A EXTRA NOTE

A portion of the source code and data is available at anonymous repository https://
anonymous.4open.science/r/MEHGT-LKG-D17C.

B ADDITIONAL DATA DEFINITION

As shown in Table[T] this table summarizes all node and edge types used in our graph construction,
along with their names, semantic meanings, and feature descriptions. The node types include key
stocks, financial entities, stock exchanges, and margin-related actors, while the edge types capture
diverse relationships such as price correlation, capital flow, and financial events. The associated
features are derived from both structured financial indicators and semantic embeddings generated
by pretrained language models, incorporating information like time series, net cash flows, and event
triples.

Nodes & . A Feature
Edges Names Notation|Descriptions and Features Notation
Desc.: leading companies in the subfields of
green computing and new energy industries
Key Stocks V5 [Feat.: time series matrix of OHLCV XK
within an w-days window
Desc.: other financial entities in the FinKG
Other Entities VtO £ [Feat.: global semantic meaning of the input X f))tE
Node types generated by FinBERT
Desc.: Hong Kong Stock Exchange
HKEX VA K |Feat.: time series of status of SH/SZ-HK Stock Connect] X K
within an w-days window
. . Desc.: Margin Financin
F g g F
Margin Financing Vi Feat.: one-hot encoding Kot
. . Desc.: Securities Lendin,
L g L
Securities Lending Vi Feat.: one-hot encoding Kot
e " e Desc.: correlation of prices among Key Stocks.
Key Stocks—(fl(l);jrierl:ctigg) Key Stocks E? °"" [Feat.: time series of Spearman correlation coefficients | X Z“"'T
within an w-days window.
. . Desc.: Hong Kong Stock Exchange
HKEX ( dg:!cetbetd) Stocks VtH K |Feat.: Northbound capital X g 1
(funds flowing via SH/SZ-HK Stock Connect)
- . Desc.: net inflows from margin financing
Margin Fmam(::j?i;égg)long—smcks E tL °79 [Feat.: time series of net margin financing cash flows X eLto"-q
within an w-days window.
. . Desc.: net short-selling of securities
Edge types Securities Len?cl‘?ri;eg‘; short—Stocks E{g hort Feat.: time sFries of daly securities sold short within X fth ort
an w-days window
. . . . Desc.: triples from FEKG
K ks—rel h —Other E - - -
ey Stocks—re atl(?‘;?relst/:glon Other Entities Ets RE [Feat.: global semantic meaning of the input X, CStR £
generated by FinBERT
. . . . Desc.: triples from FEKG
Other Enlmes—reletg(i)rr;sck[lég/)actlon—Key Stocks EtE RS [Feat.: global semantic meaning of the input X iRS
generated by FinBERT
Key Stocks—relationship/action—Key Stocks Desc.: tuples from FEKG (triples and event pairs )
Key Stocks—short event E,K 3 [Feat.: global semantic meaning of the input T gs
(directed) generated by FinBERT
Other Entities—relationship/actiont—Other Entities Desc.: tuples from FEKG (triples and event pairs )
Other Entities—short event E? £ [Feat.: global semantic meaning of the input ng
(directed) generated by FinBERT

Table 1: Data definition of multimodal heterogeneous graphs.

C IMPLEMENT DETAILS

All experiments were conducted on Linux (CentOS) operating systems with Python 3.11. The
FinEX model was trained on NVIDIA A100 GPUs, while the MEHGT model and baselines were
trained using NVIDIA RTX 4090 GPUs. Graph neural network components were implemented
with the PyTorch Geometric (PyG) library. The environment included sufficient system memory to
support large-scale training of heterogeneous and multimodal architectures.


https://anonymous.4open.science/r/MEHGT-LKG-D17C
https://anonymous.4open.science/r/MEHGT-LKG-D17C

D SUPPLEMENTARY EXPERIMENT

D.1 MAIN COMPARISON RESULTS ON OTHER DATASETS

The performance comparison between our model and the baselines on other datasets is summarized
below. The conclusions drawn from these results are consistent with those presented in the main
text. The details are shown in Table 2l

