
A Training Configurations

Data statistics. We summarize the data statistics in our experiments in Table 1.

Table 1: Dataset statistics of the three learning tasks in our experiments.
Learning Task Dataset Nodes Edges Train/Dev/Test Nodes Split Ratio (%)

Semi-supervised
Cora 2,708 5,429 140/500/1,000 5.2/18.5/36.9
Citeseer 3,327 4,732 120/500/1,000 3.6/15.0/30.1
Pubmed 19,717 44,338 60/500/1,000 0.3/2.5/5.1

Fully-supervised
Cora 2,708 5,429 1624/541/543 60.0/20.0/20.0
Citeseer 3,327 4,732 1996/665/666 60.0/20.0/20.0
Pubmed 19,717 44,338 11830/3943/3944 60.0/20.0/20.0

Inductive (large-scale) Reddit 233K 11.6M 152K/24K/55K 65.2/10.3/23.6

Training hyper-parameters. For both fully and semi-supervised node classification tasks on the
citation networks, Cora, Citeseer and Pubmed, we train our DGC following the hyper-parameters
in SGC [5]. Specifically, we train DGC for 100 epochs using Adam [2] with learning rate 0.2. For
weight decay, as in SGC, we tune this hyperparameter on each dataset using hyperopt [1] for 10,000
trails. For the large-scale inductive learning task on the Reddit network, we also follow the protocols
of SGC [5], where we use L-BFGS [3] optimizer for 2 epochs with no weight decay.

B Omitted Proofs

B.1 Proof of Theorem 1

Theorem 1. The heat kernel Ht = e−tL admits the following eigen-decomposition,

Ht = U

e−λ1t 0 · · · 0

0 e−λ2t · · · 0
...

...
. . .

...
0 0 · · · e−λnt

U>.

As a result, with λi ≥ 0, we have

lim
t→∞

e−λit =

{
0, if λi > 0

1, if λi = 0
, i = 1, . . . , n. (1)

Proof. With the eigen-decomposition of the Laplacian L = UΛU>, the heat kernel can be written
equivalently as

Ht = e−tL =

∞∑
k=0

tk

k!
(−L)k =

∞∑
k=0

tk

k!

[
U(−Λ)U>

]k
= U

[∞∑
k=0

tk

k!
(−Λ)k

]
UT = Ue−tΛUT ,

(2)

which corresponds to the eigen-decomposition of the heat kernel with eigen-vectors in the orthogo-
nal matrix U and eigven-values in the diagonal matrix e−tΛ. Now it is easy to see the limit behavior
of the heat kernel as t→∞ from the spectral domain.

B.2 Proof of Theorem 2

Theorem 2. For the general initial value problem{
dXt

dt = −LXt,

X0 = X,
(3)

1

with any finite terminal time T , the numerical error of the forward Euler method

X̂
(K)
T =

(
I− T

K
L

)K
X0. (4)

with K propagation steps can be upper bounded by

‖e(K)
T ‖ ≤ T‖L‖‖X0‖

2K

(
eT‖L‖ − 1

)
. (5)

Proof. Consider a general Euler forward scheme for our initial problem

X̂(k+1) = X̂(k) − hLX̂t, k = 0, 1, . . . ,K − 1, X(0) = X, (6)

where X̂(k) denotes the approximated X at step k, h denotes the step size and the terminal time
T = Kh. We denote the global error at step k as

ek = X(k) − X̂(k), (7)

and the truncation error of the Euler forward finite difference (Eqn. (6)) at step k as

T(k) =
X(k+1) −X(k)

h
+ LX(k). (8)

We continue by noting that Eqn. (8) can be written equivalently as

X(k+1) = X(k) + h
(
T(k) − LX(k)

)
. (9)

Taking the difference of Eqn. (9) and (6), we have

e(k+1) = (1− hL)e(k) + hT(k), (10)

whose norm can be upper bounded as∥∥∥e(k+1)
∥∥∥ ≤ (1 + h‖L‖)

∥∥∥e(k)
∥∥∥+ h

∥∥∥T(k)
∥∥∥ . (11)

Let M = max0≤k≤K−1 ‖T(k)‖ be the upper bound on global truncation error, we have∥∥∥e(k+1)
∥∥∥ ≤ (1 + h‖L‖)

∥∥∥e(k)
∥∥∥+ hM. (12)

By induction, and noting that 1 + h‖L‖ ≤ eh‖L‖ and e(0) = X(0) − X̂(0) = 0, we have∥∥∥e(K)
∥∥∥ ≤ M

