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R REBUTTAL: ADDITIONAL DISCUSSION AND ABLATION STUDY

R.1 DISCUSSION OF INITIAL CONDITION ENFORCEMENT

The initial condition enforcement of trajectories generated by ProDMP (Li et al., 2023) is mathe-
matically guaranteed by the definition of initial conditions in dynamic systems, as demonstrated in
Figure 2(a) and the upper part of 2(b) in the original ProDMP paper. In Figure R1, we illustrate
how TOP-ERL leverages this mechanism. The figure is based on the motion trajectory of the first
degree of freedom of the robot in the box-pushing task. In the critic update, we use five segments as
an example.

ProDMP, as a trajectory generator, models the trajectory as a dynamic system. In TOP-ERL, the RL
policy predicts ProDMP parameters, which are used to generate a force signal applied to the dynamic
system. The system evolves its state based on this force signal and the given initial conditions, such
as the robot’s position and velocity at a specific time. The resulting evolution trajectory, shown as
the black curve in Figure R1, can be computed in closed form and used to control the robot.

When the policy is updated and predicts a new force signal for the same task, a new action trajectory
is generated, depicted as the red dashed curve, which gradually deviates from the old trajectory.
However, by utilizing the dynamic system’s features, we can set the initial condition of each segment
of the new trajectory to the corresponding old state. This ensures that the new action sequence used
in the target computation in Eq.(7), can start from the old state, as shown across the five segments
in the figure. Therefore, we matched the old state and new actions by eliminating the gap between
them, as previously discussed in Section 4.3.1.
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Figure R1: TOP-ERL leverages the initial condition enforcement techniques of a dynamic system
to ensure that the new action trajectory starts from the corresponding old state. These action tra-
jectories are taken from the first DoF of the robot in the box pushing task.
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R.2 EXPLANATION OF POLICY’S TRAINING ADDITIONAL TO SECTION 4.4

We utilize the transformer critic to guide the training of our policy, using the reparameterization trick
similar to that introduced by SAC (Haarnoja et al., 2018). Given a task initial state s, the current
policy πθ(w|s) ∼ N (w|µw,Σw) predicts the Gaussian parameters of the MP’s and samples w̃ as
follows:

Sample MP parameter vector: w̃ = µw +Lwϵ, ϵ ∼ N (0, I). (R.1)

Here, Lw is the Cholesky decomposition of the covariance matrix Σw, where LwLT
w = Σw. This

parameterization technique is commonly used for predicting full covariance Gaussian policies. The
term ϵ is a Gaussian white noise vector with the same dimensionality as w. Eq. (R.1) represents
the full covariance extension of the reparameterization trick typically used in RL, known as ã =
µa + σaϵ, ϵ ∼ N (0, 1).

The sampled w̃ is then used to compute the new trajectory segments. Using the techniques de-
scribed in Section 4.3.1 and Section R.1, we ensure each action segment [ãk

t ]t=0:N starts from the
corresponding old state sk0 . This is achieved by enforcing the initial condition, such as the robot’s
position a and velocity ȧ at the old state. The resulting trajectory segments are computed using the
linear basis function expression in Eq. (4) from Section 3.2, where the coefficients c1 and c2 are
determined by the initial conditions and solved using Eq. (22) in Appendix B.3:

Compute action segment: ã(t) = Φ(t)⊺w̃ + c1y1(t) + c2y2(t) (4)

Here, t = 0 : N represents the time interval from the beginning to the end of the k-th segment.
Thus, the new action sequence [ãk

t ]t=0:N predicted by the new policy is conditioned on both the
task description and the old state. Intuitively, this can be interpreted as taking new actions for an old
situation. We evaluate and maximize the value of these action segments, using their expectation as
the policy’s learning objective, as shown in Eq. (9) in Section 4.4:

SAC style Objective: J(θ) = Es∼BEw̃∼πθ(·|s)

[
1

KL

K∑
k=1

L−1∑
N=0

Qϕ(s
k
0 ,
[
ãk
t

]
t=0:N

)

]
. (9)

Since Eq.(4), (9), (22) and (R.1) are all differentiable, the policy neural network parameters θ can be
trained using gradient ascent. Compared to the technique introduced in SAC, TOP-ERL adds only
one additional step: computing the action sequence [ãk

t ]t=0:N from the sampled MP parameter w̃.