Sugon (603019) BYD (002594)
Methods ACC  MCC Precision Recall Fl ~ AUC ACC MCC Precision Recall FI  AUC
Time-series models
Informer 0.5714 0.1791  0.6667 0.3291 0.4407 0.5750 0.6623 0.3079 0.6000 0.6000 0.6000 0.6088
TCN 0.5649 0.1659  0.6579 0.3165 0.4274 0.5445 0.5584 0.1545 0.4839 0.6923 0.5696 0.5167
CNN-LSTM 0.5779 0.1883  0.6667 0.3544 0.4628 0.5789 0.6234 0.2498 0.5455 0.6462 0.5915 0.5749
Graph-based models
GAT 0.6169 0.2559 0.5862 0.8608 0.6974 0.6116 0.6429 0.3098 0.5581 0.7385 0.6358 0.6659
HGT 0.6234 0.2540 0.6615 0.5443 0.5972 0.6571 0.6558 0.3176 0.5769 0.6923 0.6294 0.6352
MAC 0.6234 0.2601  0.6780  0.5063 0.5797 0.6322 0.6364 0.2348 0.5918 0.4462 0.5088 0.6408
MDGNN 0.6169 0.2324 0.6190 0.6582 0.6380 0.5970 0.6104 0.3268 0.5225 0.8923 0.6591 0.6193
MEHGT-LKG (ours) 0.6429 0.3162 0.6034 0.8861 0.7179 0.6693 0.6688 0.3483  0.5875 0.7231 0.6483 0.6746
Kunlun Tech (300418) LONGI (601012)
Time-series models
Informer 0.6104 0.2102 0.5672 0.5507 0.5588 0.5719 0.6688 0.2292 0.5385 0.3889 0.4516 0.6128
TCN 0.5909 0.1640 0.6875  0.1594 0.2588 0.4223 0.6429 0.1535 0.4857 0.3148 0.3820 0.5828
CNN-LSTM 0.6104 0.2005 0.5818 0.4638 0.5161 0.5782 0.4156 0.1629 0.3732 0.9815 0.5408 0.4723
Graph-based models
GAT 0.6104 0.2628 0.5455 0.7826 0.6429 0.6477 0.5714 0.2548 0.4400 0.8148 0.5714 0.5517
HGT 0.6494 0.2848 0.6230 0.5507 0.5846 0.6462 0.5649 0.2802 0.4393 0.8704 0.5839 0.6289
MAC 0.6169 0.2311 0.5676  0.6087 0.5874 0.5877 0.6234 0.2387 0.4722 0.6296 0.5397 0.6343
MDGNN 0.6623 0.3264 0.6104 0.6812 0.6438 0.6368 0.6883 0.3042 0.5600 0.5185 0.5385 0.6298
MEHGT-LKG (ours) 0.6234 0.2604 0.5647 0.6957 0.6234 0.6302 0.6883 0.3275 0.5517 0.5926 0.5714 0.7135
Jingjia Micro (300474) Tongwei (600438)
Time-series models
Informer 0.6039 0.2187 0.5714 0.7027 0.6303 0.5889 0.6234 0.1943  0.5400 0.4355 0.4821 0.5852
TCN 0.5260 0.1842  0.5034 0.9865 0.6667 0.5446 0.5519 0.2249 0.4690 0.8548 0.6057 0.5521
CNN-LSTM 0.6234 0.2456  0.6081  0.6081 0.6081 0.5703 0.5260 0.2140 0.4553  0.9032 0.6054 0.5603
Graph-based models
GAT 0.6234 0.2465 0.6053 0.6216 0.6133 0.6392 0.6039 0.2171 0.5063 0.6452 0.5674 0.6048
HGT 0.6234 0.2551 0.5909 0.7027 0.6420 0.6033 0.6234 0.2255 0.5303 0.5645 0.5469 0.5640
MAC 0.6234 0.2491  0.6600  0.4459 0.5323 0.5867 0.5390 0.2137 0.4615 0.8710 0.6034 0.5903
MDGNN 0.6299 0.2716  0.5934  0.7297 0.6545 0.5912 0.6429 0.2269 0.5814  0.4032 0.4762 0.5403

MEHGT-LKG (ours) 0.6623 0.3226 0.6618 0.6018 0.6338 0.6459 0.6429 0.2518 0.5593  0.5323 0.5455 0.6197

Table 2: Prediction performance of different methods across other stock datasets

D.2 ADDITIONAL RESULTS OF MARKET TRADING SIMULATION

The return curves on additional datasets are shown in the figure below. The analysis based on these
curves leads to conclusions consistent with those in the main text. The details are shown in Figure[I]
and Table[3]

D.3 ADDITIONAL RESULTS OF ABLATION STUDY

Here, we additionally report the return performance of the ablation experiments. The details are
shown in Figure 2}

D.4 SPEARMAN ANALYSIS

A Spearman correlation heatmap is constructed based on the closing prices of selected key stocks,
as illustrated in Figure. 3] The intensity of the color reflects the strength of the correlation: stronger
positive correlations are depicted in red, whereas stronger negative correlations are shown in blue.

