (b) (c)
Figure 2: 2a. 2D Gaussians. Data distribution on R2. Teacher T learns the correct decision boundary with 3
layer neural network and it is the global minima for this three-way classification task. While student S has many
bad local minima, and one global minima that best describes the decision boundary with 2 layer neural network.
2b. Contour plot for the KD loss shows the various local minima in the loss landscape. 2c. Contour plot for DiSK
shows the bad local minima no longer exist ( wider minima, join two adjust minima, remove bad local minima ).

Example: For instance, consider a binary classification problem with the labels y ∈ {−1, 1}. Let
ϕ(s, g) = y(s + g) with s(x) ∈ [−1, 1]. Our realizability condition is that we always satisfy
y(s(x) + g(x)) > 0. As such, this leads to the condition that if ys(x) ≤ 0, then yg(x) > 0.
Therefore, E[1[ys(x)<0]] ≤ E[1[ys(x)<0,yg(x)>0]] ≤ E[1[yg(x)>0]].

Small Guide Function Capacity. In addition to realizability suppose the class of guide functions
g ∈ G has a small capacity (for instance, small VC dimension). For our case this condition is satisfied
because our guidance function is obtained by using an MLP on teacher’s last layer features.
Example: Continuing with the example above, say we now have m training instances, (xi, yi), i ∈
[m], ĝ(x) is guide function output of DiSK. We can infer by standard statistical learning re-
sults (Shalev-Shwartz & Ben-David, 2014) that, for the estimated function ĝ ∈ G, it follows

with probability greater than 1 − η that E[1[yĝ(x)>0]] ≤ 1
m

∑m
i=1 1[yiĝ(xi)>0] +

√
V C(G)

m +
log 1

η

m .
As a result, we can say that if there is a student, s(x) (not necessarily that output by DiSK),
which complements ĝ(x) and satisfies realizability, then with probability greater than 1 − η:

E[1[ys(x)<0]] ≤ 1
m

∑m
i=1 1[yiĝ(xi)>0] +O

(√
V C(G)+log 1

η

m

)
.

Remarks. Note that the key point here is that the student capacity is considerably larger since we
typically train an entire DNN, and student complexity-based bound can be vacuous. While the
guidance function does bound the student generalization error in terms of guide function complexity,
there are strong caveats— we require the strong assumption of realizability on the entire domain, and
additionally, while the guide function can witness student error, we are not in a position to precisely
estimate it without additional training data. Furthermore, the RHS is a relaxed bound on the student
training error. This motivates having a budget constraint to ensure that student learns with small
training error, a point that will be clearer in the sequel.

3 DEFINITIONS AND FORMULATIONS

Notation. Let X and Y = {1, . . . , C} be the feature and label spaces respectively, focusing on a C-
class classification task. We assume that we have a training set of N i.i.d. data pointsD = {xi, yi}Ni=1,
where xi ∈ X and yi ∈ Y . We use symbols S and T to denote the student and teacher models
respectively. Let lS(x) ∈ R|Y| and lT (x) ∈ R|Y| be the scores (logits) vector predicted by S and
T on input x. We use τ as the temperature used to soften the probability distribution. We write the
resulting softened student and teacher probabilities as s(x) and t(x), i.e.,

sτ (x) = softmax

(
lS(x)

τ

)
; tτ (x) = softmax

(
lT (x)

τ

)
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The standard soft prediction probabilities correspond to s1(x) and t1(x). We will use symbols sτy(x)
to denote the yth coordinate in sτ (x), and similarly tτy(x). The hard prediction of the student is
pS(x) = argmaxy∈Y s1(x), and similarly pT (x) = argmaxy∈Y t1(x) for the teacher.

We use g(x) ∈ [0, 1] to denote the helper guide function for the student and teacher pair (S, T ).
Guide takes input x and any other feature processed by (S, T ) pair and decides whether or not the
student needs help on the input x. Finally, we define ReLU activation as (·)+ = max(0, ·).

3.1 VANILLA KNOWLEDGE DISTILLATION

Vanilla KD relaxes the 0 − 1 error between the student predictions and the true labels y using the
cross-entropy loss LCE . Similarly, KD denotes the distance between the student and teacher softened
probability distributions using the KL divergence. We summarize the corresponding losses as,

LCE(s) = −
1

N

N∑
i=1

log s1yi
(xi); Lτ

KL(s) = −
1

N
τ2

N∑
i=1

∑
y

tτy(xi) log
sτy(xi)

tτy(xi)

For hyperparameters α ∈ [0, 1], τ > 0, KD minimizes a mixture of the above losses, as shown below

Lτ,α
KD(s) = αLCE(s) + (1− α)Lτ

KL(s). (1)

3.2 SELECTIVE KNOWLEDGE DISTILLATION.

KD attempts to transfer the knowledge from the teacher to the student on all training data points,
which is a sub-optimal objective when there is a capacity mismatch between the student and the
teacher. Instead, we propose distilling selective knowledge (DiSK) to allow the student to selectively
ignore some hard-to-learn data points during training, transferring the teacher’s knowledge only on
easy-to-learn inputs, and matching the learning to student capacity. Our objective is to minimize

min
s,g,δ

1

N

N∑
i=1

distance(t(xi);ϕ(s, g)(xi))︸ ︷︷ ︸
Distance between T and S with help of g

subject to.
1

N

N∑
i=1

g(xi)1{yi ̸=argmaxy sy(xi)} ≤ δ︸ ︷︷ ︸
Support budget constraint on g

(2)

where ϕ interpolates student predictions based on the guide’s help. The divergence term helps in
minimizing the distributional distance between the teacher and student probabilities after the guide g
is included. While the budget term in the optimization constrains the helper g to provide help only
when necessary, the amount of help given to the student should be within the budget δ ∈ [0, 1].

