
Under review as a conference paper at ICLR 2022

A APPENDIX

In this appendix, we will present additional experimental results; the design details of the SRMs
and the symbolic constraints used in the experiments; a detailed experimental setup including the
hyperparameters.

A.1 ADDITIONAL RESULTS

We show some addition experimental results in this section to answer the following questions.

E. Can arbitrarily concretized SRM effectively train RL agents?

F. How much do the performance of Algorithm 1 depend on the designs of the SRMs?

For question E, we randomly generate hole assignments that satisfy the symbolic constraints for the
SRMs of the DoorKey and KeyCorridor tasks. The SRMs are shown in Fig.8 and 9. The symbolic
constraints contain the relational predicates as shown in Table.1 and 2. Those SRMs and symbolic
constraints produce the main results in the main text. Now the assignments are generated by only
optimizing the supervised objective Jcon mentioned in the main text. The concretized SRMs are
used for training RL policies in the following large DoorKey and KeyCorridor environments.

• DoorKey-16x16 . In Fig.5a, we test three 3 randomly generated hole assignments for
the SRM, each annotated by PPO(LSTM) rand# . The PPO(LSTM) agents trained with
those SRMs achieve certain level of performance than that trained with the default re-
ward. However, the SRM concretized with a learned hole assignment, annotated by
PPO(LSTM)+SRM, enables the agent to attain much higher performance with much lower
amount of frames.

• KeyCorridorS4R4 . we test 3 randomly generated hole assignments for the SRMs, each
annotated by AGAC(CNN) rand#. As in Fig.5b, the agents trained with the SRMs with
random assignments do not perform at all. In contrast, the agent trained with the SRM that
is concretized with a learned hole assignment achieves high performance with comparable
amount of frames to that trained with the default reward.

For question F, as mentioned in the main text we design three SRMs for the ObstructedMaze task.
We will describe the difference between these SRMs in the next section. We run Algorithm 1 with
those SRMs in the ObstructedMaze-2Dhlb environment and compare the results in Fig.6. In Fig.7b,
we use those concretized SRMs to train RL agents in ObstructedMaze-Full. However, the SRM1
that achieves highest performance in Fig.7b is outperformed by two others.

Besides answering those two questions, we recall that we run Algorithm 1 in DoorKey and KeyCor-
ridor tasks without symbolic constraint and with weaker symbolic constraint in the ablation study

(a) DoorKey-16x16 (b) KeyCorridorS4R3

Figure 5: AGAC/PPO+SRM indicates that the hole assignments are learned via Algorithm 1;
AGAC/PPO rand# with an index # indicates that the holes are randomly assigned with some val-
ues that satisfy the symbolic constraint for that task. CNN and LSTM indicate the versions of the
actor-critic networks.

13



Under review as a conference paper at ICLR 2022

(a) ObstructedMaze-2Dhlb (b) ObstructedMaze-Full

Figure 6: Algo1(SRM#)+AGAC(LSTM) with an index # = 1 ∼ 3 indicates running Algorithm 1
with those three designed SRMs and by using AGAC in line 4 of Algorithm 1. PPO/AGAC+SRM#
indicates training RL agents with SRM# by using PPO or AGAC algorithm. CNN and LSTM
indicate the versions of the actor-critic networks.

(a) DoorKey-8x8 (b) KeyCorridorS4R3

Figure 7: Algo1+PPO(CNN) indicates using PPO as the policy learning algorithm in line 4 of Algo-
rithm 1; Algo1(w/o c)+PPO(CNN) indicates that running Algorithm 1 without symbolic constraint
while using PPO(CNN) in line 4; Algo1(signonly)+PPO(CNN) indicates that running Algorithm 1
without symbolic constraint while using PPO(CNN) in line 4;CNN indicates CNN version of the
actor-critic networks.

of the main text. Under the same conditions, we vary the number of demonstrations and check the
number of frames needed for πA to attain high performance. In Fig.7a and Fig.7b, we show that
when the number of examples is reduced from 10 to 1, number of frames that Algorithm 1 needs to
produce a policy with average return of at least 0.8 are not severely influenced.

A.2 DESIGN DETAILS OF THE SRMS

In this section, we show the diagrams of the SRMs as well as the symbolic constraints designed for
the tasks. We will explain the design patterns in those SRMs in detail.

