
Play to the Score: Stage-Guided Dynamic
Multi-Sensory Fusion for Robotic Manipulation

(Supplementary Materials)

1 Details of the Task Setup

In Section 4.1 of the main paper, we briefly introduced the basic information of the pouring task and
the peg insertion with keyway task, including the task objectives and stage divisions. In this section,
we provide a more detailed introduction of the setup of these two tasks. We control the robot arm
through a keyboard to complete the tasks and collect human demonstrations.

1.1 Pouring
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Figure 1: Illustration of the pouring task. We randomly shift the fixed target cylinder sideways
by 0 ∼ 3cm (the blue arrow) in training demonstrations, and shift by 0 ∼ 6cm (the orange arrow)
during testing.

Setup details. For the pouring task, the robot needs to pour tiny steel beads of specific quality
from the cylinder in the hand into another cylinder. In the demonstrations, we randomly shift the
fixed target cylinder sideways by 0 ∼ 3cm, while during testing, this range expands to 0 ∼ 6cm, as
illustrated in Figure 1. Following the previous work [1], we use small beads with a diameter of 1mm
to simulate liquids. The initial mass of the beads is 90g/120g, while the target mass for pouring out
is 40g/60g, both indicated by prompts. Since the camera cannot capture the interior of the target
cylinder, other modalities are needed to assess whether the poured-out quantity meets the target.
Hence, we use vision (RGB), audio and touch modalities in this task.

Robot action space. In this task, the robot can act in a 2-dimensional action space along the axis x
and ϕ, where x represents the horizontal movement and ϕ represents the rotation of the gripper. The
action step size is ∆x = 0.5mm and ∆ϕ = 0.12◦. There are a total of 5 possible actions (±∆x,
±∆ϕ and 0), corresponding to the two directions of the two dimensions of (x, ϕ) and holding still.

Stage division. This task consists of four stages [2]: 1) Aligning, where the robot needs to move a
graduated cylinder containing beads and align it with the target cylinder, 2) Start Pouring, where the
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robot rotates the end effector to pour out the beads at an appropriate speed, 3) Holding Still, where
the robot maintains its posture to continue pouring out beads steadily, and 4) End Pouring, where
the robot rotates the end effector at the appropriate time to stop the flow of beads. In trajectories,
we consider the timesteps of the first downward rotation of the gripper (−∆ϕ), the first holding still
after rotation, and the first upward rotation of the gripper (+∆ϕ) as stage transition points.

1.2 Peg Insertion with Keyway.
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Figure 2: Illustration of the peg insertion with keyway task. We randomly shift the fixed base
along a 12cm-long parallel line on the desktop (the yellow arrow), and randomly initialize the po-
sition of the robot arm inside a 40cm × 20cm rectangular area (the green rectangle) in training
demonstrations. During testing, we fix the position of the base (the red points) and the robot arm
(the green points) to several pre-defined points.

Setup details. This task is an upgraded version of peg insertion, where the robot needs to align a
peg with a key to the keyway on the base by rotating and then insert the peg fully. The alignment
between the key and the keyway in this task primarily relies on tactile feedback, as the camera cannot
observe inside the hole. Hence, we use RGB, depth and touch modalities in this task. Considering
generalization, we randomly fix the base at any position along a 12cm-long parallel line on the
desktop in demonstrations, as illustrated in Figure 2. The robot arm holding the peg can also be
initialized inside a 40cm × 20cm rectangular area around the base. During testing, to ensure fairness,
the positions of the base and the robot arm are several pre-defined points.

Robot action space. In this task, the robot arm can move on the three axes x, y, z of Cartesian coor-
dinate, where x, y represents the horizontal movement and z represents the vertical movement. The
gripper can also rotate along axis ϕ to align the key with the keyway. Since the vertical movement
of the robot arm (−∆z) and the rotation of the gripper (+∆ϕ) are both unidirectional, there are a
total of 7 possible actions (±∆x, ±∆y, −∆z, +∆ϕ and 0).

Stage division. This task consists of three stages: 1) First Insertion, where the robot aligns the peg
with the hole and inserts it until the key collides with the base, 2) Rotating, where the robot aligns
the key with the keyway on the base by rotating the peg based on tactile feedback, and 3) Second
Insertion, where the robot further inserts the peg to the bottom. Similar to the pouring task, we
consider the timesteps of the first gripper rotation (+∆ϕ) and the first downward movement (−∆z)
after rotation as stage transition points.