Function g Construction. As previously stated, we use the teacher’s last layer features and soft
predictions as input to the guide g. The guide is structured as a light-weight three-layer neural
network with these inputs, with a sigmoid activation at the last layer. We re-emphasise that g is not
used at inference time, and only aids training. More details are left to Appx.A.4.

Relaxed Losses, Lagrangian & Optimization Algorithm. We relax Eq. 2 and construct a La-
grangian by integrating the constraint into the minimization.

Budget constraint relaxation. We relax the indicator loss in the budget to a cross-entropy, and treat δ
as a hyperparameter to get

Lδ
budget(s, g) =

[
− 1

N

N∑
i=1

g(xi) log s
1
yi
(xi)− δ

]
+

(3)

We view the scaffold as a way to allow the student to interpolate the uncensored data. This suggests
that a good initialization for the budget is the error of cross-entropy trained model, when the student
does not have the benefit of teacher supervision. Using this insight, we scan the budget in a small
interval around this initialization.

Distillation objective. Motivated from KL loss, we construct a distance loss with guide function as,

Lτ,K
dist(s, g) = −

1

N
ττt,s,D

N∑
i=1

∑
y

tτy(xi) log
(
sτt,s,Dy (xi) + 1y∈topK(tτ (xi))g(xi)

)
(4)
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Algorithm 1 DiSK: Distilling Selective Knowledge.

1: Input: Training data D = {(xi, yi)}Ni=1, Teacher t,
2: Parameters: τ , K, α, λmin, λmax, Number of iterations R, λT cosine period, Budget δ,
3: Initialize: s, randomly initialize g, λ = λmin,
4: for r = 1 to R do
5: Randomly Shuffle Dataset D
6: g ← argming L

τ,K,δ,α
DiSK (s, g, λ)

7: s← argmins αLCE(s) + (1− α)Lτ,K
dist(s, g)

8: λ← λmin + (λmax − λmin) ∗
(1−cos

r mod λT
λT

π)

2
9: Return : s

We point out two modifications in the distillation loss. First, Ldist explicitly adds guide value
to softened student probabilities in selected class indices. The class indices guide function adds
value are picked as top K classes based on the teacher probabilities for any input xi where K is a
hyperparameter of our method. The rest of the class indices do not get any value from g. Second,
we use different temperature parameters for teacher and student. Temperature parameter for teacher,
τ , is a hyperparameter. The student temperature is found by minimizing the KL loss between
teacher softened probabilities and the student softened probabilities over the training dataset, .i.e
τt,s,D = argminτ ′

∑
i KL(tτ (xi), s

τ ′
(xi)).

Similar to KD, we incorporate standard cross entropy loss between student model predictions and the
ground truth labels for stability. We construct our Lagrangian by combining Eq. 3 and 4 as,

Lτ,K,δ,α
DiSK (s, g, λ) = αLCE(s) + (1− α)Lτ,K

dist(s, g) + λLδ
budget(s, g) (5)

where α is a hyperparameter and λ is the dual parameter of DiSK.

We optimize Obj. 5 using a primal dual update scheme as explained in Algorithm 1.

Primal Parameter Updates (s, g). We learn the student s and the guide function g using alternating
minimization. We approximate argmin with running SGD for a small number of epochs on the full
dataset. In each iteration, we first learn the guide function g to select the data partition from which
the knowledge needs to be distilled. Next, given the function g, we learn the student using the help g.
We empirically found that not optimizing the student model on budget loss gives more stable results.
Hence, we minimize the student model only on the distillation and cross-entropy losses.

Dual Parameter Update (λ) Intuition. Although it is tempting to optimise the above via a dual
ascent and primal descent scheme (wherein the dual parameter λ is increased by residual term in the
constraint until constraint satisfaction), recent work (Sun & Sun, 2021) has proposed to decrease
the λ in the non-convex regime. Inspired by this, we update the dual parameter by a fixed schedule
between [λmin, λmax], and update the bounds λmin, λmax during training to enforce the constraint.
λmin encourages exploration and allows student model to distill knowledge from all points. On the
other hand, λmax enforces the constraint and forces the student model to learn on uncensored inputs.
We choose R ≈ 4λT , so that the algorithm is exposed to a few exploratory periods. For the final
period, we increase λ monotonically so that budget is more strictly enforced at termination.

Computational Efficiency. Algorithm 1 trains both student and guide networks. The guide network
being small (three-layer MLP) relative to the student (CNN model), the additional cost in training the
guide is relatively insignificant, and as such DiSK efficiency is similar to vanilla KD.

