
Under review as a conference paper at ICLR 2021

Neural Lyapunov Model Predictive Control
Supplementary Material

We provide proofs of the Theorems 1 and 2, introduced in the paper, in Appendix A. In Appendix
B, we describe the formulation of the model predictive controller as a sequential quadratic program
(SQP). In Appendix C, we discuss the experimental setup that comprises of the implementation
specifics, details about baseline controllers, parameters for the experiments, and more description
of the control problem setting. In Appendix D, we provide additional plots and results for the
inverted pendulum and car kinematics examples. Finally, in Appendix E we discuss an algorithm for
probabilistic safety verification.

A PROOF OF THE THEOREMS

Here we provide the proofs of Theorems stated in the paper. We write the proof for Theorem 2 before
Theorem 1 since it is simpler and helps in proving the latter.

PROOF OF THEOREM 2

Proof. To prove the result, we first write:

Ex∈D[J
�
MPC(x)]−Ex∈D[J

�
V �(x)] =

Ex∈D[J
�
MPC(x)]−Ex∈D[J

�
MPC,f (x)]� �� �

I1

+

Ex∈D[J
�
MPC,f (x)]−Ex∈D[J

�
V �(x)]� �� �

I2

, (13)

where Ex∈D[J�
MPC,f (x)] denotes the MPC performance when a perfect model is used for predictions.

For the term I2, Lowrey et al. (2018) provide a bound on the performance of the MPC policy. It is
important to note that in their problem formulation, the MPC’s objective is defined as a maximization
over the cumulative discounted reward, while in our formulation Equation 11 we consider a min-
imization over the cost. Consequently, compared to inequality presented by Lowrey et al. (2018),
there is a change in sign of the terms in the left-hand side of the inequality. This means:

Ex∈D[J
�
MPC,f (x)]−Ex∈D[J

�
V �(x)] ≤ 2γN �

1− γN
. (14)

We now focus on the term I1 in Equation 13. Let us denote x�(i) and u�(i) as the optimal state and
action predictions respectively, obtained by using the correct model, f , and the MPC policy at time i.
By the principle of optimality, the optimal sequence for the MPC using the correct model, uf , can be
used to upper-bound the optimal cost for the MPC using the surrogate model:

Ex∈D[J
�
MPC(x)]−Ex∈D[J

�
MPC,f (x)] ≤ Ex∈D[JMPC(x, uf)]−Ex∈D[J

�
MPC,f (x)]. (15)

Since the input sequence is now the same for both terms in right-hand side of Equation 15, the
difference in the cost is driven by the different state trajectories cost (the cost on x over the horizon
which includes the state-constraint violation penalty, as defined in Equation 23) as well as the terminal

13

Under review as a conference paper at ICLR 2021

cost. In form of equation, this means:

Ex∈D[JMPC(x, uf)]−Ex∈D[J
�
MPC,f (x)]

= Ex∈D[JMPC(x, uf)− J�
MPC,f (x)]

= Ex(0)∈D

�
N−1�

j=0

γj
�
x̂(j)TQx̂(j)− x�(j)TQx�(j)

�

+ γNα
�
V (x̂(N))− V (x�(N))

�

+

N�

j=0

�
�X(x̂(j))− �X(x

�(j))
�
�
. (16)

Recall that we assume the surrogate model is Lipschitz with constant Lf̂x. This means that ∀x̃, x ∈
Rnx and the same input u ∈ Rnu , we have:

||f̂(x̃, u)− f̂(x, u)||2 ≤ Lf̂x||x̃− x||2,

Further, from Equation 8, ∀(x, u) ∈ X̃× U, we have:

||w(x, u)||2 = ||f(x, u)− f̂(x, u)||2 ≤ µ.

Under the optimal policy for the correct model, let us denote the deviation in the state prediction
when the MPC input prediction is applied with a different model, f̂ , as d̂(j) := x̂(j)− x�(j).

At step j = 1:

�d̂(1)�2 = �x̂(1)− x�(1)�2
= �f̂(x�(0), u�(0))− f(x�(0), u�(0))�2
= �w(x�(0), u�(0))�2
≤ µ.

At step j = 2:

�d̂(2)�2 = �x̂(2)− x�(2)�
= �f̂(x�(1) + d̂(1), u�(1))− f(x�(1), u�(1))�
= �f̂(x�(1) + d̂(1), u�(1))− f̂(x�(1), u�(1))

+ f̂(x�(1), u�(1))− f(x�(1), u�(1))�
≤ �f̂(x�(1) + d̂(1), u�(1))− f̂(x�(1), u�(1))�� �� �

≤Lf̂x�d̂(1)�

+ �f̂(x�(1), u�(1))− f(x�(1), u�(1))�� �� �
=�w(x�(1),u�(1))�≤µ

≤ Lf̂xµ+ µ

By induction, it can be shown that:

�d̂(j)�2 = �x̂(j)− x�(j)� ≤
j−1�

i=0

Li
f̂x
µ. (17)

Alternately, if we assume the correct system that is to be controlled is Lipschitz with constant Lfx,
then proceeding as before:

At step j = 1:

�d̂(1)�2 = �x̂(1)− x�(1)�2
≤ µ.

14

Under review as a conference paper at ICLR 2021

At step j = 2:

�d̂(2)�2 = �x̂(2)− x�(2)�
= �f̂(x̂(1), u�(1))− f(x̂(1)− d̂(1), u�(1))�
≤ �f̂(x̂(1), u�(1))− f(x̂(1), u�(1))�� �� �

=�w(x̂(1),u�(1))�≤µ

+ �f(x̂(1), u�(1))− f(x̂(1)− d̂(1), u�(1))�� �� �
≤Lfx�d̂(1)�

≤ µ+ Lfxµ

By induction, again we have:

�d̂(j)� = �x̂(j)− x�(j)� ≤
j−1�

i=0

Li
fxµ. (18)

Combining equations Equation 17 and Equation 18 and by letting L̄i
f = min(Li

f̂x
, Li

fx), we obtain:

�d̂(j)� = �x̂(j)− x�(j)� ≤
j−1�

i=0

L̄i
fµ. (19)

The following identity is used; ∀δ > 0:

�a+ b�22 ≤
�
1 +

1

δ

�
�a�22 + (1 + δ)�b�22.