A.2.1 DOORKEY TASK

For readers convenience, we show the diagram of the SRM for DooKey in Fig.8. This SRM im-
plicitly identifies an unlocking-door sub-task with two internal states “Before Unlocking” and
“After Unlocking”. The transitions are designed mostly based on high level human insights
represented in first order logic: a) (Reach Goal@t) 7→ ∃t1 < t.∃t2 < t1.(Unlock Door@t1) ∧
(Pick up Key@t2) where @t indicates that the predicate preceding it, e.g., Reach Goal, oper-
ates on the time step t of the trajectory τ ; b) ∀t ∈ [t1, t2]. (Drop Key@t1, Before Unlocking) ∧
(¬Pick up Key@t) ∧ (Pick up Key@t2) 7→ ∀t′ ∈ [t1, t2].(¬Unlock Door@t′) where we addi-
tionally integrate the internal state, i.e., “Before Unlocking”, next to @t1, to indicate the internal

14



Under review as a conference paper at ICLR 2022

Figure 8: The diagram of the SRM designed for the DoorKey task.

Properties Predicates

[µ1]Reward reaching the goal
5∧

id=1

(?id ≤ ?1)

[µ2]Penalize dropping unused key ?5+?4 ≤ 0

[µ3]Reward unlocking door
5∧

id=2

(?id ≤ ?2)

[µ4]Penalty for closing door ?3 ≤ 0
[µ5]Mildly penalize door toggling ?3 + ?2 ≤ 0

Table 1: The correspondence between properties and atomic predicates for the DoorKey SRM in
Fig.1b

state at the time step t1. The predicate #CLOSEDOOR×?3+?2 > 0 in Fig.1b is introduced with
due consideration of avoiding overly penalizing the agent for closing the door, which behavior is
redundant for the task. The underlying idea is: if the reward function penalized an under-trained RL
agent for every door closing behavior with some high penalty ?3 < 0 for a total of #CLOSEDOOR
amount of times, and the accumulated penalty #CLOSEDOOR×?3 outweighed the reward ?2 > 0 for
unlocking the door, then the agent in practice might be inclined to reside away from the door for
good. The SRM in Fig.1b simply upper-bounds the accumulated penalty to avoid negative effects
in practice. Then we show the atomic predicates in the symbolic constraint for this task in Table.1.
The final symbolic constraint is c =

∧5
i=1 µi. We omit the explanation for the symbolic constraint

since the atomic predicates are self-explanatory.

A.2.2 KEYCORRIDOR TASK

We depict in Fig.9 the diagram of the SRM designed for this task. Due to the
added complexity in this task in comparison with the DoorKey task, two sub-tasks,
finding-key and unlocking-door, are implicitly established by using three internal states
“Before Finding Key”, “Before Unlocking” and “After Unlocking”. Some impor-
tant first order logic formulas that hold in most situations in the KeyCorridor task in-
clude: a) (Pick Up Target@t1) ∧ (Unlock Door@t2) 7→ ∃t ∈ [t2, t1].(Drop Key@t);

Figure 9: The diagram of the SRM designed for the KeyCorridor task.

15



Under review as a conference paper at ICLR 2022

Properties (Retaional) Predicates (Non-Relational) Predicates

[µ1]Reward picking up ball
8∧

id=2

(?id ≤ ?1) ?1 ≥ 0

[µ2]Reward 1st time picking up key ?2 ≥ 0 ?2 ≥ 0
[µ3]Reward dropping used key ?3 ≥ 0 ?3 ≥ 0
[µ4]Reward unlocking door ?4 ≥ 0 ?4 ≥ 0
[µ5]Encourage opening door ?5 ≥ 0 ?5 ≥ 0
[µ6]Penalize meaningless move ?8 ≤ 0 ?8 ≤ 0
[µ7]Moderately reward opening door ?5 − ?8 ≤ ?2
[µ8]Penalize dropping unused key ?2 + ?6 ≤ 0 ?6 ≤ 0
[µ9]Penalize picking up used key ?3 + ?7 ≤ 0 ?7 ≤ 0