4 EXPERIMENTS

We evaluate DiSK under various capacity mismatch scenarios on benchmark vision datasets.

Datasets. We use publicly available CIFAR-100 (Krizhevsky, 2009), Tiny-Imagenet (Le & Yang,
2015) datasets. CIFAR-100 contains 50K training and 10K test images from 100 classes with size
32×32×3. While Tiny-Imagenet contains 100K training and 10K test images from 200 classes with
size 64×64×3. We provide the dataset setup and data augmentations used in detail in Appendix A.3.

Models. We evaluate standard convolutional models on these datasets including ResNet(He et al.,
2016), Wide-ResNet(Zagoruyko & Komodakis, 2016), MobileNet(Sandler et al., 2018), and Shuf-
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Table 2: Model Statistics: We compute the storage (number of parameters) and computational requirements
(number of multiply-addition operations) of the models used in this work.

Architecture CIFAR-100 Tiny-Imagenet Architecture CIFAR-100
MACs Params MACs Params MACs Params

Teacher

Resnet10-ℓ 64M 1.25M 255M 1.28M
Resnet10 253M 4.92M 1013M 5M Resnet32x4 1083M 7.4M
Resnet18 555M 11.22M 2221M 11.27M Wide-Resnet-40-2 327M 2.25M
Resnet34 1159M 21.32M 4637M 21.38M

Student

Resnet10-xxs 2M 13K 8M 15K Resnet8x4 177M 1.2M
Resnet10-xs 3M 28K 12M 31K ShufflenetV2 44.5M 1.4M
Resnet10-s 4M 84K 16M 90K Wide-Resnet-16-2 101M 700K
Resnet10-m 16M 320K 64M 333K Wide-Resnet-40-1 83M 570K

MobileNetV2x2 22M 2.4M

fleNet(Ma et al., 2018). Table 2 shows the storage and computational requirements of all the models
used in this work. We provide explicit model configurations in Appendix A.4, including the tiny
models we generate from the Resnet architectures.

Methods. We study performance against standard cross-entropy (CE) based learning and the vanilla
KD methods. For each method, we train models for 200 epochs using SGD as the optimizer with 0.9
momentum and 0.1 learning rate. See Appendix A.5, for training details. We have recorded the mean
in our results as the variance of 3 trials in our experiments is not larger than 0.1 in most of the cases.

We perform evaluations in different settings. Below, we explain individual setups.1

Large Capacity Mismatch Setting. We distill knowledge from a teacher model into a student model
where the student has much less capacity compared to teacher model. We use four large capacity
Resnet teachers and five tiny Resnet students and train these students using CE, KD, and DiSK
methods. Performances, and the gains of DiSK are reported in Table 3.

Small Capacity Mismatch Setting. While DiSK has been designed for the scenario when student
capacity is very low, we further evaluate it in the setting where teacher and student capacities are
similar, to probe how far the power of the method extends. The model classes used are the standard
choice for this scenario (Chen et al., 2022; Tung & Mori, 2019). Performance is reported in Table 4.

Table 4 further reports the results of the feature matching distillation methods: FitNets (Romero
et al., 2015), SemCKD (Chen et al., 2021), and SimKD (Chen et al., 2022). Such methods can often
outperform response matching KD on large students, due to student representations that are more
aligned with the teacher, but typically at an increased training cost. While feature matching methods
are not the main focus of our work (and in principle scaffolding idea can be extended to them), we
observe that DiSK often improves upon their performance without any direct feature matching.

Experiment results. Below, we highlight salient features of DiSK based on empirical data.

DiSK outperforms the baselines uniformly across all datasets and student sizes. As shown by Table 3,
DiSK significantly improves the student performance in CIFAR-100 and the (more challenging)
Tiny-Imagenet dataset, respectively showing accuracy gains of up to 5% and 2% compared to KD.
These gains are consistent across a wide range of student and teacher capacities.

DiSK achieves better performance with worse teachers than KD does with even the best teachers.
In Table 3, we point out that the student performance increases for KD as the teacher complexity
is increased for a given student. But note that for the same student, DiSK achieves much better
performance with even worse teacher. For instance, for the ‘Resnet10-m‘ student, KD accuracy
increases from 66.96% to 68.09% by using high capacity teachers. But ‘Resnet10-m‘ trained with
even the worst teacher ( ‘Resnet10-ℓ‘ ) achieves 70.03% accuracy. This saves a lot of resources in
any application as large teacher requires more training time, and larger compute resources.

DiSK is competitive even in small capacity difference setting. As shown by Table 4, DiSK does
not loose its competitive edge over the KD even when the student is relatively similar sized as
teachers, and shows gains of up to 2.5% relative to KD. We conjecture that the observed gains arise
from the fact that DiSK provides scaffolding for hard points to the student in initial training stages,
which promotes the student to learn easy examples first. As training progresses, DiSK removes the
discounted help from hard inputs. As a result, the student evolves from simpler hypothesis to the ones

1We cover more ablative experiments and refer to Appendix A due to page limit.
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Table 3: DiSK performance under large capacity mismatch on CIFAR-100 & Tiny-Imagenet: We draw
mismatched teachers and students from the Resnet family, and report accuracy of CE trained teachers and
students, performance of students distilled using KD and DiSK, and gains of the latter relative to KD.