The graph shows that within sectors such as artificial intelligence and new energy, stocks often
exhibit strong internal correlations. For example, the Spearman coefficient between Kunlun Tech
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160 and Zhongji Innolight is 0.89, and between CATL and EVE is 0.87. These high values indicate

161 shared industry factors or capital flows, leading to synchronized price movements. In contrast,
cross-sector pairs, especially between Al and new energy, tend to show negative correlations. For



Profitability performance Profitability performance

Stocks I Methods CRR MDD  Sharpe Stocks II  Methods CRR MDD  Sharp
Informer 39.1375 0.2496 1.4859 Informer -0.3439  0.1881 0.1048
TCN 21.2760 0.2696 0.7683 TCN -46.1522  0.5023 -1.3684

Inspur CNN-LSTM 28.0206 02079 12795  capp,  CNN-LSTM -50.3170 0.5062 -1.5319
GAT 48.7005 0.2623 1.2811 GAT 3.2661 0.1636 0.3350

HGT 46.0885 0.2546 1.4366 HGT 15.5525 0.1136 1.1398

000977 MAC 282165 0.2973 1.0461 300750 MAC -4.4937  0.1630 -0.3461
MDGNN 582471 0.1530 2.0843 MDGNN 20.0766 0.0945 1.4430
MEHGT-LKG (ours) 104.5015 0.1989 2.4844 MEHGT-LKG (ours) 20.8393 0.0838 1.7462

Informer 17.1574 0.1254 1.3779 Informer 18.9981 0.0612 1.8414

TCN 13.9591 0.1467 0.8461 TCN 42585 0.1868 0.4635

Sugon CNN-LSTM 18.5299 0.1254 14795 ByD CNN-LSTM 11.9645 0.0937 1.2065
GAT 31.9407 0.2702 0.8620 GAT 11.1698 0.1508 0.9874

603019 HGT 42.3104 0.0978 2.0081 002594 HGT 31.8891 0.0532 24177
MAC 53.5646 0.1014 2.0462 MAC 21.0417 0.0996 1.8541

MDGNN 56.3198 0.1776 1.8907 MDGNN 11.5724 0.0820 0.8191

MEHGT-LKG (ours) 86.1013 02372 2.1732 MEHGT-LKG (ours) 28.0607 0.0694 2.1129

Informer 6.1512  0.3228 0.4445 Informer 2.4555 0.0894 0.3191
TCN 1.5595 0.1628 0.2556 TCN -6.0843 0.1195 -0.7286

IFLYTEK CNN-LSTM 359297 0.1690 1.5652 1 0ONGi CNN-LSTM -31.2370 0.3173 -1.6541
GAT 142939 0.2822 0.6382 GAT -6.0351 0.1935 -0.1572

002230 HGT 26.8404 0.2601 1.0763 601012 HGT 4.4006 0.1391 0.3635
MAC 12.2738  0.2326 0.6969 MAC 1.3198 0.1757 0.1905

MDGNN 43.2621 0.1283 1.7303 MDGNN 12.0417 0.1105 0.9541

MEHGT-LKG (ours) 74.0035 0.1742 2.4209 MEHGT-LKG (ours) 19.4352 0.0967 1.2398

Informer 37.6844 0.1421 1.5573 Informer 6.0840 0.1264 0.4937

TCN 9.5881 0.0736 1.1430 TCN -11.1429 0.1412 -0.6905

Kunlun Tech CNN-LSTM 20.4161 0.1673 0.9239 EVE CNN-LSTM -12.9285 0.1926 -0.5445
GAT 257172 0.3392 0.6937 GAT 3.1514  0.1957 0.3191