Hence, we can write the cost over the predicted state as:

x̂(j)TQx̂(j)

= �Q1/2x̂(j)�22 = �Q1/2(x�(j) + d̂(j))�22
≤ (1 + δ)�Q1/2x�(j)�22 +

�
1 +

1

δ

�
�Q1/2d̂(j)�22

≤ (1 + δ)x�(j)TQx�(j) +

�
1 +

1

δ

�
�Q�2�d̂(j)�22. (20)

From equations Equation 19 and Equation 20, ∀j ∈ {0, 1, ..., N − 1}, we obtain:

x̂(j)TQx̂(j)− x�(j)TQx�(j)

≤ δ x�(j)TQx�(j)� �� �
=�(x�(j),0)

+

�
1 +

1

δ

�
�Q�2

�
j−1�

i=0

L̄i
fµ

�2

≤ δ �(x�(i), u�(i)) +

�
1 +

1

δ

�
�Q�2

�
j−1�

i=0

L̄i
fµ

�2

. (21)

Recall from Equation 4 that V (x) ≤ LV �x�22. Proceeding as before, we can write the following for
the terminal cost:

V (x̂(N))− V (x�(N)) ≤ δ V (x�(N)) +

�
1 +

1

δ

�
LV

�
N−1�

i=0

L̄i
fµ

�2

. (22)

The final part of the proof concerns the constraints cost term. Let the state constraints be defined as a
set of inequalities:

X = {x ∈ Rn : g(x) ≤ 1} ,

15

Under review as a conference paper at ICLR 2021

where g is a convex function. For the optimal solution, x�, the violation of the constraint is represented
through the slack variable:

s� = s(x�) =
(g(x�)− 1) + |g(x�)− 1|

2
.

Since the constraints are convex and compact, and they contain the origin, then at the optimal solution,
x�, we have that there exists a K∞-function, η̄(r), such that:

����X(s(x� + d̂))− �X (s (x�))
��� ≤ η̄(�d̂�).

Using the above inequality and Equation 19, it follows that, ∀j ∈ {0, 1, ..., N}:

�X(x̂(j))− �X(x
�(j)) ≤ η̄

�
j−1�

i=0

L̄i
fµ

�
= η̄j . (23)

By combining equations Equation 13, Equation 14, Equation 15, Equation 16, Equation 21, Equa-
tion 22 and Equation 23, we obtain the bound stated in the Theorem:

Ex∈D[J
�
MPC(x)]−Ex∈D[J

�
V �(x)]

≤ 2γN �

1− γN
+

�
1 +

1

δ

�
�Q�2

N−1�

i=0

γi

i−1�

j=0

L̄j
f

2

µ2

+

�
1 +

1

δ

�
γNαLV

�
N−1�

i=0

L̄i
f

�2

µ2 +

N�

j=0

η̄j

� �� �
=:ψ̄(µ)

+ δ Ex∈D [J�
MPC(x; f)] .

PROOF OF THEOREM 1

We prove the following, extended version of the theorem.
Theorem 3. Stability and robustness Assume that V (x) satisfies (5), with λ ∈ [0, 1), XT = {0}.
Then, for any horizon length N ≥ 1 there exist a constant ᾱ ≥ 0, a minimum discount factor
γ̄ ∈ (0, 1], and a model error bound µ̄ such that, if α ≥ ᾱ, µ ≤ µ̄ and γ ≥ γ̄, then, ∀x(0) ∈ C(Xs)

1. If N = 1, µ = 0, then the system is asymptotically stable for any γ > 0, ∀x(0) ∈ ΥN,γ,α.

2. If N > 1, µ = 0, then the system reaches a set Bγ that is included in Xs. This set increases
monotonically with decreasing discount factors, γ, ∀x(0) ∈ ΥN,γ,α. γ = 1 ⇒Bγ = {0}.

3. If N > 1, µ = 0, and once in Xs we switch to the expert policy, then the system is
asymptotically stable, ∀x(0) ∈ ΥN,γ,α.

4. If αV (x) is the optimal value function for the discounted problem, µ = 0, and if C(Xs) = Xs,
then the system is asymptotically stable, ∀x(0) ∈ ΥN,γ,α.

5. If αV (x) is the optimal value function in Xs for the problem, µ = 0, and if C(Xs) �= Xs,
then the system is asymptotically stable, ∀x(0) ∈ ΥN,γ,α.

6. The MPC has a stability margin. If the MPC uses a surrogate model satisfying (8), with
one-step error bound �w�22 < µ̄2 = 1−λ

LV L2N
f̂x

ls, then the system is Input-to-State (practically)

Stable (ISpS) and there exists a set BN,γ,µ : x(t) → BN,γ,µ, ∀x(0) ∈ βΥN,γ,α, β ≤ 1.

7. If µ = 0, then α ≥ ᾱ implies that αV (x) ≥ V �(x), ∀x ∈ Xs, where V � is the optimal
value function for the infinite horizon problem with cost (3) and subject to (2).

16

Under review as a conference paper at ICLR 2021

Proof. In order to prove point 1 in the theorem, we first use the standard arguments for the MPC
without terminal constraint Mayne et al. (2000); Limon et al. (2003) in the undiscounted case. We
then extend the results to the discounted case.

Nominal stability First, when an invariant set terminal constraint is used, which in our case
corresponds to the condition V (x(N)) ≤ ls with Xs ⊆ X, then Mayne et al. (2000) have provided
conditions to prove stability by demonstrating that J�

MPC(x) is a Lyapunov function. These require
the terminal cost to be a Lyapunov function that satisfies Equation 5. Hence, we start by looking for
values of α such that αV (x) satisfies Equation 5. In other words, we wish to find an ᾱ1 ≥ 1 such
that, for all α ≥ ᾱ1 and for some policy K0 (in our case, the demonstrator for V), the following
condition holds:

αV (f(x,K0(x))− αV (x) ≤ −�(x,K0(x)). (24)
Let us denote x+ = f(x,K0(x)) for brevity. We have, by assumption, that:

α(V (x+)− λV (x)) ≤ 0. (25)

This implies that:

αV (x+)− αV (x) + αV (x)− αλV (x) ≤ 0,

⇒ αV (x+)− αV (x) ≤ −α(1− λ)V (x). (26)

Recall that the loss function satisfies l��x�22 ≤ �(x, u). Since the MPC is solved using a sequence
of convex quadratic programs, it is also Lipschitz Bemporad et al. (2000). Similarly, if K0 is
Lipschitz or (uniformly) continuous over the closed and bounded set U, then since X is also closed
and bounded, there also exists a local upper bound for the loss function on this policy, namely,
�(x,K0(x)) ≤ L��x�22.

Further, recall from Equation 4 that l��x�22 ≤ V (x). Using the above notions, we have:

αV (x+)− αV (x) ≤ −α(1− λ)l��x�22,

= −α(1− λ)l�
L�

L�
�x�22

≤ −α(1− λ)l�
L�

�(x,K0(x))

= −β�(x,K0(x)). (27)

To satisfy the above condition, solving for a β ≥ 1 is sufficient. From Equations Equation 26
and Equation 27, it implies that:

α ≥ L�

l�(1− λ)
= ᾱ1 ≥ 1. (28)

Now, the function αV (x) satisfies all the sufficient conditions stated by Mayne et al. (2000) for the
stability of an MPC under the terminal constraint x̂(N) ∈ Xs which is equivalent to V (x̂(N)) ≤ ls,
without discount (with γ = 1).

Since we do not wish to have such a terminal constraint, we wish for another lower bound α̂2 ≥ 1
such that, if α ≥ ᾱ2, then V (x̂(N)) ≤ ls at the optimal solution. The computation of this ᾱ2 has
been outlined by Limon et al. (2009) for the undiscounted case. Since our constraints are closed,
bounded and they contain the origin, our model and the MPC control law are both Lipschitz, we
directly use the result from Limon et al. (2009) to compute ᾱ2:

ᾱ2 =

�N−1
i=0 �(x̃(i), ũ(i))−N d

(1− ρ)ls
(29)

where x̃(i), ũ(i) represent a sub-optimal state-action sequence for which V (x̃(N)) ≤ ρls with
ρ ∈ [0, 1), and d is a lower bound for the stage loss � for all x outside Xs and all u in U.