Architecture CIFAR-100 Tiny-Imagenet
Accuracy (%) Accuracy (%)

Teacher Student Teacher CE KD DiSK Gain Teacher CE KD DiSK Gain

Resnet10-ℓ
Resnet10-xxs

71.99
32.05 32.64 37.56 4.92

52.14
17.44 17.59 18.62 1.03

Resnet10-s 52.16 54.92 58.14 3.22 34.65 35.77 37.43 1.66
Resnet10-m 65.24 66.96 70.03 3.07 44.74 46.01 48.03 2.02

Resnet10
Resnet10-xxs

75.25
32.05 34.25 37.84 3.59

56.04
17.44 17.96 18.55 0.59

Resnet10-s 52.16 54.95 58.36 3.41 34.65 36.11 37.37 1.26
Resnet10-m 65.24 67.27 70.15 2.88 44.74 46.08 48.19 2.11

Resnet18
Resnet10-xxs

76.56
32.05 34.16 37.8 3.64

62.48
17.44 17.47 18.53 1.06

Resnet10-s 52.16 55.76 58.11 2.35 34.65 35.59 37.5 1.91
Resnet10-m 65.24 68.09 69.86 1.77 44.74 45.91 47.7 1.79

Resnet34
Resnet10-xxs

80.46
32.05 33.93 37.78 3.85

63.06
17.44 17.67 18.91 1.24

Resnet10-s 52.16 54.19 58.02 3.83 34.65 35.43 37.68 2.25
Resnet10-m 65.24 66.78 69.89 3.11 44.74 45.89 47.6 1.71

Table 4: DiSK performance with small capacity mismatch on CIFAR-100: We pick standard student and teacher
configurations used in the KD literature, and report accuracies and gains similarly to Table 3. Feature matching
KD baselines are due to Chen et al. (2022).

Architecture
CIFAR-100

Response Matching KD Feature Matching KD
Accuracy (%) Accuracy (%)

Teacher Student Teacher CE KD DiSK Gain FitNet SemCKD SimKD*

Resnet32x4

Resnet8x4

81.45

73.89 76.25 76.92 0.67 74.32 76.23 78.08
ShuffleNetV2 73.74 79.13 80.23 1.1 75.82 77.62 78.39

Wide-Resnet-16-2 74.26 76.28 77.67 1.39 74.70 75.65 77.17
MobileNetV2x2 69.24 76.05 77.24 1.19 73.09 73.98 75.43

Wide-Resnet-40-2

Resnet8x4

78.41

73.89 75.15 76.05 0.9 75.02 75.85 76.75
ShuffleNetV2 73.74 75.81 78.33 2.52 - - -

Wide-Resnet-40-1 72.81 74.44 75.92 1.48 74.17 74.4 75.56
MobileNetV2x2 69.24 73.92 76.32 2.40 - - -

*SimKD accuracy is not emphasized as it employs additional layers beyond the given student architecture and
thus not directly comparable to other methods.

consistent with both easy and hard inputs. This justifies our dual parameter (λ) update in Algorithm 1,
wherein we periodically increase and decrease λ to enforce and relax the budget constraint.

DiSK students achieve near teacher accuracy while saving up to 8× MACs & 5× Params. As
reported in Table 3, student (‘Resnet10-m‘) trained with the teacher (‘Resnet10-ℓ‘) achieves close to
the teacher accuracy of 71.99%. In this process, it saves 4× compute and requires 4× less parameters.
Similarly, student (‘ShuffleNetV2‘) trained with the teacher (‘Resnet32x4‘) achieves close to the
teacher accuracy of 81.45%. In this process, it saves 24× compute and requires 5× less parameters.

DiSK cleverly selects a subset of datapoints and smoothens the loss landscape. As illustrated in
Figure 1 and 2, DiSK judiciously selects a subset of hard-to-learn data points for the students and
provide discounted help to the student focus on easily learnable inputs. As a result, it eliminates
some bad local minima in the student loss-landscape, and smoothens tihs surface.

DiSK enables the student to reach saturation capacity. In Table 3, the performance of KD often
suffers as the teacher size is increased, e.g., student (‘Resnet10-s’) accuracy decreases substantially
with the teacher ‘Resnet34’ versus the teacher ‘Resnet18’. In contrast, DiSK saturates the student
performance across different teachers. For instance, student (‘Resnet10-m‘) accuracy is ≈ 70% for
all the teachers. Thus, we point out that DiSK enables the student to reach saturation. This may be
due to the fact that guide g identifies the same set of ‘easy’ points across different teachers.

5 RELATED WORK

We refer the reader to Gou et al. (2021) for a comprehensive survey on knowledge distillation.

