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Uncovering Capabilities of Model Pruning
in Graph Contrastive Learning
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ABSTRACT
Graph contrastive learning has achieved great success in pre-training

graph neural networks without ground-truth labels. Leading graph

contrastive learning follows the classical scheme of contrastive

learning, forcing model to identify the essential information from

augmented views. However, general augmented views are produced

via random corruption or learning, which inevitably leads to seman-

tics alteration. Although domain knowledge guided augmentations

alleviate this issue, the generated views are domain specific and

undermine the generalization. In this work, motivated by the firm

representation ability of sparse model from pruning, we reformulate

the problem of graph contrastive learning via contrasting different

model versions rather than augmented views. We first theoretically

reveal the superiority of model pruning in contrast to data augmen-

tations. In practice, we take original graph as input and dynamically

generate a perturbed graph encoder to contrast with the original

encoder by pruning its transformation weights. Furthermore, con-

sidering the integrity of node embedding in our method, we are

capable of developing a local contrastive loss to tackle the hard

negative samples that disturb the model training. We extensively

validate our method on various benchmarks regarding graph clas-

sification via unsupervised and transfer learning. Compared to the

state-of-the-art (SOTA) works, better performance can always be

obtained by the proposed method.

CCS CONCEPTS
• Computing methodologies→Artificial intelligence; •Math-
ematics of computing→ Graph algorithms.

KEYWORDS
Graph Contrastive Learning, Model Pruning, Graph Classification

1 INTRODUCTION
In light of the depletion of labeled data and the hardness of annota-

tion, plenty of research attention has been moved from supervised

learning to unsupervised learning [6, 14]. While in the graph do-

main, the same issue exists [17]. Correspondingly, referring to the

design for unlabeled data training in natural language process-

ing [48] and computer vision [14], several solutions have been

dug out through plenty of research efforts and collectively called
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graph contrastive learning, such as GraphCL [51], AD-GCL [36]

and RGCL [24].

In general, graph contrastive learning sticks to the twin-tower ar-

chitecture of contrastive learning [4, 43], in which two augmented

views are generated from the input graph, and the model loss (i.e.,

NT-Xent loss [4]) maximizes the mutual information between the

two output embeddings of the two augmented views. With this

design, the trained model is capable of capturing the essential infor-

mation of graphs [26]. Moreover, researchers have found that the

quality of views influences the performance of contrastive learning

models [38]. Therefore, plenty of research efforts have been devoted

to the generation of effective views that lead to better performance

for graphs through the data augmentation [36, 50].

Contrastive data augmentation on graphs presents a significant

challenge compared to images due to the complex structural infor-

mation and diverse contexts inherent in graph data [8]. Inspecting

prior studies on graph contrastive learning, we can systematize

the two common paradigms for view generation. The first cate-

gory is the random or learnable data corruption, such as the four

types of general augmentations (node dropping, edge perturbation,

attribute masking, and subgraph) in GraphCL [51] and learnable

edge dropping in AD-GCL [36]. Despite the effectiveness of these

graph views on various tasks, the proposed data augmentations

via random corruption or learning suffer from structural damage

and artificially introduced noise, which could alter the fundamen-

tal property of input graphs. Based on predefined sub-structure

substitution rules [35] or contrasted with 3-dimensional geometric

views [25, 32], the second way is to integrate the domain knowledge

to alleviate the issue of semantic alteration with data corruption.

However, the fusion of domain knowledge inevitably undermines

the generalization of the pre-trained model to other domains [24].

To fully leverage the potential of contrastive learning in the

graph domain, it is desirable to develop a graph contrastive learning

model that can preserve semantic information while remaining in-

dependent of domain-specific knowledge. To address this challenge,

we shift our focus from contrastive views to the graph encoder

within the contrastive learning framework. Drawing inspiration

from model compression techniques, we note that the performance

of sparse sub-networks could be comparable to their complete ver-

sions [5, 12], suggesting that pruning may be a viable approach

for graph contrastive learning. Accordingly, we introduce a novel

framework called LAMP that enables Graph Contrastive Learning
viA Model Pruning to remedy these issues in previous works.

The framework of LAMP is shown in Figure 1. LAMP takes the

original graph as model input to prevent semantic information al-

teration from graph corruption. While fostering the model with

the ability to identify the essential information, we employ prun-

ing [12, 15] for perturbation. In particular, since the pruned graph

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Framework of LAMP. One branch takes the original graph as input instead of the augmented view. The other branch
is pruned from the former online and also embeds the original graph. Besides the ubiquitous NT-Xent loss, the graph encoder
is jointly optimized with a local contrastive loss to optimize the hypersphere of contrastive learning.

encoder is always obtained from the latest encoder, the two con-

trastive embeddings will co-evolve, which ensures model conver-

gence. Moreover, considering the hard negative samples that have

different structural properties but output similar graph embedding,

we develop a novel loss to enhance the contrastive learning with the

node embeddings. Despite the simplicity, coupling the two strate-

gies together enable us to perform effective contrastive learning on

graphs with model perturbation. Besides the superior performance

of LAMP in the extensive experiments of unsupervised and transfer

learning for graph classification, we also theoretically explain the

superiority of model pruning compared to data augmentation. The

emerging contributions are elaborated below:

• We reformulate the framework of graph contrastive learn-

ing from model compression, which allows the model pre-

training free from semantic information alteration and pro-

found domain knowledge fusion.

• Convinced by the capability of pruning in representation

learning, we theoretically analyze the superiority of model

pruning compared to data augmentation and present the

instantiation, called LAMP.

• Considering the correspondence of node embeddings in pos-

itive pair samples, we further enhance LAMP with the ability

of handling hard negative samples by a local contrastive loss.

• LAMP suppresses the SOTA competitors through extensive

experiments in unsupervised and transfer learning.