Then, one can take:
α ≥ max (ᾱ1, ᾱ2) = ᾱ (30)

to guarantee stability when γ = 1.

17

Under review as a conference paper at ICLR 2021

When the discount factor (γ < 1) is used, condition Equation 24 is still respected by the same range
of α since

γV (x+)− V (x) ≤ V (x+)− V (x). (31)
However, from the discussion in Gaitsgory et al. (2015), for infinite horizon optimal control, it
appears that Equation 24 is not sufficient for J�

MPC(x) to be a Lyapunov function, even when a
terminal constraint is used.

We wish to find a lower-bound γ̄ such that, given α satisfying Equation 30, the MPC is stable for
γ ≥ γ̄. For infinite-horizon optimal control, this was done by Gaitsgory et al. (2015). First, recall
that:

αV (x) ≤ αLV �x�22 ≤ α
LV

l�
�(x, 0)

= C inf
u∈U

�(x, u). (32)

In Gaitsgory et al. (2015), it shown that 1 ≤ C < 1/(1 − γ) is sufficient for stability of an
infinite-horizon discounted optimal control problem, when αV (x) is its value function. This means
that:

αLV

l�
<

1

1− γ
, (33)

which implies that:

γ > 1− l�
αLV

= γ̄1 ∈ [0, 1). (34)

For MPC, we will instead present an additional condition to the above one that leads to at least
convergence to the safe set. This results in a bounded and safe solution. Exact convergence to the
origin will be then confirmed when V is the actual value function, as in Gaitsgory et al. (2015), or
if we switch to the demonstrating policy, K0, once in the terminal set. Finally, we will remove the
terminal constraint as done for the undiscounted case with a final bound on α and γ.

Recall that condition (24) applies. If the terminal constraint was met at time t, namely, if V (x�(N)) ≤
ls, then at the next time step, t + 1 we have that u(N + 1) = K0(x

�(N)) is feasible. Hence, the
optimal MPC solution can be upper-bounded by the shifted solution at the previous time t, with the
K0 policy appended at the end of the horizon Mayne et al. (2000). Denote this policy as ũ and x̃ as
the predictions. We have that:

ΔJ�
MPC(x) = J�

MPC(x
+)− J�

MPC(x)

≤ JMPC(x
+, ũ)− J�

MPC(x).

Hence,

ΔJ�
MPC(x) ≤

N�

i=1

γi−1�(x̃(i), ũ(i)) + γNαV (x̃+(N))− �(x, ũ(0))−
N−1�

i=1

γi�(x̃(i), ũ(i))

− γNαV (x̃(N))

= (1− γ)LN−1(x)− �(x, ũ(0))

+ γN−1
�
γαV (x̃+(N))− γαV (x̃(N)) + �(x̃(N), K0(x)))

�
� �� �

≤0 ⇐ γα≥ᾱ1

≤ (1− γ)LN−1(x)− �(x, ũ(0)),

where LN−1(x) =
�N−1

i=1 γi−1�(x̃(i), ũ(i)) and we have taken α such that γα ≥ ᾱ1.

Now, for γ = 1, the effect of LN−1 disappears and the MPC optimal cost is a Lyapunov function as
in the standard MPC stability result from Mayne et al. (2000). By inspection of LN−1, since the cost
is bounded over bounded sets, also a small enough γ could be found such that LN−1(x) < �(x, ũ(0)).
This γ, however, depends on x. Consider x �∈ Xs, for which there exist a feasible solution, namely
a solution providing x̃(N) ∈ Xs. Then, since � is strictly increasing, �(0, 0) = 0, Xs contains the
origin and the constraints are bounded, we have that there exist a υ ≥ 1 such that for any feasbile x:

L̄N−1 = υ(N − 1) inf
x�∈Xs

�(x, 0),

18

Under review as a conference paper at ICLR 2021

is an upper bound for LN−1(x). For instance,

υ =
sup(x,u)∈�X×U �(x, u)

infx�∈Xs
�(x, 0)

,

is sufficient for any closed set of initial conditions x(0) ∈ �X ⊃ Xs, with � > 0. In order to have
stability, it suffices to have (1− γ)L̄N−1 − �(x, ũ(0)) ≤ 0 which requires:

γ ≥ 1− �(x, ũ(0))

L̄N−1
= γ̄(x). (35)

In the above condition γ̄(x) can be less than 1 only outside a neighborhood of origin. Consider again
d = inf

x�∈Xs

�(x, 0). (36)

Then taking

γ ≥ 1− d

L̄N−1
= γ̄2 ∈ (0, 1), (37)

provides that the system trajectory will enter the safe set Xs, hence Bγ ⊆ Xs. Finally, once x ∈ Xs,
we that the policy K0(x) is feasible and:

�(x, K0(x)) ≤ αV (x)− αV (x+) ≤ αV (x).

Hence, we can use this policy to upper bound the MPC cost:

J�
MPC(x) ≤

N−1�

i=0

γiαV (x̃(i)) + γNαV (x̃(N)).

If the above is true with equality, then we can proceed as in Theorem 3.1 of Gaitsgory et al. (2015),
with γ > γ̄1. This would require αV (x) to be also a value function for the discounted problem.

From the above considerations, we can conclude that that:

1. If N = 1, then L̄N−1 = 0 and the system is asymptotically stable for any γ > 0.

2. If N > 1, γ ≥ γ̄2, then the system reaches an bound Bγ that is included in Xs.

3. If N > 1 γ ≥ γ̄2 and once in Xs we switch to the policy K0(x) then the system is
asymptotically stable.

4. If αV (x) is the global value function for the discounted problem and if R(Xs) = Xs, then
γ > γ̄1 provides that the system is Asymptotically stable.

5. If αV (x) is only the value function in Xs for the discounted problem, and if R(Xs) �= Xs,
then γ > max(γ̄1, γ̄2) provides that the system is Asymptotically stable.

Finally, following Theorem 3 from Limon et al. (2003), the terminal constraint can be removed for
all points x ∈ RN (ρXs), with ρ ∈ [0, 1), by setting:

α ≥ ᾱ = max (ᾱ1/γ, ᾱ3) , (38)

ᾱ3 =
L̄N − 1−γN

1−γ d

(1− ρ)γN ls
> 0. (39)

In fact, by the same argument of Limon et al. (2003), for any states for which it exists a feasible
sequence ũ taking x̂(N) to ρXs we have that:

J�
MPC(x) ≤ JMPC(x, ũ) = LN (x) + ρ αγN ls. (40)

If α satisfies (38), then we also have that:

(1− ρ)α γN ls ≥ LN (x)− 1− γN

1− γ
d, (41)

from which we can directly verify that the set defined in (12) is a ROA (for either asymptotic or
practical stability):

ΥN,γ,α =

�
x ∈ Rnx : J�

MPC(x) ≤
1− γN

1− γ
d+ γNαls

�
.