300418 HGT 37.6609 0.2443 1.0303 300014 HGT 7.9989 0.1375 0.7413
MAC 30.2156  0.3931 0.9842 MAC -20.3043 0.2921 -0.8207

MDGNN 89.8132  0.3036 1.9303 MDGNN 3.3344  0.2460 0.3651

MEHGT-LKG (ours) 74.8732 0.2419 1.4239 MEHGT-LKG (ours) 252459 0.1416 1.4747

Informer 84.3662 0.1529 2.4685 Informer -2.6245 0.1024 -0.2461

TCN 65.6934 0.3317 1.7605 TCN -13.5322 0.1728 -0.7652

Zhongji Innolight CNN-LSTM 44516 03619 0.3921 Tongwei CNN-LSTM -20.4624 0.2470 -1.2588
GAT 124.2828 0.3976 2.3478 GAT 5.6952  0.0766 0.5508

300308 HGT 168.6253 0.3139 2.3542 600438 HGT 37162  0.1684 0.3969
- MAC 92.7296 0.1053 3.0320 MAC -9.3012  0.2635 -0.5096
MDGNN 2327633 0.1238 4.2321 MDGNN 11.4228 0.0669 1.1255
MEHGT-LKG (ours) 274.4909 0.2735 3.8083 MEHGT-LKG (ours) 12.3115 0.0978 1.1192

Informer 25.7934 0.2017 1.0557 Informer 6.3613  0.2230 0.4588

TCN 19.0871 0.2782 0.7763 TCN 12.7821 0.1289 0.5032

Jingjia Micro ~ CNN-LSTM 21.7649 03655 0.9461 sSungrow CNN-LSTM 33.4434 0.1288 1.2017
GAT 30.8164 0.2158 1.1493 GAT 42.7223  0.1440 1.6319

300474 HGT 31.5752  0.1256 1.2969 300274 HGT 31.9033 0.1553 1.1684
- MAC 21.8109 0.1685 1.1811 ~ MAC 5.2465 0.1997 0.0889
MDGNN 40.5920 0.1640 1.6081 MDGNN 28.9026 0.1380 1.2700
MEHGT-LKG (ours) 58.0853 0.1776 1.9637 MEHGT-LKG (ours) 51.1442 0.1016 1.7827

Table 3: Profitability performance of different methods.

instance, Kunlun Tech and Tongwei have a coefficient of —0.68, reflecting divergent trends and a
clear sector rotation effect, where capital shifts between the two in a see-saw pattern.

Interestingly, Inspur shows the highest cumulative Spearman correlation within its sector, totaling
3.79. Our model correspondingly achieves the best prediction performance for Inspur, with an MCC
of 0.3718. This indicates that stronger correlations enhance the value of information from other
stocks. During training, the model captures intrinsic price formation patterns via message passing
along the Key Stocks—correlation—Key Stocks edges, leading to the best MCC for Inspur in stock
trend prediction.

D.4.1 INTERPRETABILITY

To investigate how the multi-head attention mechanism allocates importance across different edge
types in the heterogeneous graph, we compute the average attention weights for each edge type based
on the test set. Specifically, we extract the attention coefficients from each layer of MEHGTConv,
aggregate them across all heads for each edge, and then compute the average attention coefficients
for each edge type over all test datasets. The final results are visualized in Figure. f]

From the graph, the proposed model shows distinct attention distributions across edge types. The
edge type Key Stocks—correlation—Key Stocks receives the highest attention (0.6716), highlight-
ing the role of stock co-movements in message aggregation. Valuable information is effectively
transmitted through these structured correlations, enhancing trend prediction. For the four edge
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Figure 3: Spearman correlation heatmap of selected stocks.

types enriched with LLM-driven semantics, MEHGT-LKG also assigns high attention, indicating
that FinEX-extracted financial events help relay relevant information to target stock nodes. These
semantic edge types complement MEHGT-LKG’s edge feature processing, jointly improving infor-
mation aggregation and prediction accuracy.

D.5 RELATED WORK
D.5.1 NLP-DRIVEN METHODS FOR FINANCIAL MODELING.