2 RELATEDWORKS
Graph contrastive learning has been broadly adopted for tasks

without ground-truth labels, such as graph classification [24, 51],

node classification [8], and link prediction [54]. Here, we devote

our attention to contrastive learning for graph classification, the

most relevant topic of this work.

2.1 Graph Contrastive Learning
Great success has been achieved by graph contrastive learning in

self-supervised graph representation learning. Among various re-

search, the study of the contrastive view is a key issue in graph

contrastive learning. Recently, based on the data augmentation on

images, numerous works have explored the feasibility of augmen-

tations on graphs [24, 36, 50–52]. While gratifying, the proposed

data augmentations via random perturbation or learning suffer

from structural damage and noisy information [36, 51]. To tackle

this issue, several works have attempted to preserve the graph se-

mantic structure by resolving profound domain knowledge into

augmentations, such as MoCL [35], KCL [7], GraphMVP [25] and

3D-Infomax [32] However, this domain knowledge only exists on

molecules, which significantly limits the generality. Moreover, be-

yond the general contrastive learning framework, DGCL [23] dis-

entangles the graph encoder, and OEPG [47] explores the semantic

structure of datasets. Although they present excellent performance,

they still rely on the graph augmentations and thus are orthogonal

to these works that keep the general contrastive learning frame-

work; put differently, other models can work with the framework

of DGCL and OEPG to produce superior performance. Among re-

cent works, SimGRACE [44] preserves semantics by disturbing the

model weight with Gaussian noise. However, the introduced noise

is data-agnostic, which could degenerate the model performance

when the actual data distribution goes beyond the Gaussian distri-

bution and explain the sub-optimal performance of SimGRACE in

the experiment section.

2.2 Model Pruning
In the early stage, pruning is generally a technique to improvemodel

efficiency, which aims to shrink model size at surprisingly little sac-

rifice of model performance [20], and various pruning techniques

have been proposed and effective for that goal [12, 15, 22]. Recently,
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besides the inherent function of model compression, several works

explored its deeper connection with model generalization [9, 53].

Moreover, the capability of pruning on model memorization has

also been validated with long-tail distribution dataset [18]. In this

paper, we particularly investigate contrastive learning via model

pruning for graph representation learning. Note that, model prun-

ing is first employed in this work to address the issue of semantics

alteration caused by data augmentation.

3 NOTATIONS AND PRELIMINARIES
Before the elaboration of LAMP, here, some preliminary concepts

and notations are given. Let E and V be the sets of edges and

vertices, a simple graph can be formally written as 𝐺 = (V, E).
Graph representation learning. Generally, GNNs based on a

message-passing scheme serve as the graph encoder [10]. A GNN

learns an embedding ℎ𝑣 ∈ R for each node and a vector ℎ𝐺 ∈ R
is produced by a READOUT function for graph 𝐺 . For an 𝐿-layer

GNN, each node vector is decorated with the 𝐿-hop information

from its neighbors. The hidden vector of node 𝑣 in layer 𝑐 can be

obtained by:

ℎ
(𝑐 )
𝑣 = 𝑓

(𝑐 )
𝑈
(ℎ (𝑐-1)𝑣 , 𝑓

(𝑐 )
𝑀
({(ℎ (𝑐-1)𝑣 , ℎ

(𝑐-1)
𝑢 ) |𝑢 ∈ 𝑁 (𝑣)})), (1)

where 𝑓
(𝑐 )
𝑈

aims to update each node vector in current layer, 𝑓
(𝑐 )
𝑀

is the designed function for message-passing on graphs, the first-

order neighbor nodes of 𝑣 is represented as 𝑁 (𝑣), and ℎ (𝑐 )𝑣 denotes

the hidden feature of 𝑣 in the 𝑐-th layer. After 𝐿 iterations, the entire

graph representation can be written as

ℎ𝐺 = 𝑓𝑅 ({ℎ𝑣 |𝑣 ∈ V}), (2)

where 𝑓𝑅 pools the final set of node representations and is generally

a summation or averaging function.

Graph contrastive learning. A typical unsupervised model via

contrastive learning takes two views from one graph as input, and

the two views are produced by two data augmentation operators

and serve as a positive pair. At the phase for pre-training, a GNN-

based encoder is used for structural information modeling of the

input views, and a projection head is further employed to embed the

two views into the same feature space for contrast. Output feature

vectors ℎ1
𝑖
and ℎ2

𝑖
from the same graph are expected to identify

themselves from the others. Thus, the NT-Xent loss [4] is adopted

to achieve this goal via maximizing the consensus of a positive pair:

L𝑖 = − log
𝑒𝑠𝑖𝑚 (ℎ

1

𝑖 ,ℎ
2

𝑖 )/𝜏∑𝑁
𝑗=1, 𝑗≠𝑖 𝑒

𝑠𝑖𝑚 (ℎ1

𝑖
,ℎ2

𝑗
)/𝜏

, (3)

where 𝑁 is the batch size, 𝜏 controls the temperature parameter,

and 𝑠𝑖𝑚(ℎ1, ℎ2) generally refers to a cosine similarity function

ℎ1⊤ℎ2

| |ℎ1 | | · | |ℎ2 | | . In particular, there are two types of negative pairs;

put differently, ℎ1
𝑖
can pair with all ℎ2

𝑗
, and ℎ2

𝑖
can pair with all ℎ1

𝑗
.

The mutual information maximization principle. Graph con-

trastive learning leverages the principle of mutual information

maximization (InfoMax) to enhance the correspondence between

a graph representation and its corresponding views from various

augmentations. The graph representationℎ𝐺 is supposed to contain

the feature underlying 𝐺 , because the representation is expected
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Figure 2: Quantification of structural damage from data aug-
mentation. Percent change in structural entropy of MUTAG
and REDDIT-BINARY after data augmentation (i.e., Edge per-
turbation, Node dropping, and Subgraph with 20% strength
from GraphCL).

to distinguish the graph 𝐺 from others within the same batch. The

principle of mutual information maximization can formally be

InfoMax: max 𝐼 (𝐺 ;ℎ𝐺 ),𝑤ℎ𝑒𝑟𝑒 𝐺 ∼ PG, (4)

where P𝐺 denotes the distribution defined over the graph 𝐺 and

𝐼 (·) refers to the mutual information.