1.3 Generalization Experiments with Distractors

To verify the generalization of our framework to distractors in the environment, we conduct experi-
ments with visual distractors on both tasks. For the pouring task, we change the color of the cylinder
from white to red. As for the peg insertion task, we respectively change the color of the base from
black to green, and scatter some clutter around the base. These task settings are illustrated in Fig-
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(a) Color (Pouring) (b) Color (Insertion) (c) Mess (Insertion)

Figure 3: Illustration of tasks with distractors. For the pouring task, we change the the color of the
cylinder from white to red (denoted as “Color (Pouring)”). For the peg insertion with keyway task,
we respectively change the color of the base from black to green (denoted as “Color (Insertion)”),
and scatter some clutter around the base (denoted as “Mess (Insertion)”).

ure 3. Besides introducing distractors, the settings for these tasks remain consistent with the main
experiments.

2 Implementation Details

Following [1], we resize visual and tactile frames to 140×105 and randomly crop to 128×96 during
training. We also use color jitter for image augmentation. For audio modality, we resample the wave
signal at 16kHZ and generate a 64×50 mel-spectrogram through short-time Fourier transform, with
400 FFT windows, hop length of 160, and mel bin of 64. We employ ResNet-18 [3] network as the
uni-modal encoder. Each encoder takes a brief history of observations spanning T = 6 timesteps.
We train all the models using Adam [4] with a learning rate of 10−4 for 75 epochs. We perform
linear learning rate decay every two epochs, with a decay factor of 0.9.

For action history, we use a buffer of length 200 to store actions. Each action is encoded using
one-hot encoding. Action sequences shorter than 200 are padded with zeros. For both tasks, we
consider the 15 timesteps near the stage transition point as the soft constraint range (γ = 15). We set
λ = 5.0 for both tasks to control the intensity of penalty. For the learnable stage token [stagei], we
initialize it with the mean of all state tokens on samples within the i-th stage after warmup training
for 1 epoch. We use β = 0.5 for the calculation of the stage-injected state token z∗t . Moreover,
to prevent gradients from becoming too large, we also truncated the gradients of the stage score
penalty, restricting them to solely influence the gate network.

3 Random Attention Blur

In order to prevent the model from simply memorizing the actions corresponding to attention score
patterns, we introduce random attention blur mechanism to the stage-guided dynamic fusion module.
For each input, we replace the attention scores on all feature tokens with the same average value

1
M×T with a probability p, where M is the number of modalities and T is the tiemstep number of
the brief observation history, as illustrated in Figure 4. We set p = 0.25 in both tasks.

We introduce this mechanism due to the potential overfitting issue in the model, where the policy
head (MLP in the dynamic fusion module) learns the correspondence between the distribution of
attention scores and actions. For instance, when using the trained MS-Bot model (without random
attention blur) to complete pouring tasks, manually increasing the attention scores on tactile feature
tokens invariably leads the model to predict the next action as upward rotation (+∆ϕ), regardless
of the current stage of the task. This phenomenon suggests that the stage comprehension module
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Figure 4: Illustration of random attention blur in the stage-guided dynamic fusion module. We
randomly replace the attention scores on all feature tokens with the same average value 1

M×T with
a probability p.

in the model partially assumes the role of action prediction rather than focusing solely on stage
understanding. Therefore, randomly blurring attention scores can compel the policy head to focus
on the information from the feature tokens and better decouple the stage comprehension module
from the dynamic fusion module.

4 Comparison of Attention Scores between MULSA and MS-BOT

Audio

Attention
Score

Time

Vision

Touch

Stage 1

Stage
Score

Time

Stage 2

Stage 3

Stage 4

Stage 1:
Aligning

Stage 2:
Start Pouring

Stage 3:
Holding Still

Stage 4:
End Pouring

Pouring

(a) Pouring

Attention
Score

Time

Stage 1

Stage
Score

Time

Stage 2

Stage 3Stage 1:
First Insertion

Stage 2:
Rotating

Stage 3:
Second Insertion

Peg Insertion with Keyway

Depth

RGB

Touch

(b) Peg insertion with keyway

Figure 5: Visualization of the aggregated attention scores for each modality and stage scores
of MS-Bot in both tasks. At each timestep, we average the attention scores on all feature tokens of
each modality separately. The stage score is the output of the gate network after softmax normaliza-
tion.
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Figure 6: Visualization of the aggregated attention scores of MULSA for each modality in both
tasks. At each timestep, we average the attention scores on all feature tokens of each modality
separately. The range of the attention score axis in the figure is consistent with Figure 5.