Response Matching. Zeng & Martinez (2000); Bucila et al. (2006) distill the response of an ensemble
of classifiers into a single neural network by creating a pseudo-labeled dataset using the ensemble of
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classifiers. Ba & Caruana (2014) extend this to the setting with the neural network as the teacher.
Hinton et al. (2015) propose vanilla KD that distilled knowledge from an ensemble of neural networks
into a single network by matching their output logits. This work provided a simple recipe for aligning
the teacher and student predictive distributions using the Kullback-Leibler (KL) divergence. Recently,
Beyer et al. (2021) modify the KD procedure to include patient and consistent teacher resulting in
substantial gains. Knowledge consistency is enforced by using the same aggressive data augmentation
and image views in the student as in the teacher. Patience is promoted using a very long training
schedule. This results in a computationally very expensive training process.

Stanton et al. (2021) analyze response matching KD and suggests that difficulty in optimization leads
to poor knowledge distillation. Thus, the teacher and student predictions do not always match, even
on the training data. Cho & Hariharan (2019) study Vanilla KD through the lens of mismatched
student and teacher capacities. It shows that small students are unable to mimic complex teachers.
They proposed early stopping teacher training as to remedy to achieve a student-learnable teacher.
The above works fail miserably when the gap between student and teacher complexities is large.
Specifically, the student cannot learn the complex teacher decision boundaries primarily due to the
small student capacity. It becomes imperative to selectively choose only easy-to-learn data points
and transfer the teacher knowledge from these points and ignore the hard-to-learn data points during
distillation. Thus, our proposal targets the problem of severe capacity gaps between student and
teacher models. Additionally, our experiments with standard student and teacher configurations show
that DiSK is still competitive when the capacity difference is small.

Feature Matching. In response matching, teacher supervision is limited to its logits. We can enforce
intermediate layer feature matching for refined teacher supervision. FitNets (Romero et al., 2015)
extend the KD by including the feature matching in the middle layers. Zagoruyko & Komodakis
(2017) used feature map attention as the teacher supervision. Tung & Mori (2019) preserve pairwise
similarity in feature maps amongst data points during the distillation. Chen et al. (2022) modify the
student by projecting the student features onto the teacher feature space and by reusing the teacher
classifier. While our work focuses primarily on selective distillation in Vanilla KD for simplicity. We
can easily extend the proposed framework to incorporate it into feature-matching distillation.

Privileged Information. Vapnik & Izmailov (2015) propose the ‘learning under privileged informa-
tion‘ (LUPI) framework wherein a support vector machine is trained using privileged information
unavailable during the inference stage. Later, Lopez-Paz et al. (2016) unified LUPI and Vanilla KD
into generalized distillation, wherein the teacher is learned using the privileged information. Next,
the student is trained using the ground truth and the teacher labels. These works rely on privileged
information in the application domain and are shown to work on toy setups. Since our guide function,
g is available only during training, it can be thought of as privileged information from a teacher.

Curriculum Learning & Hard Instance Mining. Curriculum Learning (CL) (Bengio et al., 2009;
Hacohen & Weinshall, 2019; Graves et al., 2017) sorts the data based on their hardness as measured
by some scoring function ( ex., predictive entropy, softmax margin score, etc. ). It presents the data
points during training in the order of increasing hardness. Similarly, Hard Instance Mining (HIM)
(Zhou et al., 2020) reduces the weight of the easy example and increases the weight on hard inputs
to promote hard-example learning. We point out that our method is only conceptually related to
these works via input hardness. Our method helps the student with hard examples by providing
explicitly discounted help g. We learn the helper function g (through teacher representation) that
decides whether the student needs help on a given input. Thus, we do not prioritize learning hard
examples keeping in mind the fact that student capacity is much smaller than the teacher.

6 CONCLUSION

We develop a new knowledge distillation method that utilizes teacher predictions in novel ways
combining predictive targets with scaffolding the student on hard-to-learn points by means of a guide
function. Our method is particularly relevant when there is large gap between student and teacher
capacities. We show that our method allows for convergence to better minima based on two key
properties. Our guide function allows for censoring hard-to-learn examples, and the predictive targets
set by the teacher on remaining points allow for eliminating bad local minima and smoothening
the resulting student loss landscape. Against vanilla KD we achieve improved performance and are
comparable to more intrusive techniques that leverage feature matching on benchmark datasets.
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A APPENDIX

A.1 DETAILS FOR ILLUSTRATIVE EXAMPLE (1D INTERVALS)

Dataset Overview. We create a synthetic toy dataset with one dimensional features x ∈ [0, 9] and
binary class labels y ∈ {Red,Blue}. We use σ(x) to denote the sigmoid function with argument
scaled by parameter κ > 0, i.e., σ(x) = 1

1+exp(−κx) .

Function Classes. LetH be the 1-interval function class parametrized by two variables {a, b}, i.e.,
for h ∈ H

h(x; a, b) = σ(x− a)− σ(x− b); 0 < a < b < 9

Similarly, let F be the 2-interval family parametrized by four variables {a, b, c, d}, i.e., for f ∈ F

f(x; a, b, c, d) = h(x; a, b) + h(x; c, d); 0 < a < b < c < d < 9

Note that any function inH behaves as an indicator for the interval (a, b). Similarly, any function in
F behaves as an indicator for two exclusive intervals {(a, b), (c, d)}.
Data Generation. We assume that the data is generated using the function f∗ ∈ F with parameters
(a∗, b∗, c∗, d∗). Dataset is sampled with balanced data from both classes. We label x as red if
f∗(x) < 0.5, otherwise we label the point as blue. We sample 1000 i.i.d. data points as the training
set and 100 data points as the test set. Figure 1 shows the train data. We draw an independent
validation set of 100 data points for hyper-parameter tuning.