4 METHODOLOGY
In this section, by turning the attention from data augmentation

to model pruning, we bring about the proposed graph contrastive

learning framework, termed LAMP. Before the detailed description,

we first give the motivation from the quantification of structural

damage caused by general graph augmentation.

4.1 Quantification of Structural Damage from
Data Augmentation

In previous works regarding graph contrastive learning, data aug-

mentation is a general technique to help the graph encoder identify

the essential information of input graphs [8, 49, 51]. Despite var-

ious forms, they are mostly built upon the concept of topology

corruption, such as node dropping, edge perturbation, and learn-

able graph generation. Although these works have shown some

extent of effectiveness on the actual tasks, the underlying structural

damage remains, which inevitably leads to semantics alteration and

undermines the model performance.

Now, based on structural entropy [21], a metric for structural

information, we are the first to give the quantitative illustration

of structural damage caused by data augmentations. Give a simple

graph 𝐺 = (V, E), the structural information underlying 𝐺 can be

measured by:

H(𝐺) = −
∑︁
𝑣∈V

𝑔𝑣

𝑣𝑜𝑙 (V) log
𝑔𝑣

𝑣𝑜𝑙 (V) , (5)

in which 𝑣𝑜𝑙 (V) denotes the sum of all node degrees and 𝑔𝑣 is the

node degree of 𝑣 . Among various forms of data augmentation pro-

posed in previous works, here, we give the quantitative illustration

of structural damage by three ubiquitous rules from GraphCL [51],

including subgraph, edge perturbation, and node dropping. In par-

ticular, the augmentation strength is consistent with the setting in
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GraphCL, that is, 20%. The structural damage of graph 𝐺 is mea-

sured by the percent change of its structural entropy. Formally,

given any data augmentation function 𝑡 , the percent change of

structural entropy will be

L𝑆𝐸 = 1 − H(𝑡 (𝐺))H (𝐺) . (6)

The quantitative illustrations of structural damage caused by

three data augmentation rules on a social network dataset (i.e.,

REDDIT-BINARY) and a bioinformatic dataset (i.e., MUTAG) are

shown in Figure 2.
1
The effect of structural damage varies with

the augmentation rules. Specifically, node dropping and subgraph

lead to different degrees of structural damage, and the informa-

tion loss caused by subgraph is the largest and generally over 50%.

Besides the simple information loss, the structure damage composi-

tion of edge perturbation is more complex; put differently, in light

of the distribution of REDDIT-BINARY, edge perturbation even

introduces external data noise with the additional edges, which

further interferes with the model from learning the actual struc-

tural information. Therefore, we naturally wonder: Can we design

a more advanced model with effective contrastive pairs without

structural damage? Next, to tackle our expectations, we present the

superiority of model pruning in contrast to data augmentation.

4.2 Theoretical Superiority of Model Pruning
Through theoretical analysis, in this subsection, we present the

property of graph encoder trained from model pruning.

Theorem 4.1. Suppose the graph encoder 𝑓 is implemented by a
GNN with at least 2 layers and 𝑓 ∗ is the optimal version. Given a
general data augmentation function 𝑡 , the optimal pruned encoder
𝑓 ∗𝑝 satisfies,

1. 𝐼 (𝑓 ∗𝑝 (𝐺);𝑌 ) ≥ 𝐼 (𝑓 ∗ (𝑡 (𝐺));𝑌 );
2. 𝐼 (𝑓 ∗𝑝 (𝐺); 𝑓 ∗ (𝐺)) ≥ 𝐼 (𝑓 ∗ (𝑡1 (𝐺)); 𝑓 ∗ (𝑡2 (𝐺))).

Statement 1 in Theorem 4.1 guarantees a lower bound of the

mutual information between the learned representations and the

labels of the downstream task; put differently, the learned essen-

tial information via the sparse encoder is more than views from

augmentations.

Statement 2 in Theorem 4.1 suggests that the training perfor-

mance of LAMP is better than the models based on augmentations

in the architecture of graph contrastive learning.

Proof. Suppose G is a set of graphs. According to the definition,

𝑓 ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑓 𝐼 (𝑓 (𝐺);𝐺), 𝑓 ∗ should be injective. Given some graph

𝐺 ∈ G,𝐺 ⇒ 𝑓 ∗ (𝐺) is an injective deterministic mapping. Thus, for

any random variable 𝑄 ,

𝐼 (𝑓 ∗ (𝐺);𝑄) = 𝐼 (𝐺 ;𝑄) . (7)

When there is 𝑄 = 𝑌 , we will have,

𝐼 (𝑓 ∗ (𝐺);𝑌 ) = 𝐼 (𝐺 ;𝑌 ) . (8)

1
The quantitative illustrations of other six datasets in unsupervised learning are shown

in Appendix A.