19

Under review as a conference paper at ICLR 2021

Robustness For point 6, the stability margins of nominal MPC have been studied in Limon et al.
(2009). In particular, in a setup without terminal constraint, under nominal stabilising conditions,
with a uniformly continuous model (in our case even Lipschitz), cost functions being also uniformly
continuous, then the optimal MPC cost is also uniformly continuous (Limon et al., 2009, Proposition
1). In other words, from (Limon et al., 2009, Theorem 1), there is a K∞-function, σ, such that at the
optimal solution, u�, we have:

|J�
MPC(x+ w)− J�

MPC(x)| ≤ σ(�w�). (42)

Using the above identity, one wish to bound the increase in the MPC cost due to uncertainty. At the
same time, we wish the MPC to remain feasible and perform a contraction, namely, to have a stability
margin. Since we are using soft constraints, then the MPC remains always feasible, however, we
need the predictions at the end of the horizon to be in an invariant set Xs even under the effect of
uncertainty. In particular, we will use V (x) and its contraction factor λ to compute a smaller level set
ζXs, for some ζ ∈ (0, 1) which is invariant under the uncertainty. Once this is found then we can
compute a new α for this set according to (38). In particular, under the policy K0, we have that:

V (x+ + w)− V (x) ≤ V (x+)− V (x) + LV �w�22
≤ (λ− 1)V (x) + LV �w�22.

We wish this quantity to be non-positive for x �∈ ζXs, which means that V (x) ≥ ζls. For this it is
sufficient to have:

�w�22 ≤ 1− λ

LV
ζls ≤

1− λ

LV
V (x) (43)

Since we apply the function V to the prediction at time N , and at the next step the measured state
(prediction at index 0) differs from the previous MPC prediction of a quantity w, for the MPC this
condition translates into:

�w�22 ≤ 1− λ

LV L2N
f̂x

ζls < µ̄2 =
1− λ

LV L2N
f̂x

ls, (44)

Therefore, given the model error w, if the MPC remains feasible and if α and γ exceed their lower
bounds given the restricted set ζXs, we have that �w�2 < µ̄ implies that:

ΔJ�
MPC(x) = J�

MPC(x
+ + w)− J�

MPC(x) + J�
MPC(x

+)− J�
MPC(x

+)

≤ JMPC(x
+, ũ)− J�

MPC(x) + σ(�w�)
≤ (1− γ)L̄N−1 − �(x, ũ(0)) + σ(�w�)
≤ −l��x�22 + σ(�w�) + d̄(N),

which is the definition of Input-to-State practical Stability Khalil (2014); Limon et al. (2009), where
we have defined d̄(N) = (1 − γ)L̄N−1. The trajectory of the system is therefore bounded by the
level-set of J�

MPC(x) outside which σ(µ) + d̄(N) ≤ l��x�22. Since σ is strictly increasing and d̄ is
strictly decreasing, we can also conclude that the size of this bound increases with increasing model
error µ and with the horizon length N . Note that the term d̄ vanishes if γ = 1 but the term σ will
also increase with N if L̄f > 1. From the restriction of the terminal set, it also follows that the ROA
defined in Equation 12 will also be restricted unless we recompute a larger α for this new set.

Value function upper bound Denote V̂ (x) = αV (x). Recall that, if α ≥ α1, as defined in
Equation 28, and if �w(t)� = 0 ∀t, then we have that, ∀x(t) ∈ Xs:

V̂ (x(t)) = αV (x(t)) ≥ �(x(t),K0(t)) + αV (x(t+ 1)), (45)

which in turn implies that, by means of γ ≤ 1 and of induction:

V̂ (x(t)) ≥ �(x(t), K0(t)) + γV̂ (x(t+ 1)) (46)

≥ �(x(t),K0(t)) + γ
�
�(x(t+ 1), K0(t+ 1)) + γV̂ (x(t+ 2))

�
(47)

≥
∞�

i=0

γi�(x(t+ i), K0(t+ i)) = VK0
(x(t)), (48)

20

Under review as a conference paper at ICLR 2021

which is the value of the policy K0. This is, by definition, an upper bound of the optimal value
function, V �(x). Hence αV (x) ≥ V �(x), ∀x ∈ Xs.

In practice, the ISS bound σ(µ) from Theorem 1 has a form similar to the one discussed for the
constraint penalty in the proof of Theorem 2, see Equation 23. Its explicit computation is omitted
for brevity; however, in general, we can expect the bound to become worse for systems that are
open-loop unstable as the horizon length increases.

B MPC AS SQP FORMULATION

We solve the MPC problem through iterative linearisations of the forward model, which gives the
state and input matrices:

A(i) =
∂f̂

∂x

�����
x̄(i)

, B(i) =
∂f̂

∂u

�����
ū(i)

. (49)

These are evaluated around a reference trajectory:

x� = {x̄�(i), i = 0,N}, (50)
u� = {ū�(i), i = 0,N − 1}. (51)

This is initialised by running the forward model with zero inputs, and then updated at each iteration
by simulating the forward model on the current optimal soulution.

The Lyapunov function V is expanded to a second order term by using Taylor expansion and is
evaluated around the same trajectory. The Jacobian and Hessian matrices, respectively, Γ and H , are:

Γ =
∂V

∂x

����
x̄(N)

, H =
1

2

∂2V

∂2x

����
x̄(N)

. (52)

All the quantities in Equation 49 and Equation 52 are computed using automatic differentiation.
Using these matrices, we solve the convex optimization problem:

δu� = argmin γNα
�
�H1/2 δx̂(N)�22 + ΓT δx̂(N)

�
+

N−1�

i=0

γi�(x̂(i), û(i)) (53)

s.t. x̂(i+ 1) = A(i)δx̂(i) +B(i)δû(i) + f̂(x̄(i)),

x̂(i)− δx̂(i) = x̄(i)

û(i)− δû(i) = ū(i)

x̂(i) ∈ X, ∀i ∈ [0, N],

û(i) ∈ U, ∀i ∈ [0, N − 1],

x̂(0) = x(t),

�δû(i)�∞ ≤ rtrust, ∀i ∈ [0, N − 1],

where the state constraints are again softened and the last inequality constraint is used to impose a
trust region with a fixed radius, rtrust. This notably improves the search for an optimal solution, as
shown for the inverted pendulum case in Figure 13.

Once problem Equation 53 is solved, we obtain the delta sequence δu∗. The new optimal solution is
then computed according to the update rule:

u� ← u� + lr δu�,

where lr < 1 is a learning rate, which is annealed after each iteration. Finally, the reference
trajectories used for the next linearisation are u� and the state series resulting from simulating the
forward model on u�, namely

x� = f̂ ◦ u�.

21

Under review as a conference paper at ICLR 2021

This is summarised in Algorithm 2. Interested readers can find more details on SQP in the work
by Nocedal & Wright (2006); Hadfield-Menell et al. (2016), where adaptive schemes for computing
the trust radius are discussed.

