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A EXTRA NOTE

A portion of the source code and data is available at anonymous repository https://
anonymous.4open.science/r/MEHGT-LKG-D17C.

B ADDITIONAL DATA DEFINITION

As shown in Table 1, this table summarizes all node and edge types used in our graph construction,
along with their names, semantic meanings, and feature descriptions. The node types include key
stocks, financial entities, stock exchanges, and margin-related actors, while the edge types capture
diverse relationships such as price correlation, capital flow, and financial events. The associated
features are derived from both structured financial indicators and semantic embeddings generated
by pretrained language models, incorporating information like time series, net cash flows, and event
triples.

Nodes &
Edges Names Notation Descriptions and Features Feature

Notation

Node types

Key Stocks V KS
t

Desc.: leading companies in the subfields of
green computing and new energy industries

XKS
vtFeat.: time series matrix of OHLCV

within an w-days window

Other Entities V OE
t

Desc.: other financial entities in the FinKG
XOE

vtFeat.: global semantic meaning of the input
generated by FinBERT

HKEX V HK
t

Desc.: Hong Kong Stock Exchange
XHK

vtFeat.: time series of status of SH/SZ-HK Stock Connect
within an w-days window

Margin Financing V F
t

Desc.: Margin Financing
XF

vtFeat.: one-hot encoding

Securities Lending V L
t

Desc.: Securities Lending
XL

vtFeat.: one-hot encoding

Edge types

Key Stocks—correlation—Key Stocks
(undirected) ECorr

t

Desc.: correlation of prices among Key Stocks.
XCorr

etFeat.: time series of Spearman correlation coefficients
within an w-days window.

HKEX—Invest—Stocks
(directed) V HK

t

Desc.: Hong Kong Stock Exchange
XHI

etFeat.: Northbound capital
(funds flowing via SH/SZ-HK Stock Connect)

Margin Financing—go long—Stocks
(directed) ELong

t

Desc.: net inflows from margin financing
XLong

etFeat.: time series of net margin financing cash flows
within an w-days window.

Securities Lending—go short—Stocks
(directed) EShort

t

Desc.: net short-selling of securities
XShort

etFeat.: time series of daly securities sold short within
an w-days window

Key Stocks—relationship/action—Other Entities
(directed) ESRE

t

Desc.: triples from FEKG
XSRE

etFeat.: global semantic meaning of the input
generated by FinBERT

Other Entities—relationship/action—Key Stocks
(directed) EERS

t

Desc.: triples from FEKG
XERS

etFeat.: global semantic meaning of the input
generated by FinBERT

Key Stocks—relationship/action—Key Stocks
Key Stocks—short event

(directed)
EKS

t

Desc.: tuples from FEKG (triples and event pairs )
xKS
etFeat.: global semantic meaning of the input

generated by FinBERT
Other Entities—relationship/actiont—Other Entities

Other Entities—short event
(directed)

EOE
t

Desc.: tuples from FEKG (triples and event pairs )
xOE
etFeat.: global semantic meaning of the input

generated by FinBERT

Table 1: Data definition of multimodal heterogeneous graphs.

C IMPLEMENT DETAILS

All experiments were conducted on Linux (CentOS) operating systems with Python 3.11. The
FinEX model was trained on NVIDIA A100 GPUs, while the MEHGT model and baselines were
trained using NVIDIA RTX 4090 GPUs. Graph neural network components were implemented
with the PyTorch Geometric (PyG) library. The environment included sufficient system memory to
support large-scale training of heterogeneous and multimodal architectures.
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D SUPPLEMENTARY EXPERIMENT

D.1 MAIN COMPARISON RESULTS ON OTHER DATASETS

The performance comparison between our model and the baselines on other datasets is summarized
below. The conclusions drawn from these results are consistent with those presented in the main
text. The details are shown in Table 2.