In Section 4.4 of the main paper, we illustrate the aggregated attention scores for each modality and
the stage scores of MS-Bot in the pouring task, as shown in Figure 5a. We also record the changes
in attention scores and stage scores in the peg insertion with keyway task, as shown in Figure 5b.
The results in the figure demonstrate that our model accurately predicts the rapid changes in stages
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for both tasks. As a result, the attention scores across modalities guided by stage comprehension are
also relatively stable, exhibiting clear inter-stage changes and minor intra-stage adjustment.

As a comparison, we also visualize the attention scores of another baseline MULSA [1] with self-
attention fusion, as shown in Figure 6. The range of the attention score axis in the figure is consistent
with Figure 5 (0 ∼ 0.9). It is evident that the attention scores of the modalities in the MULSA
model are close and exhibit a small variation, lacking clear stage characteristics. This indicates that
the MULSA model fails to fully leverage the advantages of dynamic fusion compared to the concat
model.

5 Detailed Experimental Results of Pouring

Methods Pouring Initial (g) Pouring Target (g)
90 120 40 60

MS-Bot 1.60 ± 1.10 5.58 ± 1.79 6.48 ± 1.55 1.80 ± 0.95
- Attention Blur 1.72 ± 1.09 5.70 ± 1.74 6.55 ± 1.38 1.95 ± 1.32

- Stage Comprehension 2.52 ± 1.12 6.15 ± 1.64 6.80 ± 1.59 2.92 ± 1.40
- State Tokenizer 3.05 ± 1.01 6.42 ± 1.98 7.12 ± 1.66 4.19 ± 1.24

Table 1: Impact of each component of our framework in pouring task (mean ± standard deviation).
‘-’ indicates further removing the module from the model in the previous line.

Methods Pouring Initial (g) Pouring Target (g)
90 120 40 60

Concat 8.75 ± 2.02 10.69 ± 2.45 10.72 ± 2.35 8.46 ± 2.03
Du et al. [5] 8.51 ± 1.79 9.54 ± 2.10 9.98 ± 2.20 8.04 ± 1.85
MULSA [1] 4.72 ± 1.30 7.83 ± 1.71 8.45 ± 1.50 5.56 ± 1.13

MS-Bot 2.04 ± 1.40 6.10 ± 1.49 7.62 ± 1.94 2.41 ± 1.47

Table 2: Comparison of performance in scenes with visual distractors in the pouring task(mean ±
standard deviation). We change the color of the cylinder from white to red during testing.

In Section 4.4 and 4.5 of the main paper, we show the overall error on all settings of the pouring
task. In this section, we comprehensively present the detailed result of the component ablation and
the distractor experiment on all the settings of the pouring task in Tables 1 and 2. As shown in
Table 1, the contributions from both the state tokenizer and the stage comprehension module on all
settings demonstrate the importance of the coarse-to-fine stage comprehension. The consistent lead
of MS-BOT across all settings of the pouring task in Table 2 also demonstrates the generalizability
of stage comprehension.
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6 Evaluation of Hyper-parameter Settings
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Figure 7: Performance of MS-Bot on one setting of the pouring task when changing the hyper-
parameters λ, γ and p. We fix the others when changing one hyper-parameter. We report the mean
error of the concat model, MULSA and MS-Bot. The error bars represent the standard deviation of
errors for MS-Bot.

In this section, we test the sensitivity of MS-Bot to different hyper-parameter settings. Specifically,
we test the performance of MS-Bot under different penalty intensity λ, soft constraint range γ and
probability of random attention blur p in one setting of the pouring task. We train all the models to
pour out 40g of small beads with different initial mass (90g/120g). We set λ = 5.0, γ = 15 and
p = 0.25 by default, and keep the others fixed when we modify one of the hyper-parameters.

We present the evaluation results in Figure 7. Our MS-Bot consistently outperforms both the concat
model and MULSA across various hyper-parameter settings, indicating that the performance of our
MS-Bot is relatively stable to hyper-parameter variations. However, we also observe that when
setting λ and γ to small values (λ = 1.0 in Figure 7a and γ = 0 in Figure 7b), the performance
of MS-Bot drops and becomes closer to MULSA with simple self-attention fusion. This is because
when λ is too small, the prediction of the current stage becomes inaccurate due to the insufficient
training. When γ is too small, the model is forced to make drastic changes in the stage score
prediction within very few timesteps, leading to unstable stage predictions. Both of these factors
weaken the efficacy of stage comprehension within MS-Bot. We also find that setting too large
p (p > 0.3 in Figure 7c) can bring negative impacts as the attention blur truncates the gradients
backpropagated to the stage comprehension module and the state tokenizer. Excessive attention blur
can impair the training of these two modules.
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