Algorithm 2 Neural Lyapunov MPC solver

In: x(t), f̂ , α, V , Nsteps, �lr ∈ [0, 1), rtrust > 0, lr
Out: u(t)

x� ← {x(t)}N+1, u� ← {0}N
for j = 0, ..., Nsteps do

{A(i)}, {B(i)} ← linearisation of f̂ using Equation 49
(Γ, H) ← Taylor expansion of V using Equation 52
δu� ← solution of optimization problem Equation 53
u� ← u� + lr δu�

x� ← f̂ ◦ u�

lr ← (1− �lr) lr

u(t) ← u�(0)

C EXPERIMENTAL SETUP

We demonstrate our approach on an inverted pendulum and vehicle kinematics control problem. We
also provide additional results and plots in Appendix D. 2

C.1 IMPLEMENTATION SPECIFICS

A practical consideration for implementing Algorithm 1 is tuning the MPC terminal cost scaling, α,
via grid-search. The MPC needs to run over the entire dataset of initial points, X0 = {xm(0)}Mm=1,
with different configurations. In order to speed up the search for α, we run the MPC only on a sample
of 20% of the initial dataset. Once the optimal α is found, only then we run the MPC over the entire
dataset and use this data to compute the next V (x).

Additionally to what presented in the main text, we parameterize V (x) with a trainable scaling factor,
β, as:

V (x) = softplus(β)xT
�
l�I + Vnet(x)

TVnet(x)
�
x, (54)

where softplus(x) = log(1 + exp(x)). The parameter β is initialized to 1 in all experiments except
for the inverted pendulum without LQR loss, i.e. for results in Figure 12.

The full set of parameters for the experiments can be found in Table 5, ??.

C.2 BASELINE CONTROLLERS

Our Neural Lyapunov MPC has a single-step horizon and uses the learned Lyapunov function as the
terminal cost. To compare its performance, we consider two other MPCs and RL baselines:

• Long-horizon MPC (demonstrator/demo): An MPC with a longer horizon and a quadratic
terminal cost xTPx. This MPC is also used to generate the initial demonstrations for
alternate learning.

• Short-horizon MPC: An MPC with a single-step horizon and the same terminal cost as the
long-horizon MPC. All other parameters are the same as the Neural Lyapunov MPC except
α, which is tuned manually.

• Model-free RL: Neural-network parameterized policy trained using on-policy algorithm,
PPO (Schulman et al., 2017), and off-policy algorithm, SAC (Haarnoja et al., 2018).

• Model-based RL: Neural-network parameterized policy and ensemble of dynamic models
trained using the algorithm, MBPO (Janner et al., 2019).

2Our code, including the world models, is implemented using PyTorch Paszke et al. (2019). This allows us to
exploit automatic differentiation to linearise the dynamics for the SQP-based MPC.

22

Under review as a conference paper at ICLR 2021

Table 5: Configuration for experiments in main paper. We specify the parameters used for the
simulation of the system dynamics, the demonstrator, the Neural Lyapunov MPC as well as for the
alternate learning algorithm.

PARAMETER SYMBOL VALUE
CAR KINEMATICS PENDULUM

GENERAL
MASS m - 0.2 kg
LENGTH l - 0.5 m
ROTATIONAL FRICTION λF - 0.1 Nms rad−1

GRAVITY g - 9.81 ms−2

SAMPLING TIME dt 0.2 s 0.01 s
STATE CONSTRAINT X [−1, 1]2 × [−π,π] [−π,π]× [−2π, 2π]
INPUT CONSTRAINT U [−10, 10]× [−2π, 2π] [−0.64, 0.64]
STATE PENALTY Q DIAG(1, 1, 0.001π) DIAG(0.1, 0.1)
INPUT PENALTY R DIAG(100, 20π) 0.1
DISCOUNT FACTOR γ 1 1

DEMONSTRATOR
TYPE K0 MPC MPC
HORIZON N 5 5
OF LINEARISATIONS Nsteps 3 10
TRUST REGION rtrust ∞ 2.5
LEARNING RATE lr 0.9 0.9
DECAY RATE �lr 0.2 0.2
TERMINAL PENALTY P 400 Q 500PLQR

NEURAL LYAPUNOV MPC
HORIZON N 1 1
OF LINEARISATIONS Nsteps 18 18
TRUST REGION rtrust 0.005 0.5
LEARNING RATE lr 0.9 0.9
SCALING OF V α TABLE 8 TABLE 10
DECAY RATE �lr 0.02 0.02
Vnet ARCHITECTURE MLP (128, 128, 128) (64, 64, 64)
Vnet OUTPUT nV × nx 400× 3 100× 2

ALTERNATE LEARNING
OUTER ITERATIONS Next 3 2
ENLARGEMENT FACTOR �ext 0.1 0.1
MPC LINE SEARCH αlist {1, 6, ..., 36} {0.2, 0.4, ..., 2}
LYAPUNOV EPOCHS NV 500 200
LOSS EQUATION 10 ρ 0.0001 0.0001
CONTRACTION FACTOR λ 0.99 0.99
LYAPUNOV LEARNING RATE lr 0.001 0.001
LYAPUNOV WEIGHT DECAY wd 0 0.002

In order to train the RL baselines, we consider two variations of our proposed models. In the first
version (marked v1), the environment considers the stage cost used in demonstrator MDP as the
penalty and terminates the episodes whenever the state constraints are violated. In the second version
(marked v2), there is no environment termination. Instead an additional penalty term is added for
violating the constraint. This is further described in Table 6. We show the results of training in these
variants of the environments for SAC and PPO in Figure 4.

Table 6: Reward and termination conditions for RL MDPs. We train RL baselines on two variants
of the inverted pendulum and car kinematics models. Note, for inverted pendulum: β1 = 10,β2 =
200, while car kinematics: β1 = 1,β2 = 200. The symbol I(.) is the indicator function.

VERSION REWARD TERM TERMINATION CONDITION

V1 −ηTQη − uTRu η /∈ X
V2 −β1(η

TQη − uTRu)− β2Iη/∈X -

23

Under review as a conference paper at ICLR 2021

0.0 1.0 2.0 3.0 4.0

Timesteps (x 106)

−80

−60

−40

−20

0

R
ew

ar
d

ConstrInvPendulum-v1

PPO SAC

0.0 1.0 2.0 3.0 4.0

Timesteps (x 106)

−3000

−2000

−1000

0

R
ew

ar
d

ConstrInvPendulum-v2

PPO SAC

0.0 1.0 2.0 3.0 4.0

Timesteps (x 106)

−1500

−1000

−500

0

R
ew

ar
d

ConstrCarKinematics-v1

PPO SAC

0.0 1.0 2.0 3.0 4.0

Timesteps (x 106)

−1.4

−1.2

−1.0

−0.8

R
ew

ar
d

×108 ConstrCarKinematics-v2

PPO SAC

Figure 4: Training of RL agents. The plots show the learning curves for PPO and SAC in the two
variants each of inverted pendulum and car kinematics environments. We train the agent on 4 different
seeds for 4 × 106 timesteps. The solid line and filled region indicates the mean and one standard
deviation reward across the seeds.

nominal surrogate

(a) Test on Inverted Pendulum

nominal surrogate

(b) Test on Vehicle Kinematics

Figure 5: Testing the surrogate models. We generate each trajectory by propagating an initial state
η(0) with input sequence {u(t)}T−1

t=0 through the nominal system and the learned surrogate model.
(a) For the inverted pendulum: u(t) ∼ U([−0.4, 0.4]) and simulation is performed for T = 25. (b)
For the vehicle kinematics: u(t) ∼ U([−0.1, 0.1] × [−0.1, 0.1]) and simulation is performed for
T = 5.