Methods
Sugon (603019) BYD (002594)

ACC MCC Precision Recall F1 AUC ACC MCC Precision Recall F1 AUC

Time-series models
Informer 0.5714 0.1791 0.6667 0.3291 0.4407 0.5750 0.6623 0.3079 0.6000 0.6000 0.6000 0.6088
TCN 0.5649 0.1659 0.6579 0.3165 0.4274 0.5445 0.5584 0.1545 0.4839 0.6923 0.5696 0.5167
CNN-LSTM 0.5779 0.1883 0.6667 0.3544 0.4628 0.5789 0.6234 0.2498 0.5455 0.6462 0.5915 0.5749
Graph-based models
GAT 0.6169 0.2559 0.5862 0.8608 0.6974 0.6116 0.6429 0.3098 0.5581 0.7385 0.6358 0.6659
HGT 0.6234 0.2540 0.6615 0.5443 0.5972 0.6571 0.6558 0.3176 0.5769 0.6923 0.6294 0.6352
MAC 0.6234 0.2601 0.6780 0.5063 0.5797 0.6322 0.6364 0.2348 0.5918 0.4462 0.5088 0.6408
MDGNN 0.6169 0.2324 0.6190 0.6582 0.6380 0.5970 0.6104 0.3268 0.5225 0.8923 0.6591 0.6193
MEHGT-LKG (ours) 0.6429 0.3162 0.6034 0.8861 0.7179 0.6693 0.6688 0.3483 0.5875 0.7231 0.6483 0.6746

Kunlun Tech (300418) LONGi (601012)

Time-series models
Informer 0.6104 0.2102 0.5672 0.5507 0.5588 0.5719 0.6688 0.2292 0.5385 0.3889 0.4516 0.6128
TCN 0.5909 0.1640 0.6875 0.1594 0.2588 0.4223 0.6429 0.1535 0.4857 0.3148 0.3820 0.5828
CNN-LSTM 0.6104 0.2005 0.5818 0.4638 0.5161 0.5782 0.4156 0.1629 0.3732 0.9815 0.5408 0.4723
Graph-based models
GAT 0.6104 0.2628 0.5455 0.7826 0.6429 0.6477 0.5714 0.2548 0.4400 0.8148 0.5714 0.5517
HGT 0.6494 0.2848 0.6230 0.5507 0.5846 0.6462 0.5649 0.2802 0.4393 0.8704 0.5839 0.6289
MAC 0.6169 0.2311 0.5676 0.6087 0.5874 0.5877 0.6234 0.2387 0.4722 0.6296 0.5397 0.6343
MDGNN 0.6623 0.3264 0.6104 0.6812 0.6438 0.6368 0.6883 0.3042 0.5600 0.5185 0.5385 0.6298
MEHGT-LKG (ours) 0.6234 0.2604 0.5647 0.6957 0.6234 0.6302 0.6883 0.3275 0.5517 0.5926 0.5714 0.7135

Jingjia Micro (300474) Tongwei (600438)

Time-series models
Informer 0.6039 0.2187 0.5714 0.7027 0.6303 0.5889 0.6234 0.1943 0.5400 0.4355 0.4821 0.5852
TCN 0.5260 0.1842 0.5034 0.9865 0.6667 0.5446 0.5519 0.2249 0.4690 0.8548 0.6057 0.5521
CNN-LSTM 0.6234 0.2456 0.6081 0.6081 0.6081 0.5703 0.5260 0.2140 0.4553 0.9032 0.6054 0.5603
Graph-based models
GAT 0.6234 0.2465 0.6053 0.6216 0.6133 0.6392 0.6039 0.2171 0.5063 0.6452 0.5674 0.6048
HGT 0.6234 0.2551 0.5909 0.7027 0.6420 0.6033 0.6234 0.2255 0.5303 0.5645 0.5469 0.5640
MAC 0.6234 0.2491 0.6600 0.4459 0.5323 0.5867 0.5390 0.2137 0.4615 0.8710 0.6034 0.5903
MDGNN 0.6299 0.2716 0.5934 0.7297 0.6545 0.5912 0.6429 0.2269 0.5814 0.4032 0.4762 0.5403
MEHGT-LKG (ours) 0.6623 0.3226 0.6618 0.6018 0.6338 0.6459 0.6429 0.2518 0.5593 0.5323 0.5455 0.6197

Table 2: Prediction performance of different methods across other stock datasets

D.2 ADDITIONAL RESULTS OF MARKET TRADING SIMULATION

The return curves on additional datasets are shown in the figure below. The analysis based on these
curves leads to conclusions consistent with those in the main text. The details are shown in Figure 1
and Table 3

D.3 ADDITIONAL RESULTS OF ABLATION STUDY

Here, we additionally report the return performance of the ablation experiments. The details are
shown in Figure 2.