Table 2: The correspondence between properties and the relational and non-relational atomic predi-
cates for the SRM of KeyCorridor in Fig.9

b) ∀t′ < t.(Pick Up Key@t) ∧ (¬Pick Up Key@t′) 7→ ∃t′′ < t.(Open a Door@t′′); c)
(Unlock Door@t) 7→ ∃t′ < t.(Open a Door@t′′). Regarding the implication a, two predicates
Pick Up Key@t and Drop Key@t are added at the internal state “After Unlocking” to govern
the rewards returned for their respectively concerned behaviors after the door is unlocked. As for
the implications b and c, the caveat is to determine the utility of each door opening behavior. A
designer may go to one extremity by rewarding every door opening behavior with some constant,
which, however, either represses exploration by penalizing opening door, or oppositely raises reward
hacking, i.e., agent accumulates reward by exhaustively searching for doors to open. Alternatively,
the designer may go to another extremity by carrying out a motion planning and specify the solution
in the SRM, which, however, is cumbersome and cannot be generalized. In this paper, we highlight
a economical design pattern to circumvent such non-determinism.

As shown in Fig.9, before the agent accomplishes the finding-key sub-task, i.e., in
the “Before Finding Key” internal state, once the agent opens a door, the predicate
#OPENDOOR PRE× (?8−?5)+?2 > 0? checks whether the total reward gained from opening doors
is about to exceed a threshold. The counter #OPENDOOR PRE counts the number of times that agent
opens doors prior to the agent finding the key; the variable ?8 is expected to be a penalty for the
agent closing a door, which is redundant. By introducing ?8, we specify that even if the agent
closed doors instead of opening doors for equal number #CLOSEDOOR PRE ≡ #OPENDOOR PRE
of times, the agent could still gain positive net reward by finishing the finding-key sub-
task, i.e., #CLOSEDOOR PRE×?8+?2 ≥ #OPENDOOR PRE×?5. When the agent accomplishes the
finding-key sub-task, i.e., transitioning to the “Before Unlocking” internal state, the reward
?2 −#OPENDOOR PRE REWARDED×?3 subtracts the reward hitherto gained from opening doors with
#OPENDOOR PRE REWARDED ≤ #OPENDOOR PRE counting the number of times that door opening
behaviors are indeed awarded prior to the agent finding the key. In some sense, this approach amor-
tizes the reward ?2 for finishing the finding-key sub-task over the door opening behaviors. The
amortized reward #OPENDOOR PRE REWARDED×?3 cannot exceed ?2 and should be deducted from
?2. The same idea is adopted to award the door opening behaviors prior to the agent unlocking the
door. The counter #OPENDOOOR POST in Fig.9 counts the number of times that agent opens doors
after the agent finding the key prior to the agent unlocking the door; #OPENDOOR PRE REWARDED
counts the number of times that door opening behaviors are awarded within that time interval. Ap-
parently, such design pattern is convenient enough to be implemented via symbolic means. The chal-
lenge, however, remains to properly determine values for ?id’s. Then we show the atomic predicates
in the symbolic constraint for this task in Table.2. The final symbolic constraint is c =

∧9
i=1 µi.

A.2.3 OBSTRUCTEDMAZE TASK

Fig.10 shows the diagram of the reward function designed for the ObstructedMaze task. Despite of
the complexity of task, there are only three internal states, “(Start)”, “After Seeing the Target”
and “(End)”. This is because only specifying the the sub-tasks is far from adequate for this task.

Once the “After Seeing the Target” state is reached, the reward function only concerns
whether the agent drops or picks up a key or the target. In the “(Start)” state, the reward
function views each door unlocking behavior as a milestone. If the agent does not unlock a

16



Under review as a conference paper at ICLR 2022

Figure 10: The diagram of the SRM designed for the ObstructedMaze task.