‖L‖
[(1 + h‖L‖)n − 1] ≤ M

‖L‖

(
eKh‖L‖ − 1

)
. (13)

Now we note that dX
(k)

dt = −LX(k) and applying Taylor’s theorem, there exists δ ∈ [nh, (k + 1)h]

such that the truncation error T(k) in Eqn. (8) follows

T(k) =
1

2h
L2Xδ. (14)

Thus the truncation error can be bounded by∥∥∥T(k)
∥∥∥ =

1

2h
‖L‖2‖Xδ‖ ≤

1

2h
‖L‖2‖X0‖, (15)

because
‖Xδ‖ =

∥∥e−δLX0

∥∥ ≤ ‖X0‖ , ∀δ ≥ 0. (16)
Together with the fact T = Kh, we have∥∥∥e(K)

∥∥∥ ≤ ‖L‖2‖X0‖
2h‖L‖

(
eKh‖L‖ − 1

)
=
T‖L‖‖X0‖

2K

(
eT‖L‖ − 1

)
, (17)

which completes the proof.

2

B.3 Proof of Theorem 3

For the ground-truth data generation process

Y = XcWc + σyεy, εy ∼ N (0, I); (18)

together with the data corruption process,

dX̃t

dt
= LX̃t, where X̃0 = Xc and X̃T∗ = X. (19)

and the final state X denote the observed data. Then, we have the following bound its population
risks.

Theorem 3. Denote the population risk of the ground truth regression problem with weight W as

R(W) = Ep(Xc,Y) ‖Y −XcW‖2 . (20)

and that of the corrupted regression problem as

R̂(W) = Ep(X̂,Y)

∥∥∥Y − [S(T̂ /K)]KXW
∥∥∥2 . (21)

Supposing that E‖Xc‖2 = M <∞, we have the following upper bound on the latter risk:

R̂(W) ≤ R(W) + 2 ‖W‖2
(
E
∥∥∥e(K)

T̂

∥∥∥2 +M
∥∥∥eT?L

∥∥∥2 · ∥∥∥e−T?L − e−T̂L
∥∥∥2) .

Proof. Given the fact that Xc = X̃0 = e−T
∗LX, we can decompose the corrupted population risk

as follows

R̂(W) = Ep(X̂,Y)

∥∥∥∥Y − [S(T̂ /K)
]K

XW

∥∥∥∥2
=Ep(X,Y)

∥∥∥∥Y −XcW +

(
e−T

?L −
[
S(T̂ /K)

]K)
XW

∥∥∥∥2
≤Ep(X,Y) ‖Y −XcW‖2 + + ‖W‖2 Ep(X,Y)

∥∥∥∥([e−T̂L − S(T̂ /K)
]K)

X +
(
e−T

?L − e−T̂L
)

X

∥∥∥∥2
≤Ep(X,Y) ‖Y −XcW‖2 + ‖W‖2 Ep(X,Y)

∥∥∥e(K)

T̂
+
(
e−T

?L − e−T̂L
)
eT

?LXc

∥∥∥2
≤R(W) + 2 ‖W‖2

(
E
∥∥∥e(K)

T̂

∥∥∥2 +M
∥∥∥eT?L

∥∥∥2 ∥∥∥e−T?L − e−T̂L
∥∥∥2) ,

(22)
which completes the proof.

C Further Comparison of SIGN and DGC

Here, we provide a more detailed comparison of DGC and SIGN [4]. In particular, the SIGN model
is

Y = ξ(ZΩ), Z = σ([XΘ0, A1XΘ1, . . . , ArXΘr]),

where σ, ξ are nonlinearities, Ak = Ak is the k-hop propagation matrix, and Θk,Ω are weight
matrices. Our DGC-Euler model takes the form

Y = ξ(X(K)Ω), X(k) = (1− T/K)X(k−1) + (T/K) ·AX(k−1), k = 2, . . . ,K.

The two models 1) both apply all feature propagation before the classification model and so that
can 2) both pre-process the propagation matrix and save it for later training. Nevertheless, there are
several critical differences between SIGN and DGC:

• Linear v.s. Nonlinear. DGC is a linear model, while SIGN is nonlinear.

3

• Multi-scale SGC (SIGN) v.s. single-scale continuous diffusion (DGC). SIGN is a multi-
scale method that extracts every possible scale (ArX, r = 0, 1, . . .) for feature propaga-
tion. Thus, SIGN resembles a multi-scale SGC, but still inherits some of the limitations
of SGC, e.g. a fixed step size ∆t = 1. On the contrary, the goal of DGC is to find the
optimal tradeoff between under-smoothing and over-smoothing with a flexible choice of T
(real-numbered) and fine-grained integration (K), so it only uses a single-scale propagation
kernel (Eq. 12).