24

Under review as a conference paper at ICLR 2021

C.3 FORWARD MODELS

We use an Euler forward model for the environments. Consider dt as the sampling time, then the
state transition is:

η(t+ 1) = η(t) + dt fu(η(t), u(t)), (55)

where η(t) is the state, u(t) is the input and fu(η(t), u(t)) is the time-invariant, deterministic
dynamical system.

C.3.1 VEHICLE KINEMATICS

World model For the non-holonomic vehicle, η = (x, y,φ) ∈ R3 is the state, respectively, the
coordinates in the plane and the vehicle orientation, and u = (v,ω) ∈ R2 is the control input,
respectively, the linear and angular velocity in the body frame. fu(η, u) encodes the coordinate
transformation from the body to the world frame Fossen (2011):

fu(η(t), u(t)) =

ẋ
ẏ

φ̇

 =

�
v(t) cosφ(t)
v(t) sinφ(t)

ω(t)

�
=

�
cosφ(t) 0
sinφ(t) 0

0 1

�

� �� �
J(η)

�
v(t)
ω(t)

�
(56)

Surrogate model We build a gray-box model using a neural network to model J(η), similar to
the work by Quaglino et al. (2020). The input feature to the network is sinφ and cosφ, where φ
is the vehicle’s orientation. The network consists of a hidden layer with 20 hidden units and tanh
activation function, and an output layer without any activation function. The weights in the network
are initialized using Xavier initialization Glorot & Bengio (2010) and biases are initialized from a
standard normal distribution.

Training the surrogate model We generate a dataset of 10K sequences, each of length T = 1.
For each sequence, the initial state η(0) is sampled uniformly from X, while the input u(0) is sampled
uniformly from U. We use a training and validation split of 7 : 3. Training is performed for 300
epochs using the Adam optimizer Kingma & Ba (2014) and the mean-squared error (MSE) loss over
the predicted states. The learning rate is 0.01 and the batch size is 700.

C.3.2 INVERTED PENDULUM

World model Inverted pendulum is one of the most standard non-linear systems for testing control
methods. We consider the following model Berkenkamp et al. (2017):

ml2θ̈ = mgl sin θ − λF θ̇ + u (57)

where θ ∈ R is the angle, m and l are the mass and pole length, respectively, g is gravitational
acceleration, λF is the rotational friction coefficient and u ∈ R is the control input. We denote the
state of the system as η = (θ, θ̇) ∈ X ⊂ R2 and input as u ∈ U ⊂ R. We use an Euler discretization,
as in Equation 55, to solve the initial-value problem (IVP) associated with the following equation:

fu(η(t), u(t)) =

�
θ̇

θ̈

�
=

�
θ̇(t)

mgl sin θ(t)+u(t)−λF θ̇(t)
ml2

�
(58)

Surrogate model We use a neural network to predict the acceleration of the pendulum, θ̈(t). The
input to the network is the state η(t) and action u(t) at the current time-step t. The network is a three
layer feedforward network with 64 hidden units and tanh activation in each hidden layer. The output
layer is linear. All the layers have no biases and their weights are initialized as in Glorot & Bengio
(2010).

Training the surrogate model To train the surrogate model, we generate a dataset of 10K se-
quences, each of length T = 1. We use MSE loss and Adam optimizer Kingma & Ba (2014) to train
the model. The rest of the parameters are kept the same as those used for the vehicle kinematics
model training.

25

Under review as a conference paper at ICLR 2021

D ADDITIONAL RESULTS

Here we provide additional results and plots related to the experiments specified in the paper.

D.1 VEHICLE KINEMATICS

The vehicle model results are run over different machines. The resulting losses and α are discussed.
In all experiments, the parameters of V are reinitialised after every outer epoch. The Lyapunov loss
does not make use of the LQR loss �.

Choosing number of outer iterations Next We run our algorithm for more iterations on a machine
with different operating system. This leads to a slight difference from the results mentioned in the
paper. As observed from Table 7, the third iteration leads to the best performance in terms of verified
and not verified percentages. We set Next = 3 in all experiments.

Table 7: Car Kinematics: Choosing number of outer iterations. Lyapunov Function learning
performed on a different machine (results are slightly different from the ones in the paper).

ITER. LOSS
(log(1+x))

VERIFIED
(%)

NOT VERIFIED
(%)

1 1.42 92.83 3.95
2 0.91 93.08 4.71
3 0.62 94.26 3.89
4 0.46 93.65 4.38
5 0.53 92.18 5.63

Alternate learning on nominal model We train the Neural Lyapunov MPC while using a nominal
model for internal dynamics. In Figure 6, we plot the training curves, the resulting Lyapunov function,
and line-search for MPC in each outer epoch. The results are also shown in Table 8. As can be
seen, tuning the MPC parameter α helps in minimizing the loss Equation 10 further. Points near the
origin don’t always verify. The MPC obtained after the third iteration achieves the best performance.
This can further be validated from Figure 7, where we plot trajectories obtained by using the Neural
Lyapunov MPC from each iteration.

Alternate learning on surrogate model In order to test the transfer capability of the approach, we
perform the training of Neural Lyapunov MPC using an inaccurate surrogate model for the internal
dynamics. This model is also used for calculating the Lyapunov loss Equation 10 and evaluating the
performance of the Lyapunov function. We plot the training curves, the resulting Lyapunov function,
and line-search for MPC in each outer epoch in Figure 3. The results of the training procedure are
presented in Table 9. The MPC obtained from the second iteration achieves the best performance.
In the third iteration, the Lyapunov loss increases and number of verified and not verified points
becomes worse. The poor performance also reflects in the trajectories obtained by using the Lyapunov
MPC from the third iteration, as shown in Figure 8.

26

Under review as a conference paper at ICLR 2021

Table 8: Car Kinematics: Learning on nominal model. Results for training Neural Lyapunov
MPC while using a nominal model for internal dynamics. We use the Lyapunov loss Equation 10 for
both learning the Lyapunov function and tuning the MPC. This is specified in the log(1 + x) scale.

(a) Lyapunov Function Learning

ITER. LOSS
(log(1+x))

VERIFIED
(%)

NOT VERIFIED
(%)

1 1.55 92.20 4.42
2 0.87 93.17 4.89
3 0.48 94.87 3.89

(b) MPC Parameter Tuning

ITER. LOSS (log(1 + x)) PARAMETER
BEFORE AFTER α�

1 1.55 1.07 26.00
2 0.87 0.71 31.00
3 0.48 0.52 36.00

Table 9: Car Kinematics: Learning on surrogate model. Results for training Neural Lyapunov
MPC while using the surrogate model for internal dynamics as well as in Lyapunov training. We use
the Lyapunov loss Equation 10 for both learning the Lyapunov function and tuning the MPC. This is
specified in the log(1 + x) scale.