Moreover, in light of theoretically proof in [27], a depth-two

network can be approximated by pruning a random-weighted sub-

network 𝑓 ∗𝑝 as follows:

sup

𝐺∈G
|𝑓 ∗ (𝐺) − 𝑓 ∗𝑝 (𝐺) | ≤ 𝜖. (9)

Accordingly, we have the following proof:

𝐼 (𝑓 ∗𝑝 (𝐺);𝑌 ) − 𝐼 (𝑓 ∗ (𝐺);𝑌 )
=𝐻 (𝑓 ∗𝑝 (𝐺)) + 𝐻 (𝑌 ) − 𝐻 (𝑓 ∗𝑝 (𝐺), 𝑌 )
− 𝐻 (𝑓 ∗ (𝐺)) − 𝐻 (𝑌 ) + 𝐻 (𝑓 ∗ (𝐺), 𝑌 )

=𝐻 (𝑓 ∗𝑝 (𝐺)) − 𝐻 (𝑓 ∗ (𝐺))
− (𝐻 (𝑓 ∗𝑝 (𝐺), 𝑌 ) − 𝐻 (𝑓 ∗ (𝐺), 𝑌 ))

(𝑎)
≤ 2𝜖2, (10)

where (𝑎) is because of the arbitrariness of 𝜖 and the continuity of

the entropy 𝐻 (·). Meanwhile, because 𝜖 can be arbitrarily small,

we can achieve

𝐼 (𝑓 ∗𝑝 (𝐺);𝑌 ) = 𝐼 (𝑓 ∗ (𝐺);𝑌 ) . (11)

Now, introducing the data processing inequality [37] for data

augmentation,

𝐼 (𝑓 ∗ (𝐺);𝑌 ) = 𝐼 (𝐺 ;𝑌 )
≥ 𝐼 (𝑡 (𝐺);𝑌 )
= 𝐼 (𝑓 ∗ (𝑡 (𝐺));𝑌 ). (12)

Combining above equations, we have the statement 1:

𝐼 (𝑓 ∗𝑝 (𝐺);𝑌 ) = 𝐼 (𝑓 ∗ (𝐺);𝑌 ) ≥ 𝐼 (𝑓 ∗ (𝑡 (𝐺));𝑌 ). (13)

Next, we come to proof the second statement,

𝐼 (𝑓 ∗ (𝑡1 (𝐺)); 𝑓 ∗ (𝑡2 (𝐺)))
=𝐼 (𝑓 ∗ (𝑡1 (𝐺)); (𝑓 ∗ (𝑡2 (𝐺)), 𝑌 ))
− 𝐼 (𝑓 ∗ (𝑡1 (𝐺)); (𝑌 |𝑓 ∗ (𝑡2 (𝐺))))
≤𝐼 (𝑓 ∗ (𝑡1 (𝐺)); (𝑓 ∗ (𝑡2 (𝐺)), 𝑌 ))
=𝐼 (𝑓 ∗ (𝑡1 (𝐺));𝑌 )
+ 𝐼 (𝑓 ∗ (𝑡1 (𝐺)); (𝑓 ∗ (𝑡2 (𝐺)) |𝑌 )) . (14)

Then, according to the data processing inequality [37], we move

forward to

𝐼 (𝑓 ∗ (𝑡1 (𝐺));𝑌 ) + 𝐼 (𝑓 ∗ (𝑡1 (𝐺)); (𝑓 ∗ (𝑡2 (𝐺)) |𝑌 ))
≤𝐼 (𝑓 ∗ (𝐺);𝑌 ) + 𝐼 (𝑓 ∗𝑝 (𝑡1 (𝐺)); (𝑓 ∗ (𝑡2 (𝐺)) |𝑌 ))
≤𝐼 (𝑓 ∗ (𝐺);𝑌 ) + 𝐼 (𝑓 ∗𝑝 (𝐺); (𝑓 ∗ (𝐺) |𝑌 ))
=𝐼 (𝑓 ∗𝑝 (𝐺);𝑌 ) + 𝐼 (𝑓 ∗𝑝 (𝐺); (𝑓 ∗ (𝐺) |𝑌 ))
=𝐼 (𝑓 ∗𝑝 (𝐺); (𝑓 ∗ (𝐺), 𝑌 )) . (15)

Finally, for the reason of 𝑓 ∗𝑝 (𝐺) ⊥𝑓 ∗ (𝐺 ) 𝑌 ,

𝐼 (𝑓 ∗𝑝 (𝐺); (𝑓 ∗ (𝐺), 𝑌 ))
=𝐼 (𝑓 ∗𝑝 (𝐺); (𝑓 ∗ (𝐺), 𝑌 )) − 𝐼 (𝑓 ∗𝑝 (𝐺); (𝑌 |𝑓 ∗ (𝐺)))
=𝐼 (𝑓 ∗𝑝 (𝐺); 𝑓 ∗ (𝐺)), (16)

which concludes the proof of the statement 2. □
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(a) Same structure but different
node features.

vs.

(b) Different structure and dif-
ferent node features.

Figure 3: Illustration of hard negative samples. Via contrast-
ing the graph embeddings, the pre-trained model is hard to
distinguish this two kinds of graphs.

4.3 Instantiation of LAMP
With the superiority of pruning in graph contrastive learning, now,

we move from theory to practice. Instead of producing contrastive

pairs via data augmentation, here, we give our model design via

model pruning. Figure 1 general pictures the workflow of LAMP.

As can be seen, LAMP sticks to the twin-tower architecture of

GraphCL [51], while gets rid of its trail-and-error data augmenta-

tion rules. Especially, LAMP feeds the original graph into the dense

graph encoder and its pruned version to contrast their embeddings.

Formally, let 𝐺 = (A,X) be the input graph, A is the adjacency

matrix, and X is the initial node features. For the 𝑙-th layer of graph

encoder, the node representations of 𝐺 via Equation 1 will be:

𝐻 (𝑙 ) = 𝑓
(𝑙 )
𝑈
(𝑓 (𝑙 )
𝑀
(A, 𝐻 (𝑙−1) );𝑊 (𝑙 ) ), (17)

𝐻
(𝑙 )
𝑝 = 𝑓

(𝑙 )
𝑈
(𝑓 (𝑙 )
𝑀
(A, 𝐻 (𝑙−1)𝑝 ); 𝑝 (𝑊 (𝑙 ) )), (18)

where𝑊 (𝑙 ) is the weight matrix of update function 𝑓
(𝑙 )
𝑈

and 𝑝 (·)
is the pruning function on model weight𝑊 .