Large Capacity Teacher T belongs to the 2-interval function class F and is learnt with all the
training data points. We learn the teacher with cross-entropy loss. We use the SGD optimizer with
momentum 0.9, learning rate 0.1, weight decay 0.01, and minimize the loss for 200 epochs. Note
that the teacher recovers the underlying function f∗ as shown by the two intervals in Figure 1.

Capacity Constrained Student S belongs to the 1-interval function classH and it has access to all
the training dataset. Note that best possible hypothesis inH cannot recover the performance of the
function f∗ and hence the student will have to settle on one of the many local minima. We show
these minima as well the contour plot for the student in the Figure 1. We learn the student with three
different loss functions ( cross-entropy LCE , vanilla KD Lτ,α

KD(s) , and DiSK Algorithm 1 ). We use
similar training setup as the teacher in terms of the optimizer and training steps. For DiSK method,
our guide function g has similar capacity as the student but utilizes the teacher features to learn the
decision as to which points are hard-to-learn for the student. For both, KD and DiSK, we scan the
α hyper-parameter over the range {0.0, 0.1, 0.5, 0.9, 1.0}. Similarly. we can the temperature in the
range {1, 2, 4}.
For DiSK, we scan the different hyper-parameters in the following ranges: (a) τs ∈ {1, 2, 4}, (b)
K ∈ {1, 2, 3}, (c) λmin ∈ {0.01, 0.1, 1, 5, 10}, (d) λmax ∈ {1, 5, 10, 20, 50, 100, 1000}, (e) Budget
δ ∈ {0.1, 0.05, 0.0}, and (f) λT ∈ {20, 50}. We replace the argmin in the Algorithm 1, with three
gradient steps.

Note that although the hyper-parameter scan looks daunting, the default hyper-parameters: τs = τ ,
K = 2, λmin = 0.1, λmax = 50, δ = 0.0 (approximate error of the global minima), λT = 50, work
well in this setup as well as the 2D gaussian example described below.

Vanilla KD suffers from local minima. The loss landscape of the Vanilla KD contains many local
minima (see Figure 1(b)). Since there is a big gap between student and teacher capacity, the teacher
is unable to help the student discern between these bad minima. Hence, Vanilla KD leads to one of
the bad local minima with high probability (see Table 1).

DiSK removes bad local minima. In contrast, DiSK deletes harder points from the landscape and as a
result settles onto the global minima for S with high probability (see Figure 1(c) and Table 1 where
one cluster of blue points have been removed). Note that this also removes bad minima from the S
loss landscape. Finally, DiSK learns the student that has the best performance.

A.2 DETAILS FOR ILLUSTRATIVE EXAMPLE (2D GAUSSIANS)

Dataset Overview & Data Generation. We create a synthetic toy dataset with two dimensional
features x ∈ R2 and three class labels y ∈ {Red,Green,Blue}. We create six cluster centers. We
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assign a color to each cluster center and spread input features around these centers. Below we list the
cluster centers along with their class labels.

• (0, 0), Red
• (1.5, 0), Blue
• (3, 0), Green
• (0, 1.5), Blue
• (1.5, 1.5), Green
• (3, 1.5), Red

Given a cluster center c , we draw input features x using a Gaussian ball with radius r = 0.05 around
the center using multi-variate Gaussian N (c, rI), where I is the Identity matrix.

Figure 2a shows the labelled data. There are six cluster centers, two with each class labels. Data
points are drawn using Gaussian balls around the cluster centers with small radius. We sample 1000
i.i.d. data points as the training set and 1000 data points as the test set with equal representation from
all three classes.

Function Classes. We use two feed-forward neural networks as function classes in this example. Let
ϕ(·) denote the Batch-Norm followed by ReLU operation.

LetH be the two feed-forward layer neural network. Any h ∈ H can be written as

h(x) = W2ϕ(W1x)

where W1 ∈ R2×2 and W2 ∈ R3×2. Note that h has only two neurons and hence a very small
network.

Let F be the three feed-forward layer neural network. Any f ∈ F can be written as

f(x) = Ŵ3ϕ(Ŵ2ϕ(Ŵ1x))

where Ŵ1 ∈ R8×2, Ŵ2 ∈ R16×8 and Ŵ3 ∈ R3×2.

Note that f has 8 neurons in first and 16 neurons in the second layer. The final layer in above networks
is the classifier layer that transforms the features into the class probabilities.

Large Capacity Teacher T is a 3 layer neural network with 8, 16 and 3 neurons. In between each
feed-forward layer, we have batch-norm and ReLU activation non-linearity. We point out that the
teacher being an over-parameterized network in this feature space, easily learns the correct decision
boundary. We show this decision boundary in the Figure 2a. We learn the teacher with cross-entropy
loss. We use the SGD optimizer with momentum 0.9, learning rate 0.1, weight decay 0.01, and
minimize the loss for 200 epochs.