(a) Lyapunov Function Learning

ITER. LOSS
(log(1+x))

VERIFIED
(%)

NOT VERIFIED
(%)

1 1.84 91.74 8.26
2 1.43 92.26 7.74
3 1.65 91.61 8.39

(b) MPC Parameter Tuning

ITER. LOSS (log(1 + x)) PARAMETER
BEFORE AFTER α�

1 1.84 1.41 36.00
2 1.43 1.05 36.00
3 1.65 1.30 36.00

D.2 INVERTED PENDULUM

Differently from the car kinematics, for the inverted pendulum task, the parameters of V are not
re-initialized after every outer epoch, and the Lyapunov loss makes use of the LQR loss, �, for all
the experiments except for the results in Figure 12. In this section, we discuss the results obtained
from the alternate learning on the nominal model. We also provide an ablation study on: 1) a solution
based solely on a contraction factor, and 2) the effect of having an imperfect solver, in particular the
instability resulting from wrongly tuning the trust-region radius.

Alternate learning Since the trained surrogate model has a high accuracy, we only consider the
scenario for alternate learning with the nominal model. The main results for this scenario are
in Figure 9 and Table 10. We notice a slight improvement in the MPC’s performance in the second
iteration of the training procedure. In Figure 9, it can be noticed that a small α needs to be used,
which contradicts the ideal theoretical result. In practice, a very large value of this parameter results
in bad conditioning for the QPs used by the MPC and causes the solver to fail.3 Since the pendulum

3When the solver fails, we simply set the solution to zero.

27

Under review as a conference paper at ICLR 2021

Table 10: Inverted Pendulum: Learning on nominal model. Results for training Neural Lyapunov
MPC while using a nominal model for internal dynamics. We use the Lyapunov loss Equation 10 for
both learning the Lyapunov function and tuning the MPC. This is specified in the log(1 + x) scale.

(a) Lyapunov Function Learning

ITER. LOSS
(log(1+x))

VERIFIED
(%)

NOT VERIFIED
(%)

1 3.21 13.25 0.00
2 1.08 13.54 0.00

(b) MPC Parameter Tuning

ITER. LOSS (log(1 + x)) PARAMETER
BEFORE AFTER α�

1 3.21 2.47 1.40
2 1.08 1.28 1.00

is open-loop unstable, an increase of the Lyapunov loss can be noticed for larger values of α. This
demonstrates that it is necessary to perform a search over the parameter and that we cannot simply
set it to a very large value.

In Figure 10, we show the trajectories obtained by running the Neural Lyapunov MPC obtained
from the first and second iterations. The initial states are sampled inside the safe level-set by using
rejection sampling. The trajectories obtained from both the iterations are similar even though the
Lyapunov function is different. The Lyapunov function from second iteration has a larger ROA.

We also compare the Neural Lyapunov MPC from the second iteration with the baseline MPCs
in Figure 11. The baselines controllers behave quite similarly in this problem, although they have
different prediction horizons. This is because, for both of them, the LQR terminal cost is a dominating
term in the optimization’s objective function. The Neural Lyapunov MPC achieves a slightly slower
decrease rate compared to the demonstrator; however, it still stabilizes the system. The transfer from
nominal to surrogate model is very successful for all the controllers, though in this case, the surrogate
model is particularly accurate.

It should be kept in mind that in order to produce these results, it was necessary to impose in the
Lyapunov loss Equation 10 that the decrease rate of V (x) needs to be upper bounded by the LQR
stage loss, as in Equation 5. This resulted in the most effective learning of the function V (x),
contrarily to the vehicle kinematics example.

Alternate learning without LQR loss We now consider the case when the learning is performed
while using a contraction factor of λ = 0.9 and without the LQR loss term in the Lyapunov loss (i.e.,
v = 0). The results are depicted in Figure 12. In order to obtain these results, the Lyapunov NN
scaling β, in Equation (54), was initialized with:

β0 = softplus−1(25),

according to a rough estimate of the minimum scaling α from Equation 28. This was able to produce
a Lyapunov function that makes the MPC safe with α = 12. However, the learning becomes more
difficult, and it results in a smaller safe region estimate with a slower convergence rate for the system
trajectories.

Effects of the trust region In Figure 13, we show the result of varying the trust radius of the SQP
solver on the inverted pendulum. While a larger value can result in further approximation, given the
limited number of iterations, in this case a small value of the radius results in a weaker control signal
and local instability near the origin.

E PROBABILISTIC SAFETY VERIFICATION

28

Under review as a conference paper at ICLR 2021

Algorithm 3 Probabilistic safety verification
In: N , V , K, δ > 0
Out: (SAFE, lu, ll)
SAFE ← False for lu = 1, 1− δ, 1− 2δ, ..., 0 do

for ll = 0, δ, 2δ, ..., lu do
draw N uniform x-samples s.t.:
ll ls ≤ V (x) ≤ lu ls
if V (x̂+)− V (x) ≤ 0, ∀x then

draw N uniform x-samples s.t.:
V (x) ≤ ll ls
if V (x̂+) ≤ ll ls, ∀x then

SAFE ← True
return SAFE, lu, ll

Verification failed.

A probabilistic verification is used to numeri-
cally prove the physical system stability with
high probability. The resulting certificate is
of the form P(Xs\XT) ≥ �P , where the
�P increases with increasing number of sam-
ples. Following the work of Bobiti (2017),
the simulation is evaluated at a large set
of points within the estimated safe set Xs,
while we search for an annulus where the 24
is verified. Monte Carlo rejection sampling
is performed with PyMC (Salvatier et al.,
2016).

In practical applications, several factors limit
the convergence of the trajectory to a neigh-
borhood of the target (the ultimate bound,
Blanchini & Miani (2007)). For instance, the policy structural bias, discount factors in RL methods
or persistent uncertainty in the model, the state estimates, and the physical system itself. Therefore,
we extended the verification algorithm of (Bobiti, 2017) to estimate the ultimate bound as well as
the invariant set, as outlined in Algorithm 3. Given a maximum and minimum level, ll, lu, we first
sample initial states uniformly within these two levels and check for a robust decrease of V over the
next state distribution. If this is verified, then we sample uniformly from inside the minimum level
set ll (where V may not decrease) and check that V does not exceed the maximum level lu over the
next state distribution. Note that Algorithm 3 is highly parallelizable.

Probabilistic verification is expensive but necessary, as pathological cases could result in the training
loss (10) for which the safe set could be converging to a local minima with a very small set. Results
can also vary where different random seeds are used. For these reasons, we also perform an informal
verification over a fixed validation set and use this to select the best V from all training epochs.