D.4 SPEARMAN ANALYSIS

A Spearman correlation heatmap is constructed based on the closing prices of selected key stocks,
as illustrated in Figure. 3. The intensity of the color reflects the strength of the correlation: stronger
positive correlations are depicted in red, whereas stronger negative correlations are shown in blue.

The graph shows that within sectors such as artificial intelligence and new energy, stocks often
exhibit strong internal correlations. For example, the Spearman coefficient between Kunlun Tech
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(c) Jingjia Micro (300474)
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(f) Tongwei (600438)

Figure 1: Simulated trading performance of all models during backtesting.
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Figure 2: Profitability performance of ablation analysis across all stock datasets.

and Zhongji Innolight is 0.89, and between CATL and EVE is 0.87. These high values indicate
shared industry factors or capital flows, leading to synchronized price movements. In contrast,
cross-sector pairs, especially between AI and new energy, tend to show negative correlations. For
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CRR MDD Sharpe CRR MDD Sharp

Inspur

000977

Informer 39.1375 0.2496 1.4859

CATL

300750

Informer -0.3439 0.1881 0.1048
TCN 21.2760 0.2696 0.7683 TCN -46.1522 0.5023 -1.3684
CNN-LSTM 28.0206 0.2079 1.2795 CNN-LSTM -50.3170 0.5062 -1.5319
GAT 48.7005 0.2623 1.2811 GAT 3.2661 0.1636 0.3350
HGT 46.0885 0.2546 1.4366 HGT 15.5525 0.1136 1.1398
MAC 28.2165 0.2973 1.0461 MAC -4.4937 0.1630 -0.3461
MDGNN 58.2471 0.1530 2.0843 MDGNN 20.0766 0.0945 1.4430
MEHGT-LKG (ours) 104.5015 0.1989 2.4844 MEHGT-LKG (ours) 20.8393 0.0838 1.7462

Sugon

603019

Informer 17.1574 0.1254 1.3779

BYD

002594

Informer 18.9981 0.0612 1.8414
TCN 13.9591 0.1467 0.8461 TCN 4.2585 0.1868 0.4635
CNN-LSTM 18.5299 0.1254 1.4795 CNN-LSTM 11.9645 0.0937 1.2065
GAT 31.9407 0.2702 0.8620 GAT 11.1698 0.1508 0.9874
HGT 42.3104 0.0978 2.0081 HGT 31.8891 0.0532 2.4177
MAC 53.5646 0.1014 2.0462 MAC 21.0417 0.0996 1.8541
MDGNN 56.3198 0.1776 1.8907 MDGNN 11.5724 0.0820 0.8191
MEHGT-LKG (ours) 86.1013 0.2372 2.1732 MEHGT-LKG (ours) 28.0607 0.0694 2.1129

IFLYTEK

002230

Informer 6.1512 0.3228 0.4445

LONGi

601012

Informer 2.4555 0.0894 0.3191
TCN 1.5595 0.1628 0.2556 TCN -6.0843 0.1195 -0.7286
CNN-LSTM 35.9297 0.1690 1.5652 CNN-LSTM -31.2370 0.3173 -1.6541
GAT 14.2939 0.2822 0.6382 GAT -6.0351 0.1935 -0.1572
HGT 26.8404 0.2601 1.0763 HGT 4.4006 0.1391 0.3635
MAC 12.2738 0.2326 0.6969 MAC 1.3198 0.1757 0.1905
MDGNN 43.2621 0.1283 1.7303 MDGNN 12.0417 0.1105 0.9541
MEHGT-LKG (ours) 74.0035 0.1742 2.4209 MEHGT-LKG (ours) 19.4352 0.0967 1.2398

Kunlun Tech

300418

Informer 37.6844 0.1421 1.5573

EVE

300014

Informer 6.0840 0.1264 0.4937
TCN 9.5881 0.0736 1.1430 TCN -11.1429 0.1412 -0.6905
CNN-LSTM 20.4161 0.1673 0.9239 CNN-LSTM -12.9285 0.1926 -0.5445
GAT 25.7172 0.3392 0.6937 GAT 3.1514 0.1957 0.3191
HGT 37.6609 0.2443 1.0303 HGT 7.9989 0.1375 0.7413
MAC 30.2156 0.3931 0.9842 MAC -20.3043 0.2921 -0.8207
MDGNN 89.8132 0.3036 1.9303 MDGNN 3.3344 0.2460 0.3651
MEHGT-LKG (ours) 74.8732 0.2419 1.4239 MEHGT-LKG (ours) 25.2459 0.1416 1.4747