Knowledge-driven methods have been widely applied in finance, leveraging huge structured and
unstructured knowledge to improve stock prediction, investment decision making, risk manage-
ment, and financial analysis. Traditional knowledge-driven methods focus mainly on the extraction
of features from financial texts. For example, [Schumaker & Chen| (2009) explored how breaking
news influences stock prices, employing various textual news representation techniques.
[Nassirtoussi et al.| (2015)) extracted sentiment information from breaking financial news, and further
utilized them to predict stock marker accurately. Nam & Seong|(2019) focused on identifying events
from financial texts, and proposed a novel stock prediction model. (2024) explored the
impact of news sources on stock prices, and further designed a deep learning prediction model based
on this novel feature.

As knowledge graph technology evolves, it has become increasingly effective at systematizing both
structured and unstructured knowledge, and more scholars are using knowledge graphs to solve var-
ious financial tasks. For instance, Wang et al| (2022a)) constructed a knowledge graph for online
lending fraud detection through address disambiguation and mining implicit relations.
extracted structured event triples from financial texts to build financial knowledge graphs, and
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Figure 4: Average attention weights for different edge types.

proposed a multimodal GNN to forecast stock trends. |Haque & Tozal| (2023)) introduced a knowl-
edge graph-based method to model the relationships between medical codes, offering a graph-driven
solution for fraud detection in health insurance. [Wang et al.| (2023) constructed a stock knowledge
graph based on the fundamental information of listed companies to represent semantic and rela-
tional information among stocks, and utilized GCNs to enhance stock trend prediction performance.
Song et al.| (2024) formulated a knowledge graph from enterprise relational data, and proposed a
multi-structure cascaded graph neural network framework (MS-CGNN) for enterprise credit risk as-
sessment. (Cai & Xie|(2024) designed a two-layer knowledge graph with a semantic layer modeling
financial subordination and a syntactic layer capturing articulation relations, supporting accurate and
interpretable fraud detection.

Notably, in recent years, large language models (LLMs) renowned for their exceptional seman-
tic understanding and knowledge-reasoning capabilities, have been employed in some domains for
knowledge graph construction. In particular, Cheng et al.| (2024) constructed a Chinese financial
event knowledge graph by extracting relational triples using an LLM-based module with iterative
verification, and developed a GAT-based model to improve graph completeness. |[Li & Sanna Passino
(2024) extracted dynamic entity relations from financial texts through fine-tuning LLM, and con-
structed a dynamic financial knowledge graph, enabling effective predict stocks trend prediction
via an attention-based GNN. |Yan et al.| (2025) proposed KnowNet, a system that constructs knowl-
edge graphs by extracting entity-relation triples from LLM outputs and aligning them with validated
external KGs to enhance accuracy in health information retrieval. [Wang et al.| (2025) introduced
a novel LLM-based model to for efficient named entity recognition, enhancing knowledge graph
construction across diverse domains.

In summary, knowledge-driven methods have been widely applied in financial domain and have
demonstrated strong performance across various tasks. In recent years, some researchers attempted
to introduce LLM into the construction of financial knowledge graphs. However, existing ap-
proaches mainly rely on prompt engineering or API-based queries, and still suffer from halluci-
nations, output randomness, and poor structural consistency in generating structured knowledge
representations. These limitations lead to low efficiency, limited accuracy, and weak controllability
in the process of knowledge graph construction. Hence, to address these issues, this study builds a
high-quality, well-formatted instruction dataset based on multi-source financial texts such as news



and research reports, with guidance from domain experts. A fine-tuned LLM-based module, named
Event and Relationship Extraction Agent, is proposed to extract key events and corresponding struc-
tured knowledge (including triples and pairs) from long-form financial texts. This method mitigates
hallucination and uncertainty during generation, significantly improving the efficiency and reliability
of structured information extraction. It lays a solid foundation for high-quality financial knowledge
graph construction and the subsequent modeling of knowledge-infused multimodal heterogeneous
graphs.

D.5.2 STOCK PREDICTION WITH GRAPH LEARNING.