29

Under review as a conference paper at ICLR 2021

(a) Lyapunov Loss (log(1 + x)) (b) Verified Points (%)

0

5

10

15

20

(c) Not Verified Points (%)

0

5

0

5

0

3.21

3.21

0.00
0.54
1.08
1.62
2.16
2.70
3.24
3.78
4.32
4.86

4.01

4.01

0.0
0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
5.4

5.20

5.20

0.0
0.8
1.6
2.4
3.2
4.0
4.8
5.6
6.4
7.2

0 5 10 15 20 25 30 35

0.5

1.0

1.5

2.0

2.5

Iteration 1 Iteration 2 Iteration 3 (best)

Figure 6: Car kinematics: Alternate learning on nominal model. After every NV = 500 epochs
of Lyapunov learning, the learned Lyapunov function is used to tune the MPC parameters. Top:
The training curves for Lyapunov function. Vertical lines separate iterations. Middle: The resulting
Lyapunov function V at φ = 0 with the best performance. Bottom: Line-search for the MPC
parameter α to minimize the Lyapunov loss (10) with V as terminal cost. The loss is plotted on the
y-axis in a log(1 + x) scale. The point marked in red is the parameter which minimizes the loss.

30

Under review as a conference paper at ICLR 2021

3.30

3.3
0

0.00
0.54
1.08
1.62
2.16
2.70
3.24
3.78
4.32
4.86

4.04

4.0
4

0.00
0.66
1.32
1.98
2.64
3.30
3.96
4.62
5.28
5.94

5.49

5.49

0.0
0.9
1.8
2.7
3.6
4.5
5.4
6.3
7.2
8.1

0

1

2

3

4

0

2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Iteration 1 Iteration 2

00

50

00

Iteration 3 (best)

Figure 7: Car kinematics: Testing Neural Lyapunov MPC obtained from training on nominal
model. For each iteration, we show the trajectories obtained through our Neural Lyapunov MPC
while using the resulting Lyapunov function and the MPC parameter selected from the line-search.
Top: The Lyapunov function at φ = 0 with trajectories for 40 steps at each iteration. Middle: The
evaluated Lyapunov function. Bottom: The Lyapunov function time difference.

31

Under review as a conference paper at ICLR 2021

0.0000
0.0275
0.0550
0.0825
0.1100
0.1375
0.1650
0.1925
0.2200
0.2475

0.00
0.12
0.24
0.36
0.48
0.60
0.72
0.84
0.96
1.08

0.000
0.135
0.270
0.405
0.540
0.675
0.810
0.945
1.080
1.215

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0

2

−0.04

−0.03

−0.02

−0.01

0.00

0.01

Iteration 1 Iteration 2 (best)

10

00

Iteration 3

Figure 8: Car kinematics: Testing Neural Lyapunov MPC obtained from training on surrogate
model. For each iteration, we show the trajectories obtained through our Neural Lyapunov MPC
while using the resulting Lyapunov function and the MPC parameter selected from the line-search.
Top: The Lyapunov function at φ = 0 with trajectories for 40 steps at each iteration. Middle: The
evaluated Lyapunov function. Bottom: The Lyapunov function time difference.

32

Under review as a conference paper at ICLR 2021

1

2

3

4

5

6

(a) Lyapunov Loss
(log(1 + x))

(b) Verified Points
(%)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Not Verified Points
(%)

5.88
5.88

0.0
6.6
13.2
19.8
26.4
33.0
39.6
46.2
52.8
59.4

0 2 4 6 8 10 12 14 16
1.0

1.5

2.0

2.5

3.0

3.5

4.0
MPC solver starts failing

Iteration 1
1 6 11 16 21 26 31 36

MPC solver starts failing

Iteration 2 (best)

Figure 9: Inverted Pendulum: Alternate learning on surrogate model. After every NV = 200
epochs of Lyapunov learning, the learned Lyapunov function is used to tune the MPC parameters.
Unlike the vehicle kinematics example, we do not reinitialize V between the iterations. Top: The
training curves for Lyapunov function. Vertical lines separate iterations. Middle: The resulting
Lyapunov function V with the best performance. Bottom: Line-search for the MPC parameter α
to minimize the Lyapunov loss (10) with V as terminal cost. The loss is plotted on the y-axis in a
log(1 + x) scale. The point marked in red is the parameter which minimizes the loss.

33

Under review as a conference paper at ICLR 2021

4.82 4.82

0
25
50
75
100
125
150
175
200
225

5.88
5.88

0.0
6.6
13.2
19.8
26.4
33.0
39.6
46.2
52.8
59.4

0

1

2

3

4

5

6

−0.6

−0.4

−0.2

0.0

Iteration 1 Iteration 2 (best)

Figure 10: Inverted Pendulum: Testing Neural Lyapunov MPC obtained from training on
nominal model over iterations. For each iteration, we show the trajectories obtained through our
Neural Lyapunov MPC while using the resulting Lyapunov function and the MPC parameter selected
from the line-search. The initial states are sampled inside the safe level-set using rejection sampling.
Top: The Lyapunov function with trajectories for 80 steps at each iteration. Middle: The evaluated
Lyapunov function. Bottom: The Lyapunov function time difference.

34

Under review as a conference paper at ICLR 2021

5.88
5.88

5.88
5.88

5.88
5.88

5.88
5.88

5.88
5.88

0.0
6.6
13.2
19.8
26.4
33.0
39.6
46.2
52.8
59.4

0

1

2

3

4

5

6

0

2

3

4

5

6

0

1

2

3

4

5

6

−0.6

−0.4

−0.2

0.0

(a) Short-horizon
MPC with nominal

system

6

4

2

0

(b) Long-horizon
MPC with nominal

model

(c) Lyapunov MPC
with nominal model

(Ours)

(d) Long-horizon
MPC with surrogate

model

6

4

2

0

(e) Lyapunov MPC
with surrogate model

(Ours)

Figure 11: Inverted Pendulum: Transfer from nominal to surrogate model. Top: The Lyapunov
function with overlaid trajectories for 80 timesteps. Middle: The Lyapunov function evaluated along
trajectories. Bottom: The Lyapunov decrease evaluated along trajectories.

3.70 3.70

(a) MPC Demonstrator with Nominal Model

3.70 3.70

0
72
144
216
288
360
432
504
576
648

(b) Lyapunov MPC with Nominal Model
(Ours)

Figure 12: Inverted Pendulum: Effect of using Lyapunov MPC with contractor factor and no
LQR loss. The Lyapunov function and safe-level set obtained from the first iteration of alternate
learning with λ = 0.9, v = 0 in the Lyapunov loss Equation 10. This results in a smaller safe region
estimate and slower closed-loop trajectories compared to the case when λ = 0.99, v = 1. Each
trajectory is simulated for T = 80 timesteps.

4.71 4.71

yapuno

(a) rtrust = 0.1

4.71 4.71

yapuno

0

25

50

75

100

125

150

175

200

225

(b) rtrust = 0.5

Figure 13: Inverted Pendulum: Effect of trust region on MPC. The solver hyperparameter, rtrust,
can also affect the stability of the MPC and was tuned manually at this stage. Given the limited
amount of solver iterations, a small trust region results in weaker control signals and local instability.
A larger trust radius can in this case stabilize the system, while being possibly more sub-optimal. The
depicted Lyapunov function is obtained from first iteration of alternate learning and is used by the
MPC as its terminal cost.

35