door at the present time step, the SRM awards the following agent behaviors: opening a box,
picking up a ball, picking up a key, dropping a ball, dropping a key through a proposition
?5 + #OPENBOX× (?3−?6) + #PICKUPBALL× (?3−?7) + . . . > 0 which bounds the number of
times that the those behaviors are awarded. The counters #OPENBOX,#PICKUPBALL . . . only count
the number of respectively concerned behaviors between two successive door unlocking behaviors
by resetting themselves to 0 once the agent unlocks a door. Thus far the design pattern is still
similar to that adopted in the KeyCorridor tasks. What makes a difference here is that we assume
the SRM to have access to the replay buffer of the agent policy, annotated as Replay Buffer.
Suppose that in some time step t the agent unlocks a C colored door located at coordinate X,
the SRM locates the last time step when the agent unlocked a door. Then it reassigns the re-
wards to 0 for all the opening a box, picking up a ball, picking up a key, dropping a ball, drop-
ping a key behaviors stored in Replay Buffer ever since that last door locking time step till
the present time step. Then it identifies the time steps of four milestone behaviors based on the
following human insights represented in first order logic: a) (Unlock C Colored Door@t) 7→
∃t1 < t.(Open Box@t1) ∧ (Find C Colored Key@t1 + 1), i.e., in time step t1 the agent opened
the box that contains the key for this C colored door; b) (Unlock X Located Door@t) 7→
∃t2 < t.∀t′2 > t2.(Pick Up X Located Ball@t2) ∧ (¬Pick Up X Located Ball@t′2), i.e., in
time step t2 the agent picked up the ball obstructing this door at position X for the last time;
c) (Unlock C Colored Door@t) 7→ ∃t3 < t.∀t′3 ∈ [t3, t].(Pick Up C Colored Key@t3) ∧
(¬Pick Up C Colored Key@t′3), i.e., in time step t3 the agent picked up the key for this C col-
ored door for the last time; d) (Unlock Door@t) 7→ ∃t4 < t.∀t′4 ∈ [t4, t].(Drop Ball@t4) ∧
(¬Drop Ball@t′4), i.e., in time step t4 the agent dropped a ball for the last time. After identifying
those milestone time steps, the SRM rewards the behaviors at the corresponding time steps. The
intuition behind such design pattern is that the reward function simply encourages all those behav-
iors if it is unclear what outcome those behavior will lead to; once the agent unlocks a door, the
reward function is able to identify the milestone behaviors that are most closely related to the door
unlocking outcome. Then we show the atomic predicates in the symbolic constraint for this task in
Table.3. The final symbolic constraint is c =

∧12
i=1 µi.

Note that the stored reward is not to be confused with the reward output at the present time. The
syntax of sequencing in the Hindsignt code block depends on the language of the r term specified
in the background theory. For the other two SRMs annotated by SRM2 and SRM3 as mentioned
earlier, we remove the Hindsight block. Especially, in SRM2, we restrict that door unlocking and
door opening behaviors are rewarded if only the accumulated rewards gained from those two behav-
iors do not exceed ?2. Otherwise, none of the behaviors correlated with the self-looping transitions
at state “Before Seeing the Target” in Fig.10 will ever be rewarded. A possible reason for the
policies trained by SRM1 do not generalize well in larger environment is that due to the hindsight
reward modification, the reward output is too sparse in the large environment for the agent to learn.
As shown by the experimental results of SRM2 and SRM3, once the Hindsight block is removed,
the training performance in large environment is improved.

17



Under review as a conference paper at ICLR 2022

Properties (Retaional) Predicates (Non-Relational) Predicates

[µ1]Reward picking up target
12∧

id=2

(?id ≤ ?1) ?1 ≥ 0

[µ2]Reward finding target ?2 ≥?4+?5 − 2?3 ?2 ≥ 0
[µ3]Reward opening door ?3 ≤ 0 ?3 ≤ 0
[µ4]Reward opening door ?4 ≥ 0 ?4 ≥ 0

[µ5]Reward unlocking door ?5 ≥
10∑

id=6

?id ?5 ≥ 0

[µ6]Penalize meaningless move ?3 ≤ 0 ?3 ≥ 0
[µ7]Penalize picking up used key ?11+?12 ≤ 0 ?11 ≤ 0
[µ8]Reward opening box ?6 ≥ 0 ?6 ≥ 0
[µ9]Reward picking up ball ?7 ≥ 0 ?7 ≥ 0
[µ10]Reward picking up key ?8 ≥ 0 ?8 ≥ 0
[µ11]Reward dropping ball ?9 ≥ 0 ?9 ≥ 0
[µ12]Reward dropping used key ?12 ≥ 0 ?12 ≥ 0

Table 3: The correspondence between properties and predicates for the SRM of ObstructedMaze
task in Fig.10