• Model Size. As a result, the model size of (linear) SIGN is proportional to the number of
scales r, while the model size of DGC is independent of T and K.

Overall, we can see that the two are closely related. Below, we further compare DGC with SIGN in
terms of both their performance as well as their computational efficiency.

C.1 Fine-grained Performance Comparison

To take a closer look at the difference between the two methods, we compare the two methods with
the same terminal time T .

Setup. We conduct the experiments on the Cora dataset (semi-supervised). We re-produce SIGN as
it has not reported results on these datasets. For comparison, we follow the same protocol of SGC,
using the same optimizer, learning rate, training epochs; and (automatically) tune the weight decay
and propagation steps (K or r) at each terminal time T .

Table 2: Comparison of test accuracy (%) with different time T ranging from 1 to 6.
Methods 1 2 3 4 5 5.3 6

SGC 72.4 80.5 79.2 81.0 78.8 N/A 80.5
SIGN 72.4 77.3 78.9 80.6 81.3 N/A 81.7
DGC 78.0 81.9 82.5 83.0 83.1 83.3 81.5

Results. As shown in Table 2, we have the following findings:

• DGC still outperforms SIGN for T ≤ 5, while being slightly worse at T = 6 due to
over-smoothing;

• DGC can flexibly choose a real-numbered terminal time, e.g., T = 5.3, to find the best
tradeoff between under-smoothing and over-smoothing (83.3 acc), while the terminal time
of SIGN and SGC has to be an integer;

• Single-stage methods (SGC & DGC) have bigger advantages at earlier time, while SIGN
can surpass SGC at later stages by aggregating multi-scale information.

The empirical results show that although useful, multi-scale techniques cannot fully solve the limi-
tations of SGC, while DGC can overcome these limitations by decoupling T and K.

C.2 Computation Time

Here, we further compare the explicit training time. We also include SIGN with a different number
of scales (r) as a baseline. The experiments are conducted on the same platform.

Table 3: Comparison of training time on the Pubmed dataset.
Method Preprocessing Time Training Time Total Time

SGC / DGC (K = 2) 3.8 ms 61.5 ms 65.3 ms
SIGN (r = 2) 5.9 ms 78.7 ms 84.6 ms
DGC (K = 100) 169.2 ms 55.8 ms 225.0 ms
SIGN (r = 100) 2.4 s 106.9 ms 2.6 s
GCN 0 17.0 s 17.0 s

4

We note that the comparison of DGC (K = 100) v.s. SGC (K = 2) is merely designed to show how
the extra propagation steps do not contribute much to the total time. Remarkably, it does not mean
that DGC takes 100 steps at all settings. Sometimes, a few steps (K < 10) are enough to attain the
best performance. From Table 3, we have the following findings: 1) both SIGN and DGC can be
much faster than GCN by pre-processing the propagation kernels; 2) DGC is still faster than SIGN
with the same propagation steps by being a single-scale method.

Table 4: Comparison of training time on the PubMed dataset.
K or r 2 10 20 50 100

DGC 3.8 ms 17.5 ms 34.9 ms 86.5 ms 169.2 ms
SIGN 5.9 ms 20.5 ms 51.5 ms 162.3 ms 2.4 s

To better understand the difference in computation time between DGC and SIGN, we note that
SIGN is a multi-scale method, and it stores every intermediate scale of A, i.e., [A1, A2, . . . , Ar] in
the preprocessing stage with a memory complexity O(r). On the contrary, DGC is a single-scale
method and only needs to store one single propagation matrix S(K), so its memory complexity is
O(1). In modern deep learning frameworks (PyTorch in our case), it takes time to keep expanding
the working GPU memory due to the copy operation. As a result, when r or K is very large (like
100), SIGN can be much more memory-intensive than SGC (100×). This results in a large difference
in the preprocessing time between SIGN and DGC, as shown above in Table 4. There might be some
tricky ways to optimize the pipeline, but here we stick to the vanilla (also official) implementation
for a fair comparison.

References
[1] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. Hyperopt: a

python library for model selection and hyperparameter optimization. Computational Science &
Discovery, 8(1):014008, 2015. 1

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.
1

[3] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimiza-
tion. Mathematical Programming, 45(1):503–528, 1989. 1

[4] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael Bronstein,
and Federico Monti. SIGN: Scalable inception graph neural networks. arXiv preprint
arXiv:2004.11198, 2020. 3

[5] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. ICML, 2019. 1

5