Zhongji Innolight

300308

Informer 84.3662 0.1529 2.4685

Tongwei

600438

Informer -2.6245 0.1024 -0.2461
TCN 65.6934 0.3317 1.7605 TCN -13.5322 0.1728 -0.7652
CNN-LSTM 4.4516 0.3619 0.3921 CNN-LSTM -20.4624 0.2470 -1.2588
GAT 124.2828 0.3976 2.3478 GAT 5.6952 0.0766 0.5508
HGT 168.6253 0.3139 2.3542 HGT 3.7162 0.1684 0.3969
MAC 92.7296 0.1053 3.0320 MAC -9.3012 0.2635 -0.5096
MDGNN 232.7633 0.1238 4.2321 MDGNN 11.4228 0.0669 1.1255
MEHGT-LKG (ours) 274.4909 0.2735 3.8083 MEHGT-LKG (ours) 12.3115 0.0978 1.1192

Jingjia Micro

300474

Informer 25.7934 0.2017 1.0557

Sungrow

300274

Informer 6.3613 0.2230 0.4588
TCN 19.0871 0.2782 0.7763 TCN 12.7821 0.1289 0.5032
CNN-LSTM 21.7649 0.3655 0.9461 CNN-LSTM 33.4434 0.1288 1.2017
GAT 30.8164 0.2158 1.1493 GAT 42.7223 0.1440 1.6319
HGT 31.5752 0.1256 1.2969 HGT 31.9033 0.1553 1.1684
MAC 21.8109 0.1685 1.1811 MAC 5.2465 0.1997 0.0889
MDGNN 40.5920 0.1640 1.6081 MDGNN 28.9026 0.1380 1.2700
MEHGT-LKG (ours) 58.0853 0.1776 1.9637 MEHGT-LKG (ours) 51.1442 0.1016 1.7827

Table 3: Profitability performance of different methods.

instance, Kunlun Tech and Tongwei have a coefficient of –0.68, reflecting divergent trends and a
clear sector rotation effect, where capital shifts between the two in a see-saw pattern.

Interestingly, Inspur shows the highest cumulative Spearman correlation within its sector, totaling
3.79. Our model correspondingly achieves the best prediction performance for Inspur, with an MCC
of 0.3718. This indicates that stronger correlations enhance the value of information from other
stocks. During training, the model captures intrinsic price formation patterns via message passing
along the Key Stocks–correlation–Key Stocks edges, leading to the best MCC for Inspur in stock
trend prediction.

D.4.1 INTERPRETABILITY

To investigate how the multi-head attention mechanism allocates importance across different edge
types in the heterogeneous graph, we compute the average attention weights for each edge type based
on the test set. Specifically, we extract the attention coefficients from each layer of MEHGTConv,
aggregate them across all heads for each edge, and then compute the average attention coefficients
for each edge type over all test datasets. The final results are visualized in Figure. 4.

From the graph, the proposed model shows distinct attention distributions across edge types. The
edge type Key Stocks—correlation—Key Stocks receives the highest attention (0.6716), highlight-
ing the role of stock co-movements in message aggregation. Valuable information is effectively
transmitted through these structured correlations, enhancing trend prediction. For the four edge
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Figure 3: Spearman correlation heatmap of selected stocks.

types enriched with LLM-driven semantics, MEHGT-LKG also assigns high attention, indicating
that FinEX-extracted financial events help relay relevant information to target stock nodes. These
semantic edge types complement MEHGT-LKG’s edge feature processing, jointly improving infor-
mation aggregation and prediction accuracy.

D.5 RELATED WORK

D.5.1 NLP-DRIVEN METHODS FOR FINANCIAL MODELING.