In practice, we prune the dense graph encoder according to a pre-

defined ratio 𝛾 with the given pruning strategy, that is, the weight

values of𝑊 𝑙
will be masked if they are ranked below𝛾 . In particular,

the sparse degree of the graph encoder can be controlled by tuning

the pruning ratio 𝛾 , which meets various demands of different

datasets. Detailed discussion about the pruning ratio is conducted in

the ablation study. Moreover, to avoid drastic gradient changes and

save computations, the wightmatrix will be pruned at the beginning

of each epoch. Since the sparse encoder is always obtained and

updated from the latest dense version, the two branches will co-

evolve during training.

Remark. To avoid possible confusion, we emphasize that the adop-

tion of pruning is not aimed at enhancing model efficiency, but

rather at boosting the performance of contrastive learning. Further-

more, our approach in this study is not tied to a specific pruning

strategy, but is compatible with any given pruning methods. Specif-

ically, we have implemented our method using two distinct pruning

techniques: magnitude pruning [12] and soft filter pruning [15],

which are referred to as LAMP-Mag and LAMP-Soft, respectively.
Projection head. After obtaining the graph representations via

global pooling, a projection head 𝑔(·) is employed to cast the repre-

sentations to another feature space for contrasting. In the frame-

work of LAMP, a two-layer perceptron is also employed to produce

the graph final representations 𝑧1
𝐺
and 𝑧2

𝐺
,

𝑧1𝐺 = 𝑔(ℎ1𝐺 ); 𝑧2𝐺 = 𝑔(ℎ2𝐺 ) . (19)

Algorithm 1 Pre-training algorithm of LAMP

Input: the training dataset G = {𝐺1,𝐺2, · · · }, graph encoder 𝑓 (·)
with weight matrixW𝑓 , projection head 𝑔(·) with weight matrix

Wℎ , pruning ratio 𝛾 and learning rate 𝑟 .

1: Initialize graph encoder 𝑓 (·).
2: for each epoch do
3: Perform pruning to get 𝑓𝑝 (·) with ratio 𝛾 ;

4: for each mini-batch do
5: Obtain the node representations H1

V and H2

V through the

two graph encoders 𝑓 (·) and 𝑓𝑝 (·);
6: Obtain the graph representations Z1 and Z2 through Equa-

tion 2 and projection head 𝑔(·);
7: Calculate batch loss L based on Equation 21;

8: Update weights:

W′
𝑓
←W𝑓 − 𝑟▽W𝑓

L
W′𝑔 ←W𝑔 − 𝑟▽W𝑔

L
9: end for
10: end for

4.4 Hard Negative Samples
Among the research on contrastive learning, hard negative samples

are quite ubiquitous and have great potential to improve model

performance[29]. However, little attention has been drawn to the

hard negative samples within current contrastive learning for graph

classification. As shown in Figure 3, there are two kinds of hard neg-

ative samples. In Figure 3a, this negative pair has the same topology

but different features. Let ℎ𝑐𝑜𝑙𝑜𝑟 (𝑔 for green, 𝑏 for blue) denote

the node features, the graph representations would be similar after

pooling as 𝑓𝑅 (4×ℎ𝑔 + 𝑓𝑏 ) = 𝑓𝑅 (4×ℎ𝑔 + 𝑓𝑏 ). In Figure 3b, this nega-

tive pair has different topology and node features. Let ℎ𝑏 = 2ℎ𝑔 , the

graph representations would be also similar through summation

or maximization pooling function. Given the common design of

current contrastive learning for graph classification, the model is

encouraged to enlarge the distance of negative pairs via graph rep-

resentations, which may fail with the two kinds of negative samples

in Figure 3 and deteriorate model performance.

Despite the hardness of distinguishing the two kinds of negative

samples from the graph representations, we may be able to spot

some opportunities from the local features. For example, the green

nodes could be effortlessly identified from the blue nodes in Fig-

ure 3a, and the read nodes also have obvious differences compared

to the green and blue nodes in Figure 3b. Therefore, in order to

cultivate the ability of contrastive learning to tackle hard nega-

tive samples, we propose a local contrastive loss with the node

embeddings.

Local Contrastive Loss. Because each node embedding matrix

after graph encoder contains the full set of nodes in original graph,

here, we propose a local contrastive loss to enhance graph learning

from the node level. Our critical insight is that current models lack

the ability to separate the hard negative samples via graph repre-

sentations, while a contrastive angle based on node representations

would be helpful in this scene. Specifically, as the general NT-Xent

loss enforces the dissimilarity among different graphs, we move

forward to generalizing this dissimilarity to nodes. Formally, the
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Table 1: Average accuracies (%) ± Std. of LAMP and comparedmethods under the setting of unsupervised learning. Bold indicates
the best performance over all methods. Underline represents the second best. A.A. refers to the average accuracy over eight
benchmarks. A.R. implies the abbreviation of average rank. The results of baselines are derived from the published works and -
indicates the data missing in the such works.

NCI1 PROTEINS DD MUTAG COLLAB RED-B RED-M5K IMDB-B A.A. A.R.