Capacity Constrained Student S is a 2 layer neural network with 2 and 3 neurons. Similar to the
teacher, we have batch-norm and ReLU non-linearity in between the feed-forward layers. Since the
student is severely constrained as compared to the teacher, it suffers in learning the task. Different
training runs lead to some popular local minima. We show the teacher solution as well as the student
local minima in Figure 2a. For DiSK method, our guide function g has similar capacity as the
student but utilizes the teacher features to learn the decision as to which points are hard-to-learn for
the student. The contour plots for the student models under KD loss and DiSK loss are shown in
Figure 2b-2c using the visualization toolkit described in Li et al. (2018). We following similar setup
for hyper-parameter tuning as in Sec. A.1.

We see a similar result as in 1D example. KD suffers from bad local minima and converges to the
global minima with only 43% of the initializations. Differently, DiSK escapes the local minima
solutions and focus on the learnable part of the input space as shown in Figure 2c. Our method
converges to the global minima with very high probability ( see Table 1).

A.3 DATASET DETAILS

We use publicly available CIFAR-100 (Krizhevsky, 2009), Tiny-Imagenet (Le & Yang, 2015) and
ImageNet-1K (Russakovsky et al., 2015) datasets. CIFAR-100 contains 50K training and 10K test

13



Under review as a conference paper at ICLR 2023

images from 100 classes with size 32× 32× 3. While Tiny-Imagenet contains 100K training and
10K test images from 200 classes with size 64× 64× 3. Imagenet contains 1.2M training and 100K
test images from 1000 classes with size 224× 224× 3.

For the CIFAR-100 and Tiny-Imagenet datasets, we use the standard data augmentations including
‘RandomCrop‘, ‘RandomHorizontalFlip‘, ‘AutoAugment‘(Cubuk et al., 2019), ‘Cutout‘ (DeVries
& Taylor, 2017), and ‘Mean-Std-Normalization‘. We use the same augmentation strategy in all our
experiments, across baselines and different model family.

For the Imagenet-1K dataset, following the previous work (Chen et al., 2022), we use the ‘Random-
Crop‘, ‘RandomHorizontalFlip‘, and ‘Mean-Std-Normalization‘.

A.4 MODEL DETAILS

In this section, we list the model characteristics as well as their accuracy obtained using standard
cross-entropy (CE) loss. Table 5 lists all the models used in large capacity mismatch setting. While
Table 6 lists all the models in the small capacity mismatch setting. Below, we describe individual
model for completeness.

Large Student-Teacher Capacity Mismatch All models in the Table 5 belong to the same Resnet
family and use the standard ‘BasicBlock‘ as the building block. It consists of a convolutional block,
followed by four residual block stages, followed by the adaptive average pooling layer and the
classifier layer. Different capacity models in this family differ only in the number of repetitions of the
residual block and the number of filters in each stage. Below, we write the different of repetitions and
the number of filters for the four different residual stages.

• Resnet34 has [64, 128, 256, 512] filters and repeats the ‘BasicBlock‘ [3, 4, 6, 3] times.
• Resnet18 has [64, 128, 256, 512] filters and repeats the ‘BasicBlock‘ [2, 2, 2, 2] times.
• Resnet10 has [64, 128, 256, 512] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1] times.
• Resnet10-ℓ has [32, 64, 128, 256] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1] times.
• Resnet10-m has [16, 32, 64, 128] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1] times.
• Resnet10-s has [8, 16, 32, 64] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1] times.
• Resnet10-xs has [8, 16, 16, 32] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1] times.
• Resnet10-xxs has [8, 8, 16, 16] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1] times.

Small Student-Teacher Capacity Mismatch Definitions of all models in the Table 6 are borrowed
from (Chen et al., 2022). We refer the reader to their official github repository (https://github.
com/DefangChen/SimKD.git) for the exact definition. We trained these models on our end
using the data augmentations mentioned above and found that our cross-entropy baseline as well as
the vanilla KD baselines are much better than the ones reported in their work.

Guide Function Our guide function g is a three layer feed-forward network. It uses the last layer
features and logits of the teacher as the input. It has 64, 128, and 1 neurons in the three layers. We
include batch-norm followed by ReLU non-linearity between these layers. The final layer contains a
sigmoid activation to contain the scaler output in the range [0, 1].

Warm Start We note that we warm start each student model by first training them with cross entropy
loss without teacher. We observe that the warm start benefits both DiSK and KD. Note that, we do
not change the algorithms. We only start from a CE pre-trained student model.

Table 5: Models used in large capacity mismatch setting along with storage and computational requirements.

Architecture CIFAR-100 Tiny-Imagenet
CE Acc. MACs Params CE Acc. MACs Params

Teacher

Resnet10-ℓ 71.99 64M 1.25M 52.14 255M 1.28M
Resnet10 75.25 253M 4.92M 56.04 1013M 5M
Resnet18 76.56 555M 11.22M 62.48 2221M 11.27M
Resnet34 62.48 1159M 21.32M 63.06 4637M 21.38M

Student

Resnet10-xxs 32.05 2M 13K 17.44 8M 15K
Resnet10-xs 42.99 3M 28K 25.89 12M 31K
Resnet10-s 52.16 4M 84K 34.65 16M 90K
Resnet10-m 65.24 16M 320K 44.74 64M 333K
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Table 6: Models used in in small capacity mismatch setting along with storage and computational requirements.