Knowledge-driven methods have been widely applied in finance, leveraging huge structured and
unstructured knowledge to improve stock prediction, investment decision making, risk manage-
ment, and financial analysis. Traditional knowledge-driven methods focus mainly on the extraction
of features from financial texts. For example, Schumaker & Chen (2009) explored how breaking
news influences stock prices, employing various textual news representation techniques. Khadjeh
Nassirtoussi et al. (2015) extracted sentiment information from breaking financial news, and further
utilized them to predict stock marker accurately. Nam & Seong (2019) focused on identifying events
from financial texts, and proposed a novel stock prediction model. Zhou et al. (2024) explored the
impact of news sources on stock prices, and further designed a deep learning prediction model based
on this novel feature.

As knowledge graph technology evolves, it has become increasingly effective at systematizing both
structured and unstructured knowledge, and more scholars are using knowledge graphs to solve var-
ious financial tasks. For instance, Wang et al. (2022a) constructed a knowledge graph for online
lending fraud detection through address disambiguation and mining implicit relations. Cheng et al.
(2022) extracted structured event triples from financial texts to build financial knowledge graphs, and
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Figure 4: Average attention weights for different edge types.

proposed a multimodal GNN to forecast stock trends. Haque & Tozal (2023) introduced a knowl-
edge graph-based method to model the relationships between medical codes, offering a graph-driven
solution for fraud detection in health insurance. Wang et al. (2023) constructed a stock knowledge
graph based on the fundamental information of listed companies to represent semantic and rela-
tional information among stocks, and utilized GCNs to enhance stock trend prediction performance.
Song et al. (2024) formulated a knowledge graph from enterprise relational data, and proposed a
multi-structure cascaded graph neural network framework (MS-CGNN) for enterprise credit risk as-
sessment. Cai & Xie (2024) designed a two-layer knowledge graph with a semantic layer modeling
financial subordination and a syntactic layer capturing articulation relations, supporting accurate and
interpretable fraud detection.

Notably, in recent years, large language models (LLMs) renowned for their exceptional seman-
tic understanding and knowledge-reasoning capabilities, have been employed in some domains for
knowledge graph construction. In particular, Cheng et al. (2024) constructed a Chinese financial
event knowledge graph by extracting relational triples using an LLM-based module with iterative
verification, and developed a GAT-based model to improve graph completeness. Li & Sanna Passino
(2024) extracted dynamic entity relations from financial texts through fine-tuning LLM, and con-
structed a dynamic financial knowledge graph, enabling effective predict stocks trend prediction
via an attention-based GNN. Yan et al. (2025) proposed KnowNet, a system that constructs knowl-
edge graphs by extracting entity-relation triples from LLM outputs and aligning them with validated
external KGs to enhance accuracy in health information retrieval. Wang et al. (2025) introduced
a novel LLM-based model to for efficient named entity recognition, enhancing knowledge graph
construction across diverse domains.

In summary, knowledge-driven methods have been widely applied in financial domain and have
demonstrated strong performance across various tasks. In recent years, some researchers attempted
to introduce LLM into the construction of financial knowledge graphs. However, existing ap-
proaches mainly rely on prompt engineering or API-based queries, and still suffer from halluci-
nations, output randomness, and poor structural consistency in generating structured knowledge
representations. These limitations lead to low efficiency, limited accuracy, and weak controllability
in the process of knowledge graph construction. Hence, to address these issues, this study builds a
high-quality, well-formatted instruction dataset based on multi-source financial texts such as news
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and research reports, with guidance from domain experts. A fine-tuned LLM-based module, named
Event and Relationship Extraction Agent, is proposed to extract key events and corresponding struc-
tured knowledge (including triples and pairs) from long-form financial texts. This method mitigates
hallucination and uncertainty during generation, significantly improving the efficiency and reliability
of structured information extraction. It lays a solid foundation for high-quality financial knowledge
graph construction and the subsequent modeling of knowledge-infused multimodal heterogeneous
graphs.

D.5.2 STOCK PREDICTION WITH GRAPH LEARNING.