GL - - - 81.66±2.11 - 77.34±0.18 41.01±0.17 65.87±0.98 - 15.5

WL 80.01±0.50 72.92±0.56 - 80.72±3.00 - 68.82±0.41 46.06±0.21 72.30±3.44 - 12.5

DGK 80.31±0.46 73.30±0.82 - 87.44±2.72 - 78.04±0.39 41.27±0.18 66.96±0.56 - 11.9

node2vec 54.89±1.61 57.49±3.57 - 72.63±10.20 - - - - - 16.7

sub2vec 52.84±1.47 53.03±5.55 - 61.05±15.80 - 71.48±0.41 36.69±0.42 55.26±1.54 - 17.5

graph2vec 73.22±1.81 73.30±2.05 - 83.15±9.25 - 75.78±1.03 47.86±0.26 71.10±0.54 - 13.6

MVGRL - - - 75.40±7.80 - 82.00±1.10 - 63.60±4.20 - 15.7

InfoGraph 76.20±1.06 74.44±0.31 72.85±1.78 89.01±1.13 70.65±1.13 82.50±1.42 53.46±1.03 73.03±0.87 74.02 9.8

GraphCL 77.87±0.41 74.39±0.45 78.62±0.40 86.80±1.34 71.36±1.15 89.53±0.84 55.99±0.28 71.14±0.44 75.71 8.9

JOAO 78.07±0.47 74.55±0.41 77.32±0.54 87.35±1.02 69.50±0.36 85.29±1.35 55.74±0.63 70.21±3.08 74.75 10.6

JOAOv2 78.36±0.53 74.07±1.10 77.40±1.15 87.67±0.79 69.33±0.34 86.42±1.45 56.03±0.27 70.83±0.25 75.01 9.6

AD-GCL 73.91±0.77 73.28±0.47 75.79±0.87 88.74±1.85 72.02±0.56 90.07±0.85 54.33±0.32 70.21±0.68 74.79 10.2

AutoGCL 82.00±0.29 75.80±0.36 77.57±0.60 88.64±1.08 70.12±0.68 88.58±1.49 56.75±0.18 73.30±0.40 76.59 6.0

RGCL 78.14±1.08 75.03±0.43 78.86±0.48 87.66±1.01 70.92±0.65 90.34±0.58 56.38±0.40 71.85±0.84 76.15 6.6

SimGRACE 79.12±0.44 75.35±0.09 77.44±1.11 89.01±1.31 71.72±0.82 89.51±0.89 55.91±0.34 71.30±0.77 76.17 6.9

SEGA 79.00±0.72 76.01±0.42 78.76±0.57 90.21±0.66 74.12±0.47 90.21±0.65 56.13±0.30 73.58±0.44 77.25 4.3

GCS 77.37±0.30 75.02±0.39 77.22±0.30 90.45±0.81 75.56±0.41 92.98±0.28 57.04±0.49 73.43±0.38 77.39 5.0

LAMP-Mag 82.62±0.31 76.75±0.67 79.47±0.97 90.02±1.59 74.62±0.75 90.58±0.46 56.42±0.26 73.46±0.65 77.99 2.8

LAMP-Soft 82.17±0.48 77.34±0.53 80.03±0.85 90.89±1.04 75.96±0.67 91.63±0.55 57.38±0.41 75.14±0.59 78.82 1.3

local contrastive loss can be formulated as:

L𝑣𝑖
𝐿𝑜𝑐𝑎𝑙𝐶

= − log 𝑒
𝑠𝑖𝑚 (ℎ1

𝑣𝑖
,ℎ2

𝑣𝑖
)/𝜏∑G

�̂�≠𝐺

∑ |V
�̂�
|

𝑗=1
𝑒
𝑠𝑖𝑚 (ℎ1

𝑣𝑖
, ˆℎ2

𝑣𝑗
)/𝜏

, (20)

where G refers to a training batch. Note that the local contrastive

loss also has two kinds of negative pairs. In particular, since the node

batch size varies among different datasets, LAMP will randomly

sample a sub-node set of size 𝑁𝑠 for large dataset to avoid high

computation costs. Considering the batch node size in actual model

training, 𝑁𝑠 is fixed to 5,000 in the experiment setting.

Remark. Although the local contrastive loss for hard negative

samples is relatively simple in its presentation, it is not easy to

implement when the two graphs of a positive pair have different

structures due to corruption. This limitation may account for why

previous graph contrastive learning models have overlooked this

approach and consequently produced sub-optimal performance.

Currently, we have presented the main components of the pro-

posed LAMP that aims to help graph contrastive learning free from

structural damage caused by data augmentation and enhance model

training facing hard negative samples. The final objective function

of LAMP for pre-training is

min L = L𝐺 + 𝛼L𝐿𝑜𝑐𝑎𝑙𝐶 , (21)

where L𝐺 is the NT-Xent loss, 𝛼 controls the loss weight. Algo-

rithm 1 reveals the pre-training procedure of LAMP.

5 EXPERIMENTS
In this section, we are devoted to evaluating LAMP with exten-

sive experiments
2
. Under the setting of unsupervised and transfer

learning, LAMP empirically shows its superiority compared to the

SOTA competitors. Ablation studies regarding hyper-parameters

are further conducted to make an in-depth analysis.

5.1 Experimental Setup
Datasets. For unsupervised learning, various benchmarks are adopted

fromTUDataset [28], including COLLAB, REDDIT-BINARY, REDDIT-

MULTI-5K, IMDB-BINARY, NCI1, MUTAG, PROTEINS and DD. For

transfer learning, ZINC15 [33] dataset is adopted for pre-training.

In particular, a subset with two million unlabeled molecular graphs

are sampled from the ZINC15. We employ the eight ubiquitous

benchmarks from the MoleculeNet dataset [42] as the downstream

experiments regarding transfer learning. Further details are shown

in Appendix B.

Learning protocol. Following the learning setting inGraphCL [51],
the corresponding learning protocols are adopted for a fair compar-

ison. (a) In unsupervised representation learning, all data is used for

model pre-training and the learned graph embeddings are then fed

into a non-linear SVM classifier to perform 10-fold cross-validation.

(b) In transfer learning, we first pre-train the model on ZINC15.

Then, we finetune and evaluate the model on MoleculeNet dataset

using the scaffold split scheme [3].

Configuration. To keep in line with GraphCL [51], the same GNN

architectures are employed with their original hyper-parameters

under individual experiment settings. Specifically, in unsupervised

2
The code of LAMP will be public after acceptance.
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Table 2: Average test ROC-AUC (%) ± Std. of LAMP along with baselines on eight downstream benchmarks under the setting of
transfer learning. The results of baselines are derived from the corresponding works. Bold indicates the best performance
among all baselines. Underline gives the second best. Avg. shows the average ROC-AUC over all datasets. A.R. implies the
abbreviation of average rank and - indicates the data missing in the such works.

BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg. A.R.

No Pre-Train 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 71.8±2.5 75.3±1.9 70.1±5.4 66.95 17.5

Infomax 68.8±0.8 75.3±0.6 62.7±0.4 58.4±0.8 69.9±3.0 75.3±2.5 76.0±0.7 75.9±1.6 70.29 15.3

EdgePred 67.3±2.4 76.0±0.6 64.1±0.6 60.4±0.7 64.1±3.7 74.1±2.1 76.3±1.0 79.9±0.9 70.28 12.7

AttrMasking 64.3±2.8 76.7±0.4 64.2±0.5 61.0±0.7 71.8±4.1 74.7±1.4 77.2±1.1 79.3±1.6 69.90 12.3

ContextPred 68.0±2.0 75.7±0.7 63.9±0.6 60.9±0.6 65.9±3.8 75.8±1.7 77.3±1.0 79.6±1.2 70.89 11.3

GraphMAE 72.0±0.6 75.5±0.6 64.1±0.3 60.3±1.1 82.3±1.2 76.3±2.4 77.2±1.0 83.1±0.9 73.85 8.5

GraphMVP 68.5±0.2 74.5±0.4 62.7±0.1 62.3±1.6 79.0±2.5 75.0±1.4 74.8±1.4 76.8±1.1 71.70 14.1

GraphCL 69.68±0.67 73.87±0.66 62.40±0.57 60.53±0.88 75.99±2.65 69.80±2.66 78.47±1.22 75.38±1.44 70.77 14.9

JOAO 70.22±0.98 74.98±0.29 62.94±0.48 59.97±0.79 81.32±2.49 71.66±1.43 76.73±1.23 77.34±0.48 71.89 13.9

JOAOv2 71.39±0.92 74.27±0.62 63.16±0.45 60.49±0.74 80.97±1.64 73.67±1.00 77.51±1.17 75.49±1.27 72.12 12.9

LP-Info 71.40±0.55 74.54±0.45 63.04±0.30 59.70±0.43 74.81±2.73 72.99±2.28 76.96±1.10 80.21±1.36 71.71 13.4

AD-GCL 70.01±1.07 76.54±0.82 63.07±0.72 63.28±0.79 79.78±3.52 72.30±1.61 78.28±0.97 78.51±0.80 72.72 10.3

AutoGCL 73.36±0.77 75.69±0.29 63.47±0.38 62.51±0.63 80.99±3.38 75.83±1.30 78.35±0.64 83.26±1.13 74.18 6.9

RGCL 71.42±0.66 75.20±0.34 63.33±0.17 61.38±0.61 83.38±0.91 76.66±0.99 77.90±0.80 76.03±0.77 73.16 9.0

D-SLA 72.60±0.79 76.81±0.52 64.24±0.50 60.22±1.13 80.17±1.50 76.64±0.91 78.59±0.44 83.81±1.01 74.14 6.3

SimGRACE 71.25±0.86 - 63.36±0.52 60.59±0.96 - - - - - 11.3

SEGA 71.86±1.06 76.72±0.43 65.23±0.91 63.68±0.34 84.99±0.94 76.60±2.45 77.63±1.37 77.07±0.46 74.22 5.9

GCS 71.46±0.46 76.16±0.41 65.35±0.17 64.20±0.35 82.01±1.90 80.45±1.67 80.22±1.37 77.90±0.26 74.72 4.9

LAMP-Mag 74.72±1.24 76.86±0.31 64.92±0.55 64.85±0.73 85.18±2.12 78.91±2.55 80.38±0.75 84.72±1.77 76.32 2.3

LAMP-Soft 75.77±0.76 77.23±0.41 65.87±0.33 64.24±0.68 85.98±1.27 79.50±2.19 81.73±1.25 85.58±1.43 76.99 1.3

learning, GIN [45] with 32 hidden units and 3 layers is set up.

In transfer learning, GIN is used with 5 layers and 300 hidden

dimensions. The pruning ratio for sparse encoder is selected from

5% to 95% with a step of 5%. For local contrastive loss balance, 𝛼 is

tuned among {0.01, 0.1, 1, 10, 100}. Hyper-parameters are selected

by the grid search on the validation sets. Additional details are

shown in the Appendix C.

Pruning strategy. To demonstrate the compatibility of our frame-

work, LAMP, with a variety of pruning methodologies, in this study,

we adopt two distinct pruning techniques for the implementation

of our method: magnitude pruning [12] and soft filter pruning [15],

denoted as LAMP-Mag and LAMP-Soft, respectively.

5.2 Results Compared with SOTAs
Unsupervised learning. The baselines in unsupervised learning

have three categories. The first set is three SOTA kernel-basedmeth-

ods that include GL [31], WL [30], and DGK [46]. The second set

is four heuristic self-supervised methods, including node2vec [11],

sub2vec [1], graph2vec [2], and InfoGraph [34]. The final category

comes from the graph contrastive learning domain, including MV-

GRL [13], GraphCL [51], AD-GCL [36], JOAO [50], AutoGCL [49],

RGCL [24], SimGRACE [44], SEGA [41] and GCS [40].

The classification accuracies of LAMP against the SOTA com-

petitors are shown in Table 1, and a significant performance im-

provement from the disappearance of the data augmentation can

be witnessed as opposed to the baselines. Before the specific per-

formance description of LAMP, here, we first glance at SimGRACE,

which first attempts to transfer the contrastive attention from data

augmentation tomodel perturbation via introducing Gaussian noise

to model weights. Although SimGRACE reveals its effectiveness on

various datasets, the introduced Gaussian noise still degenerates

the model performance; put differently, SimGRACE does not defeat

the models with data augmentations.