A.3 TRAINING DETAILS

• Training Overhead. We note that all the designed SRMs require checking hindsight ex-
periences, or maintaining memory or other expensive procedures. However, line 5 of Al-
gorithm 1 requires running all K candidate programs on all m sampled trajectories, which
may incur a substantial overhead during training. Our solution is that, before sampling
any program as in line 5 of Algorithm 1, we evaluate the result of [[L]](τA,i), which keeps
holes ? unassigned, for all the m trajectories. By doing this, we only need to execute the
expensive procedures that do not involve the holes once, such as the counter #OPENDOOR
and the reward modification steps in the Hindsight block in Fig.10. Then we use qϕ to
sample K hole assignments {hk}Kk=1 from H and feed them to {[[L]](τA,i)}mi=1 to obtain
{{[[lk := L[hk/?]]](τA,i)}mi=1}Kk=1. By replacing line 2 and line 5 with those two steps in
Algorithm 1, we significantly reduce the overhead.

• Supervised Learning Loss. In Algorithm 1, a supervised learning objective Jcons is used
to penalize any sampled hole assignment for not satisfying the symbolic constraint. In
practice, since our sampler qϕ directly outputs the mean and log-variance of a multivari-
ate Gaussian distribution for the candidate hole assignments, we directly evaluate the sat-
isfaction of the mean. Besides, as mentioned earlier, in our experiments we only con-
sider symbolic constraint as a conjunction of atomic predicates, e.g., c = ∧ni=1µi with
each µi only concerning linear combinations of the holes, we reformulated each µi into
a form ui(?) ≤ 0 where ui is some linear function of the holes ?. We make sure that
(ui(h) ≤ 0) ↔ ([[µi]](h) = >) for any hole assignment h. After calculating each ui(h),
which is now a real number, we let Jcons(qϕ) be a negative binary cross-entropy loss for
Sigmoid(ReLU([ui(h), . . . , un(h)]T ))) with 0 being the ground truth. This loss penalizes
any h that makes ui(h) > 0. In this way Jcons(qϕ) is differentiable w.r.t ϕ. Besides, we
retain the entropy termH(qϕ) extracted from the KL-divergence to regularize the variance
output by qϕ.
Network Architectures. Algorithm 1 involves an agent policy πφ, a neural reward function
fθ and a sampler qϕ. Each of the three is composed of one or more neural networks.

– Agent policy πφ. We prepare two versions of actor-critic networks, a CNN version
and an LSTM version. For the CNN version, we adopt the actor-critic network from
the off-the-shelf implementation of AGAC Flet-Berliac et al. (2021). It has 3 convo-
lutional layers each with 32 filters, 3×3 kernel size, and a stride of 2. A diagram of
the CNN layers can be found in Flet-Berliac et al. (2021). For the LSTM version, we
concatenate 3 identically configured convolutional layers with a LSTM cell of 32-size
state vector. The LSTM cell is then followed by multiple fully connected layers each
to simulate the policy, value and advantage functions. While AGAC contains other

18



Under review as a conference paper at ICLR 2022

Parameter Value
# Epochs 4
# minibatches (πφ) 8
# batch size (fθ, qϕ) 128
# frames stacked (CNN πφ) 4
# reccurence (LSTM πφ) 1
# recurrence (fθ) 8
Discount factor γ 0.99
GAE parameter λ 0.95
PPO clipping parameter ε 0.2
K 16
α 0.001
β 0.0003
η 1.e8
Entropy 1.e-2

Table 4: Hyperparameters used in the training processes

components Flet-Berliac et al. (2021), the PPO agent solely consists of the actor-critic
networks.

– Neural reward function fθ. The network is recurrent. It has 3 convolutional layers
each with 16, 32 and 64 filters, 2×2 kernel size and a stride of 1. The last convolutional
layer is concatenated with an LSTM cell of which the state vector has a size of 128.
The LSTM cell is then followed by a 3-layer fully connected network where each
hidden layer is of size 64. Between each hidden layer we use two tanh functions and
one Sigmoid function as the activation functions. The output of the Sigmoid function
is the logit for each action in the action space A. Finally, given an action in a state,
we use softmax and a Categorical distribution output the log-likelihood for the given
action as the reward.