R.3 TECHNICAL DETAILS OF TRPL

In Episodic Reinforcement Learning (ERL), the parameter space W generally has a higher dimen-
sionality than the action space A, creating distinct challenges for achieving stable policy updates.
Trust region methods (Schulman et al., 2015; 2017) are widely regarded as reliable techniques for
ensuring convergence and stability in policy gradient algorithms.

Although methods like PPO approximate trust regions using surrogate objectives, they lack the
ability to enforce trust regions precisely. To address this limitation, Otto et al. (2021) proposed
trust region projection layer (TRPL), a mathematically rigorous and scalable approach for exact
trust region enforcement in deep RL algorithms. Leveraging differentiable convex optimization
layers (Agrawal et al., 2019), trust region projection layer (TRPL) enforces trust regions at the per-
state level and has demonstrated robustness and stability in high-dimensional parameter spaces, as
evidenced in methods like BBRL (Otto et al., 2022) and TCE (Li et al., 2024).

TRPL operates on the standard outputs of a Gaussian policy—the mean vector µ and covariance
matrix Σ—and enforces trust regions through a state-specific projection operation. The adjusted
Gaussian policy, represented by µ̃ and Σ̃, serves as the foundation for subsequent computations. The
dissimilarity measures for the mean and covariance, denoted as dmean and dcov (e.g., KL-divergence),
are bounded by thresholds ϵµ and ϵΣ, respectively. The optimization problem for each state s is

2
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expressed as:

argmin
µ̃s

dmean (µ̃s,µ(s)) , s. t. dmean (µ̃s,µold(s)) ≤ ϵµ, and

argmin
Σ̃s

dcov

(
Σ̃s,Σ(s)

)
, s. t. dcov

(
Σ̃s,Σold(s)

)
≤ ϵΣ.

(R.2)

If the unconstrained, newly predicted per-state Gaussian parameters µ(s) and Σ(s) exceed the trust
region bounds defined by ϵµ and ϵΣ, respectively, TRPL projects them back to the trust region
boundary, ensuring stable update steps. In TOP-ERL, the old Gaussian parameters, µold(s) and
Σold(s), can be derived either from the behavior policy that interacted with the environment or from
an exponentially moving averaged (EMA) policy, which serves as a delayed version of the current
policy. This approach is analogous to the concept employed in the target critic network.

R.4 LONGER TRAINING FOR BOX PUSHING TASKS

In the original manuscript, we concluded the training of TOP-ERL at 14M data points in the box-
pushing tasks because it clearly outperformed the baseline methods. We have now extended the
training to 40M data points, as illustrated in Figure R2.
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Figure R2: Continue training TOP-ERL till 40M.

R.5 ABLATION: REMOVING THE TARGET NETWORK

We conducted an ablation study by removing the target critic network in the box-pushing task under
the dense reward setting and report the result in Fig. R3. We observed poorer performance in the
ablated model, highlighting the importance of the target network in our current approach. However,
a recent method, Cross-Q (Bhatt et al., 2024), proposed several techniques leveraging batch normal-
ization in critic updates, effectively removing the need for a target network in SAC (Haarnoja et al.,
2018). Incorporating these techniques into our transformer critic is left as future work.
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Figure R3: With target net or not
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R.6 ABLATION: EFFECTIVENESS OF THE CRITIC TRANSFORMER

We conducted two additional ablation studies to prove the effectiveness of our transformer critic in
the box pushing dense reward setting.

SAC + MP The approach involves directly using SAC (Haarnoja et al., 2018) to predict the MP’s
parameters while retaining the trajectory generation and environment rollout procedure described in
Section 4.1. We sum up the rewards collected during trajectory execution and use this as the return
for the entire trajectory. Here, the trajectory is treated as a single action, and the learning objective
does not incorporate any temporal information within the trajectory.