Architecture CIFAR-100
CE Acc. MACs Params

Teacher Resnet32x4 81.45 1083M 7.4M
Wide-Resnet-40-2 78.41 327M 2.25M

Student

Resnet8x4 73.89 177M 1.2M
ShufflenetV2 73.74 44.5M 1.4M

Wide-Resnet-16-2 74.29 101M 700K
Wide-Resnet-40-1 72.81 83M 570K
MobileNetV2x2 69.24 22M 2.4M

Table 7: Imagenet-1K: We pick standard student and teacher configurations used in the KD literature. Below,
we show the performance of various methods. Baselines are reported from Chen et al. (2022).

Teacher Student CE KD SemCKD SimKD DiSK
Resnet50 Resnet18 70.58 71.29 71.41 71.66 71.5

A.5 HYPER-PARAMETERS

For both, KD and DiSK, we scan the α hyper-parameter over the range {0.0, 0.1, 0.5, 0.9, 1.0}. As
per recommendations from previous works(Chen et al., 2022; Cho & Hariharan, 2019; Tung & Mori,
2019), we use 4 as the temperature in Eq. 1.

For DiSK, we scan the different hyper-parameters in the following ranges: (a) τs ∈ {1, 2, 4}, (b)
K ∈ {1, 3, 5, 10, 20, 50}, (c) λmin ∈ {0.01, 0.1, 1, 5, 10}, (d) λmax ∈ {1, 5, 10, 20, 50, 100, 1000},
(e) Budget δ within 0.2 distance from the cross-entropy trained student model’s error, and (f)
λT ∈ {20, 50}. We replace the argmin in the Algorithm 1, with three SGD steps over the entire
dataset. For all our experiments (both KD and DiSK), we use the popular cosine learning rate
scheduler for the SGD optimizer 0.1 learning rate, 0.9 momentum and 5e− 4 weight decay. We use
200 as the batch size.

Note that the default hyper-parameters: τs = τ , K = 20, λmin = 0.1, λmax = 50, δ = approximate
error of the global minima (replaced by the cross-entropy error), λT = 50, work well in most of our
experiments.

A.6 DIFFERENT EXPERIMENT SETUPS

Scaling upto ImageNet setting. We show that DiSK scales easily to the large-scale ImageNet-1K
dataset. Similar to SimKD(Chen et al., 2022), we train a Resnet18 student with a Resnet50 teacher.
We borrow the pre-trained teacher from their official github repository (https://github.com/
DefangChen/SimKD.git). We train the student with DiSK with the default hyper-parameters
from the CIFAR-100 setup. In this case, we do not start DiSK with a pre-trained cross-entropy
model for a fair comparison. We borrow the baselines from SimKD. Table 7 compares DiSK with
various baselines. It shows that DiSK outperforms the vanilla KD scheme and shows competitive
performance as compared to the feature based knowledge distillation methods.

A.7 EXTENSIONS BEYOND VANILLA KD.

In this section, we discuss potential extension of our method beyond Vanilla KD to feature based
distillation as well as self-supervised distillation.

Feature based KD methods. Let fs and ft denote the features for the student and teacher respectively
and Ψ denote the operator such that Ψ(fs) lies in the same feature space as ft . Commonly used
feature transfer strategy is to minimize the distance between these two representations via loss
function such as mean-squared error as shown below by the loss Lft.

Lft = −
1

N

N∑
i=1

∥Ψ(fs(xi))−ft(xi)∥2; Lft−g = − 1

N

N∑
i=1

(1−g(xi))∥Ψ(fs(xi))−ft(xi)∥2 (6)
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Table 8: DiSK performance against feature matching KD on CIFAR-100: Similar setup as in Table 4. We
integrate DiSK within SimKD (Chen et al., 2022) (see Appx. A.7) The gains of using DiSK over KD and using
SimKD + DiSK over SimKD are reported. Feature matching KD baselines are due to Chen et al. (2022).

Architecture Response Matching KD Feature Matching KD
Accuracy (%) Accuracy (%)

Teacher Student Teacher CE KD DiSK Gain FitNet SemCKD SimKD SimKD + DiSK Gain

Wide-Resnet-40-2 Resnet8x4
78.41

73.89 75.15 76.05 0.9 75.02 75.85 76.75 77.13 0.38
Wide-Resnet-40-1 72.81 74.44 75.92 1.48 74.17 74.4 75.56 76.21 0.65

A simple extension of this feature alignment loss to the selective distillation is shown by the loss
Lft−g that weighs each data point with the helper function decision. Table 8 shows this feature
matching extension for the SimKD(Chen et al., 2022) scheme. We leave question of finding better
selective distillation losses in feature alignment to future work.

Self-Supervision. We can substitute the teacher with a moving average of the student to help guide in
the distillation process (a surrogate that helps in learning the hints).
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