Essentially, the price volatility of stock is caused by its own market signal and the interference of
related enterprises. Compared with traditional time series methods, graph learning can effectively
integrate features from neighboring nodes across diverse relation types. This enriches the modeling
process with structural complexity and better captures the dependencies among stocks, making it
increasingly popular in stock prediction tasks. (Chen et al.[(2018)) proposed a GCN-based stock pre-
diction model incorporating related corporations’ information, effectively capturing inter-company
relations to enhance forecasting accuracy. (Cheng & Li|(2021). measured spillover sensitivity with
respect to firm attributes and volume signals, and further designed attribute-driven graph attention
network (AD-GAT) to capture dynamic influence strengths for more accurate trend forecasting.
Hsu et al.| (2021) explored stock and sector interactions from time series data, and subsequently
proposed FinGAT to capture latent relations and improve profitable stock recommendation without
predefined graphs. |Chen et al.[(2021) introduced a GC—CNN framework that integrates an improved
GCN and a Dual-CNN structure to jointly model stock-level and market-level information, demon-
strating superior performance in stock trend prediction compared to existing methods. |(Cheng et al.
(2022) proposed MAGNN, a multi-modality graph neural network for financial time series predic-
tion. By modeling heterogeneous sources with a two-phase attention mechanism, the model captures
both intra- and inter-modality dependencies, offering interpretable and accurate forecasting results.
Wang et al.|(2022b) designed HATR-I, a hierarchical temporal-relational model combining dilated
convolutions and dual attention over multiplex graphs to capture fine-grained stock dynamics and
inter-stock relations, achieving superior performance on real-world datasets. Ma et al.| (2023a) con-
sidered the dynamic nature of stock relationships and integrated motif-based similarity into graph
modeling, further proposing a dynamic graph LSTM to improve trend prediction and trading prof-
itability. To address the limitations of traditional sentiment-based methods,[Ma et al.[(2023b) devel-
oped a Multi-source Aggregated Classification (MAC) model, which combines numerical features,
sentiment embeddings, and related stock information via GCNSs, significantly improving stock price
movement prediction. [Zhang et al.| (2025) fused sentiment, transaction, and textual data via tensor-
based early fusion, and further proposed a novel dynamic attribute-driven graph attention network
incorporating sentiment (AGATS), thereby enhancing stock prediction and trading performance.

Most existing methods rely on homogeneous graph learning, treating all nodes as the same type and
ignoring semantic differences between entities. However, in financial markets, different types of en-
tities (e.g., listed companies, industries, market themes, and financial events) influence stock prices
in different ways. In fact, heterogeneous graph neural networks (HGNNs), owing to their capacity
to model multiple types of nodes and relations, have been widely applied in various domains such
as medical diagnosis and intelligent transportation. Hence, an increasing number of studies have
introduced HGNNSs into financial scenarios to explicitly capture the complex structural relationships
among diverse types of entities and edges. This approach enables a more comprehensive represen-
tation of complex interactions among financial entities, improving the modeling and prediction of
market behavior. For example, |Tan et al.| (2022) transformed relational market factors into hetero-
geneous node variables and further proposed a novel conditional heterogeneous graph neural net-
work (FinHGNN) to predict stock price. Ma et al.| (2024) fused multi-relation spillover effects and
jointly modeled return and volatility, and then proposed a heterogeneous graph attention multi-task
model (HGA-MT) to enhance risk-aware stock ranking for portfolio optimization. By leveraging
semantic signals from earnings calls, [Liu et al.| (2024b) designed ECHO-GL, a novel heterogeneous
graph-based model that enhances stock movement prediction with dynamic relation modeling and
post earnings announcement drift processes. [Liu et al,| (2024a) captured cross-temporal interven-
tions and heterogeneous stock interactions, and further proposed a dual-dynamic attention model
(HD2AT) for enhancing portfolio-level financial forecasting. |Qian et al,| (2024) extracted multi-
source stock relations and temporal dynamics, and designed the Multi-relational Dynamic Graph



Neural Network (MDGNN) to jointly model evolving inter-stock dependencies for accurate stock
movement prediction.

These graph learning-based models have achieved promising results for stock prediction and invest-
ment. And, increasing studies have adopted HGNNs to model complex relationships among dif-
ferent types of entities in financial markets, aiming to enhance market behavior understanding and
modeling. However, most existing HGNN-based methods fail to effectively process edge features
such as Financial event relationships during training, leading to insufficient utilization of multi-
source heterogeneous financial information. To address this limitation, we propose MEHGT model,
a Multimodal Edge-enhanced Heterogeneous Graph Transformer. The proposed model embeds edge
attributes directly into the computation of attention scores within the multi-head attention mecha-
nism, allowing relation information to influence both message passing and representation learning.
This further facilitates comprehensive understanding of multimodal heterogeneous graph represen-
tation and stock trend forecasting precisely.
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