Degenerate Critic Transformer We degenerate our critic transformer from taking sequence of
actions to a single action. The approach retains the main architecture of TOP-ERL but reduces the
segment length to one in critic updates. In this case, the transformer critic degenerates to a standard
critic network, as the input consists of only one state and one action rather than a sequence of actions.

The empirical results in Figure R4 illustrate the poor performance of both ablate approaches in the
box pushing task with dense reward. For the SAC + MP approach, we infer that the main issue lies
in its inability to leverage the temporal structure of the trajectory sequence to efficiently update the
policy, making it difficult to assign credit to critical actions. This method fails to distinguish the
distinct contributions of each action to task success, instead tending to average them. Additionally,
the high dimensionality of the MP parameters compared to low-level actions poses challenges for
Q-function learning.

For the Degenerate Critic Transformer method, we infer that although the action trajectory is
temporally correlated, the critic fails to capture the sequence’s value when only single actions are
provided as input. In contrast, the default TOP-ERL model, which takes action sequences as input,
effectively captures their values, leading to more efficient learning outcomes. Furthermore, we infer
that using varying lengths of action sequences can implicitly regularize the training of the value
function.
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Figure R4: Demonstrate the effectiveness of critic transformer

Impact of the Transformer-based Critic on Value Prediction. To assess the impact of incorpo-
rating a transformer-based critic on value prediction, we adopt the analysis framework from Clipped
Double Q-learning (Fujimoto et al., 2018). Specifically, we compare the average values predicted by
the critics with the true values, computed using Monte Carlo returns. These findings are presented
in Fig. R5. Additionally, we analyze the critic bias, defined as the difference between the values
predicted by the critics and the Monte Carlo returns. The results, shown in Fig. R6, indicate that
TOP-ERL consistently achieves less-biased value predictions compared to its ablated version. In
contrast, a standard critic network, which only takes a single action as input, suffers from overesti-
mation bias and often relies on additional techniques, such as Clipped Double Q-learning (Fujimoto
et al., 2018) and critic ensembles (Chen et al., 2021), to mitigate these issues.

The advantages of using a transformer-based critic arise from several key factors. First, it pro-
cesses action sequences as input, which implicitly regularizes the training of the value function.
For instance, in Eq. (7), the expectation of the Q-value over L actions is used as the target for the
V-function prediction. By varying L across different update iterations, the V-function is trained on
Q-values derived from diverse action sequences, providing an implicit regularization effect on the
critic network.
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Furthermore, as off-policy RL methods depend on the critic to guide policy updates, the transformer-
based critic enables decision-making over action sequences rather than individual per-step actions.
This capability significantly enhances training efficiency and improves task performance.

0 2 4 6 8 10

−250

−200

−150

−100

−50

0

Environment Interactions (×106)

A
ve

ra
ge

V
al

ue
,I

Q
M

TOP-ERL: Critic’s Prediction
TOP-ERL: Monte Carlo True Return
Degenerated Transformer: Critic’s Prediction
Degenerated Transformer: Monte Carlo True Return

Figure R5: Comparison of average critic predictions and average Monte Carlo True returns across
TOP-ERL and its ablated version. The analysis methodology is consistent with the approach dis-
cussed in Clipped Double Q-learning (Fujimoto et al., 2018). The steps before 0.8M represent the
warm-up phase of the critic network, where the policy net was not trained.
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Figure R6: Comparison of critic bias between TOP-ERL and its ablated version. The results are
reported starting from 2M environment interactions (corresponding to 1.2M steps since the policy
training begins).

R.7 INDIVIDUAL PERFORMANCE OF METAWORLD 50 TASKS

We reported each individual Metaworld(Yu et al., 2020) task in Fig. R7 and Fig. R8. These tasks
cover a wide range of types and complexities.
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Figure R7: Success Rate IQM of each individual Metaworld tasks.
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Figure R8: Success Rate IQM of each individual Metaworld tasks.
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