– Sampler qϕ. The input to qϕ is a constant [1, . . . , 1]T of size 20. The sampler is a
fully-connected network with 2 hidden layers of size 64. The activation functions are
both tanh. Suppose that there are |?| holes in the SRM. Then the output of qϕ is a
vector of size no less than 2|?|. The |?| most and the |?| least significant elements in
the output vector will respectively be used as the mean of the Gaussian and constitute
a diagonal log-variance matrix. Besides, we let qϕ to output a value as the constant
reward for the dummy transitions. While we still return 0 instead of this constant as
the reward to the agent, we subtract every sampled h with this constant to compute
[[l]](τ) for Jsoft. This subtraction simulates normalizing [[l]](τ) in order to match the
outputs of fθ, which, as mentioned earlier, is always non-positive in order to match
log πE .

• Hyperparameters. Most of the hyperparameters that appear in Algorithm 1 are summa-
rized as in Table.4. All hyperparameters relevant to AGAC are identical as those in Flet-
Berliac et al. (2021) although we do not present all of them in Table.4 in order to avoid
confusion. The hyperparameter η is made large to heavily penalize qϕ when its output
violates the symbolic constraint c. Besides, we add an entropy term H(qϕ) multiplied by
1e − 2 in addition to Jsoft and Jcon to regularize the variance output by qϕ. The item
Entropy refers to the multiplier for the entropy termH(qϕ) as introduced earlier.

19



Under review as a conference paper at ICLR 2022

A.4 DERIVATION OF THE OBJECTIVE FUNCTIONS

First, we derive the lower-bound of log p(0A, 1E |πA, E, l) in Eq.5 as follows.

log p(0A, 1E |πA, E, l)

= log
∑
τA,τE

p(τA|πA)p(τE |E)

∫∫
fτA ,fτE

p(0A|τA;πA, fτA)p(1E |τE ;πA, fτE )

p(fτE |τE ; l)p(fτA |τA; l)

≥ E
τA∼πA
τE∼E

[
log

∫∫
fτA ,fτE

p(0A|τA;πA, fτA)p(1E |τE ;πA, fτE )p(fτE |τE ; l)p(fτA |τA; l)
]

= E
τA∼πA
τE∼E

[
log

∫∫
fτA ,fτE

p(0A|τA;πA, fτA)p(1E |τE ;πA, fτE )p(fτA |τA; l)p(fτE |τE ; l)

p(fτA |τA; f)p(fτE |τE ; f)

p(fτA |τA; f)p(fτE |τE ; f)

]
≥ max

f
E

τA∼πA
τE∼E

[
E

fτA∼p(·|τA;f)

fτE∼p(·|τE ;f))

(
log p(0A|τA;πA, fτA)p(1E |τE ;πA, fτE )

p(fτA |τA; l)p(fτE |τE ; l)

p(fτA |τA; f)p(fτE |τE ; f)

)]
= max

f
E
ε∼N

[
Jadv(Dε)

]
− E
τ∼πA,E

[
DKL(pf(τ)||pl(τ))

]
We justify the usage of the stochastic version Eε∼N (0,1)[Jadv(Dε)], rather than the conven-
tional generative adversarial objective Jadv(D), by showing that one of the saddle point of
min
πA

max
f

Eε∼N (0,1)[Jadv(Dε)] is attained when f ≡ log πE ≡ log πA where we write πE in

proxy of E by assuming that the distribution of state-action pairs satisfies p(s, a|πE) ≡ p(s, a|E).

Theorem 1. Given a πE , min
πA

max
f

Eε∼N (0,1)

{
E(s,a)∼πE

[
logDε(s, a)] + E(s,a)∼πA

[
log(1 −

Dε(s, a)
]}

, where Dε(s, a) := exp(f(s,a)+ε)
exp(f(s,a)+ε)+πA(a|s)) , is optimal when f ≡ log πE ≡ log πA.

Proof. Firstly, we consider optimizing f under the condition of πA ≡ πE . Inspired by the proof of
optimality condition of Generative Adversarial Nets in Goodfellow et al. (2014), we introduce two
variables xs,a = ys,a ∈ (0, 1] to simulate p(s, a|πA) = p(s, a|πE) for any s, a ∈ S ×A. Then we
prove that Eε∼N (0,1)

[
xs,a log

x̂s,a·exp(ε)
x̂s,a·exp(ε)+ys,a

+ ys,a log
ys,a

x̂s,a·exp(ε)+ys,a

]
as a function of x̂s,a has x

stationary point at x̂s,a = xs,a by computing its gradient w.r.t x̂s,a as follows.