We now present a comprehensive analysis of the superior per-

formance of LAMP. As indicated by the final column for average

rank, LAMP-Mag and LAMP-Soft secure the top two positions and

exhibit the highest average accuracies among all baseline models.

Notably, as evidenced by the column for average accuracy, LAMP-

Soft surpasses the second-best model (i.e., GCS) with an accuracy

improvement of 1.43%. Specifically, LAMP-Soft achieves the best

performance on six out of eight benchmarks, while still maintain-

ing the second-best performance on the remaining two datasets.

Although LAMP-Mag is not superior as LAMP-Soft, it achieves the

best performance on the NCI1 dataset and the second-best on three

other datasets. Thus, we can conclude that model pruning may be

a more promising direction for graph contrastive learning.

Transfer learning. Baseline methods in transfer learning include

EdgePred, AttrMsking, ContexPred [17], Infomax [39], JOAO [50],

GraphCL [51], AD-GCL [36], LP-Info [52], GraphMAE [16], Auto-

GCL [49], GraphMVP [25], RGCL [24], D-SLA [19], SimGRACE [44],

SEGA [41] and GCS [40]. A model without pre-train, termed ‘No

Pre-Train’, is also adopted for comparison.

The results of LAMP, along with baselines under the setting of

transfer learning on eight benchmarks, are shown in Table 2. In

summary, the proposedmodels, namely LAMP-Mag and LAMP-Soft,

demonstrate superior efficacy in comparison to preceding studies,

as evidenced by the average ROC-AUC and ranking. Specifically,

LAMP-Soft outperforms all other models on six out of the eight
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Table 3: The effectiveness of local contrastive loss L𝐿𝑜𝑐𝑎𝑙𝐶 .
A.A. is short for average accuracy.

SimGRACE LAMP-Mag w/o L𝐿𝑜𝑐𝑎𝑙𝐶 LAMP-Mag

NCI1 79.12±0.44 80.26±0.58 82.62±0.31
PROTEINS 75.35±0.09 75.73±0.75 76.75±0.67
DD 77.44±1.11 78.44±0.79 79.47±0.97
MUTAG 89.01±1.31 89.88±1.51 90.02±1.59
COLLAB 71.72±0.82 72.65±0.51 74.62±0.75
RED-B 89.51±0.89 90.28±0.49 90.58±0.46
RED-M5K 55.91±0.34 55.69±0.36 56.42±0.26
IMDB-B 71.30±0.77 71.68±0.67 73.46±0.65
A.A. 76.17 76.83 77.99
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Figure 4: Sensitivity w.r.t. pruning ratio 𝛾 .

benchmarks, while securing second place on the remaining two

datasets. LAMP-Mag exhibits optimal performance on the SIDER

benchmark and obtains the second highest performance on five out

of the eight benchmarks. In particular, LAMP-Soft obtains a 2.27%

performance gain in terms of average ROC-AUC compared to the

best baselines (i.e., GCS with a 74.72% average ROC-AUC) and over

10% performance gain compared to the model trained from scratch.

5.3 Ablation Study
Here, we make an in-depth analysis about the performance of

LAMP under the setting of unsupervised learning. In particular, the

magnitude pruning is adopted for ablation study.

Effectiveness of local contrastive loss. Besides the contrastive
angle from the ubiquitous NT-Xent loss for unsupervised learning,

we take another step to help model be capable of handling hard neg-

ative samples from the perspective of nodes. As shown in Table 3,

LAMP-Mag obtains better performance with a 1.16% average accu-

racy gain when decorated with the proposed local contrastive loss,

which suggests the effectiveness of the proposed local loss in ad-

dressing hard negative samples and improving model performance.

In particular, LAMP-Mag w/o L𝐿𝑜𝑐𝑎𝑙𝐶 has an average accuracy of

76.83% on eight benchmarks, which not only outperforms current
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Figure 5: Sensitivity w.r.t. loss balance 𝛼 .

SOTAs for view generation but also defeats SimGRACE which dis-

turbs the model weight with Gaussian noise. Thus, we can reaffirm

the effectiveness of pruning on graph contrastive learning.

Sensitivity regarding pruning ratio. The pruning ratio controls

the information that the sparse encoder captures; thus, a proper

ratio would help the model identify the essential structure of input

graphs. As shown in Figure 4, the datasets in the first row prefer a

lower pruning ratio, while the other datasets would like a sparser

encoder. Moreover, regardless of the optimal pruning ratio, the

performances of all datasets quickly deteriorate when the sparsity

goes above 75%, due to limited capacity.

Sensitivity regarding loss balance. As we have validated the ef-

fectiveness of the proposed local contrastive loss, we further inspect

the influence of its hyper-parameter (i.e., 𝛼) on model performance.

The unsupervised results of LAMP-Mag with candidate 𝛼 on eight

benchmarks are shown in Figure 5. As can be seen, DD and NCI1

show a positive correlation with 𝛼 , while MUTAG is not sensitive

to the choice of 𝛼 , which is consistent with the stable performance

of MUTAG w/o L𝐿𝑜𝑐𝑎𝑙𝐶 in Table 3. The other datasets show a

trade-off within the given selections, and generally obtain the best

performance with 𝛼 around 1.

6 CONCLUSION
In this work, we reformulate the problem of graph contrastive

learning from the angle of model compression. To avoid the loss

of semantics caused by data augmentation, we present a novel

method based on model pruning, termed LAMP, rather than relying

on profound domain knowledge. Before the empirical validation,

we theoretically explain the superiority of model pruning compared

to data augmentation. Extensive experiments under unsupervised

and transfer learning show that LAMP suppresses the current SOTA

methods based on data augmentations. An automatic pruning ratio

and more advanced pruning strategies shed light on the future

research direction.
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