Essentially, the price volatility of stock is caused by its own market signal and the interference of
related enterprises. Compared with traditional time series methods, graph learning can effectively
integrate features from neighboring nodes across diverse relation types. This enriches the modeling
process with structural complexity and better captures the dependencies among stocks, making it
increasingly popular in stock prediction tasks. Chen et al. (2018) proposed a GCN-based stock pre-
diction model incorporating related corporations’ information, effectively capturing inter-company
relations to enhance forecasting accuracy. Cheng & Li (2021). measured spillover sensitivity with
respect to firm attributes and volume signals, and further designed attribute-driven graph attention
network (AD-GAT) to capture dynamic influence strengths for more accurate trend forecasting.
Hsu et al. (2021) explored stock and sector interactions from time series data, and subsequently
proposed FinGAT to capture latent relations and improve profitable stock recommendation without
predefined graphs. Chen et al. (2021) introduced a GC–CNN framework that integrates an improved
GCN and a Dual-CNN structure to jointly model stock-level and market-level information, demon-
strating superior performance in stock trend prediction compared to existing methods. Cheng et al.
(2022) proposed MAGNN, a multi-modality graph neural network for financial time series predic-
tion. By modeling heterogeneous sources with a two-phase attention mechanism, the model captures
both intra- and inter-modality dependencies, offering interpretable and accurate forecasting results.
Wang et al. (2022b) designed HATR-I, a hierarchical temporal-relational model combining dilated
convolutions and dual attention over multiplex graphs to capture fine-grained stock dynamics and
inter-stock relations, achieving superior performance on real-world datasets. Ma et al. (2023a) con-
sidered the dynamic nature of stock relationships and integrated motif-based similarity into graph
modeling, further proposing a dynamic graph LSTM to improve trend prediction and trading prof-
itability. To address the limitations of traditional sentiment-based methods, Ma et al. (2023b) devel-
oped a Multi-source Aggregated Classification (MAC) model, which combines numerical features,
sentiment embeddings, and related stock information via GCNs, significantly improving stock price
movement prediction. Zhang et al. (2025) fused sentiment, transaction, and textual data via tensor-
based early fusion, and further proposed a novel dynamic attribute-driven graph attention network
incorporating sentiment (AGATS), thereby enhancing stock prediction and trading performance.

Most existing methods rely on homogeneous graph learning, treating all nodes as the same type and
ignoring semantic differences between entities. However, in financial markets, different types of en-
tities (e.g., listed companies, industries, market themes, and financial events) influence stock prices
in different ways. In fact, heterogeneous graph neural networks (HGNNs), owing to their capacity
to model multiple types of nodes and relations, have been widely applied in various domains such
as medical diagnosis and intelligent transportation. Hence, an increasing number of studies have
introduced HGNNs into financial scenarios to explicitly capture the complex structural relationships
among diverse types of entities and edges. This approach enables a more comprehensive represen-
tation of complex interactions among financial entities, improving the modeling and prediction of
market behavior. For example, Tan et al. (2022) transformed relational market factors into hetero-
geneous node variables and further proposed a novel conditional heterogeneous graph neural net-
work (FinHGNN) to predict stock price. Ma et al. (2024) fused multi-relation spillover effects and
jointly modeled return and volatility, and then proposed a heterogeneous graph attention multi-task
model (HGA-MT) to enhance risk-aware stock ranking for portfolio optimization. By leveraging
semantic signals from earnings calls, Liu et al. (2024b) designed ECHO-GL, a novel heterogeneous
graph-based model that enhances stock movement prediction with dynamic relation modeling and
post earnings announcement drift processes. Liu et al. (2024a) captured cross-temporal interven-
tions and heterogeneous stock interactions, and further proposed a dual-dynamic attention model
(HD2AT) for enhancing portfolio-level financial forecasting. Qian et al. (2024) extracted multi-
source stock relations and temporal dynamics, and designed the Multi-relational Dynamic Graph
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Neural Network (MDGNN) to jointly model evolving inter-stock dependencies for accurate stock
movement prediction.

These graph learning-based models have achieved promising results for stock prediction and invest-
ment. And, increasing studies have adopted HGNNs to model complex relationships among dif-
ferent types of entities in financial markets, aiming to enhance market behavior understanding and
modeling. However, most existing HGNN-based methods fail to effectively process edge features
such as Financial event relationships during training, leading to insufficient utilization of multi-
source heterogeneous financial information. To address this limitation, we propose MEHGT model,
a Multimodal Edge-enhanced Heterogeneous Graph Transformer. The proposed model embeds edge
attributes directly into the computation of attention scores within the multi-head attention mecha-
nism, allowing relation information to influence both message passing and representation learning.
This further facilitates comprehensive understanding of multimodal heterogeneous graph represen-
tation and stock trend forecasting precisely.
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