∇x̂s,aEε∼N (0,1)

[
xs,a log

x̂s,a · exp(ε)

x̂s,a · exp(ε) + ys,a
+ ys,a log

ys,a
x̂s,a · exp(ε) + ys,a

]
= Eε∼N (0,1)

[
xs,a ·

x̂s,a · exp(ε) + ys,a
x̂s,a · exp(ε)

· exp(ε)(x̂s,a · exp(ε) + ys,a)− x̂s,a exp(2ε)

(x̂s,a · exp(ε) + ys,a)2
+

ys,a ·
x̂s,a · exp(ε) + ys,a

ys,a
· −ys,a exp(ε)

(x̂s,a · exp(ε) + ys,a)2

]
= Eε∼N (0,1)

[xs,ays,a/x̂s,a − ys,a exp(ε)

x̂s,a · exp(ε) + ys,a

]
(7)

When x̂s,a = xs,a = ys,a, Eq.7 equals Eε∼N (0,1)

[ 1−exp(ε)
1+exp(ε)

]
. Note that the probabilities of sampling

ε and −ε equal each other, and 1−exp(ε)
1+exp(ε) = − 1−exp(−ε)

1+exp(−ε) . Hence, Eε∼N (0,1)

[ 1−exp(ε)
1+exp(ε)

]
= 0. It can

trivially proved that the gradient of Eq.7 w.r.t x̂ is non-positive. Therefore, f ≡ log πE is a local
maximum.

20



Under review as a conference paper at ICLR 2022

Next, we consider optimizing πA under the condition of f ≡ log πE . We denote p(s, a|πE)
and p(s, a|πA) for any (s, a) ∈ S ×A as xs,a, ys,a ∈ (0, 1] for short. Then we show
that Eε∼N (0,1)

[ ∑
(s,a)∈S×A

xs,a log
xs,a·exp(ε)

xs,a·exp(ε)+ys,a
+

ys,a
xs,a+ys,a

log
ys,a

xs,a·exp(ε)+ys,a

]
as a function of

{ys,a|(s, a) ∈ S ×A} s.t.
∑

(s,a)∈S×A
ys,a = 1 has a stationary point at xs,a ≡ ys,a by computing

the gradient of the Lagrangian of this constrained function as follows.

L = E
ε∼N (0,1)

[ ∑
(s,a)∈S×A

xs,a log
xs,a · exp(ε)

xs,a · exp(ε) + ys,a
+ ys,a log

ys,a
xs,a · exp(ε) + ys,a

]
−

λ(
∑

(s,a)∈S×A

ys,a − 1)

∇ys,aL = E
ε∼N (0,1)

[
log

ys,a
xs,a · exp(ε) + ys,a

+
xs,a(exp(ε)− 1)

xs,a · exp(ε) + ys,a

]
− λ = 0

⇒ ∀(s, a) ∈ S ×A. E
ε∼N (0,1)

[
log

ys,a
xs,a · exp(ε) + ys,a

+
xs,a(exp(ε)− 1)

xs,a · exp(ε) + ys,a

]
= λ (8)

∇λL =
∑

(s,a)∈S×A

ys,a − 1 = 0 (9)

Suppose that λ = Eε∼N (0,1)[log 1
1+exp(ε) ] and xs,a = ys,a holds for any (s, a) ∈ S ×A. Then both

Eq.8 and Eq.9 hold. Hence, xs,a ≡ ys,a is a stationary point. It is also trivially provable that the
gradient of Eq.8 w.r.t ys,a is non-negative. Therefore, πA ≡ πE is a local minimum. In conclusion,
f ≡ log πE ≡ log πA is a saddle point.

We derive the lower-bound of the ELBO in Eq.6 as follows.

ELBO(q) = DKL

[
q(l)||p(l)

]
+ E
l∼q

[
log p(0A, 1E |πA, E, l)

]
= E

l∼q

{
log E

τA∼πA
τE∼E

[ ∫∫
fτA ,fτE

p(0A|τA;πA, fτA)p(1E |τE ;πA, fτE )p(fτE |τE ; l)p(fτA |τA; l)
]}
−

DKL

[
q(l)||p(l)

]
≥ max

f
E
ε∼N

[
Jadv(Dε)

]
− E
l∼q

τ∼πA,E

[
DKL(pf(τ)||pl(τ))

]
−DKL

[
q(l)||p(l)

]
= Jsoft(q, f) + Jcon(q)

21


