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A  QUANTIFICATION OF STRUCTURAL
DAMAGE FROM DATA AUGMENTATION
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Figure 1: Quantification of structural damage from data aug-
mentation. Percent change in structural entropy after data

augmentation (i.e., Edge perturbation, Node dropping, and
Subgraph with 20% strength from GraphCL).

Data Augmentations on Graphs. Follow the data augmentations
in GraphCL [22], we adopt three types of general data augmenta-
tions for graph-structured data:

e Node dropping. Given the graph G, node dropping will
randomly discard certain portion of vertices along with their

connections. The underlying prior enforced by it is that
missing part of vertices does not affect the semantic meaning
of G. Each node’s dropping probability follows a default i.i.d.
uniform distribution (or any other distribution).

e Edge perturbation. It will perturb the connectivities in
G through randomly adding or dropping certain ratio of
edges. It implies that the semantic meaning of G has certain
robustness to the edge connectivity pattern variances. We
also follow an i.i.d. uniform distribution to drop each edge.

e Subgraph. This one samples a subgraph from G using ran-
dom walk. It assumes that the semantics of G can be much
preserved in its (partial) local structure.

The quantitative illustrations of structural damage caused by
three data augmentation rules on eight datasets are shown in Fig-
ure 1. As can be seen, the effect of structural damage varies with the
augmentation rules. Specifically, node dropping and subgraph lead
to different degrees of structural damage, and the information loss
caused by subgraph is the largest and generally over 50%. Besides
the simple information loss, the structure damage composition of
edge perturbation is more complex; put differently, edge perturba-
tion even introduces external data noise with the additional edges,
which further interferes with the model from learning the actual
structural information.

B SUMMARY OF DATASETS

B.1 Datasets for Unsupervised Learning

A wide variety of datasets from different domains for a range of
graph property prediction tasks are used for our experiments. Here,
we present detailed descriptions of the 8 benchmarks utilized in
this paper. Table 1 shows statistics for datasets.

Social Network Datasets. IMDB-BINARY is derived from the col-
laboration of a movie set. In this dataset, every graph consists of
actors or actresses, and each edge between two nodes represents
their cooperation in a certain movie. Each graph is derived from a
prespecified movie, and its label corresponds to the genre of this
movie. Similarly, COLLAB is also a collaboration dataset but from a
scientific realm, which includes three public collaboration datasets
(i.e., Astro Physics, High Energy Physics and Condensed Matter
Physics). Many researchers from each field form various ego net-
works for the graphs in this benchmark. The label of each graph
is the research field to which the nodes belong. REDDIT-BINARY
and REDDIT-MULTI-5K are balanced datasets, where each graph
corresponds to an online discussion thread and nodes correspond
to users. An edge is drawn between two nodes if at least one of
them responds to another’s comment. The task is to classify each
graph into the community or subreddit to which it belongs.

Small Molecules. NCI1 is a dataset made publicly available by
the National Cancer Institute (NCI) and is a subset of balanced
datasets containing chemical compounds screened for their ability
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Table 1: Statistics for datasets of diverse nature from the benchmark TUDataset.

Dataset #Graphs #Classes Avg. #Nodes Avg. #Edges
Social Networks

COLLAB 5,000 3 74.49 2457.78

REDDIT-BINARY 2,000 2 429.63 497.75

REDDIT-MULTI-5K 4,999 5 508.52 594.87

IMDB-BINARY 1,000 2 19.77 96.53
Small Molecules

NCI1 4,110 2 29.87 32.30

MUTAG 188 2 17.93 19.79
Bioinformatics

PROTEINS 1,113 2 39.06 72.82

DD 1,178 2 284.32 715.66

to suppress or inhibit the growth of a panel of human tumor cell
lines; this dataset possesses 37 discrete labels. MUTAG has seven
kinds of graphs that are derived from 188 mutagenic aromatic and
heteroaromatic nitro compounds. PTC includes 19 discrete labels
and reports the carcinogenicity of 344 chemical compounds for
male and female rats.

Bioinformatic Datasets. DD contains graphs of protein structures.
A node represents an amino acid and edges are constructed if the
distance of two nodes is less than 6. A label denotes whether a
protein is an enzyme or non-enzyme. PROTEINS is a dataset where
the nodes are secondary structure elements (SSEs), and there is an
edge between two nodes if they are neighbors in the given amino
acid sequence or in 3D space. The dataset has 3 discrete labels,
representing helixes, sheets or turns.

B.2 Details of Molecular Datasets

Input graph representation. For simplicity, we use a minimal set
of node and bond features that unambiguously describe the two-
dimensional structure of molecules. We use RDKit [10] to obtain
these features.

o Node features:
- Atom number: 1, 118]
— Chirality tag: {unspecified, tetrahedral cw, tetrahedral ccw,
other}
e Edge features:
- Bond type: {single, double, triple, aromatic}
- Bond direction: {-, endupright, enddownright}

Downstream task datasets. 8 graph classification datasets from
MoleculeNet [20] are used to evaluate model performance.

e BBBP [11]. Blood-brain barrier penetration (membrane per-
meability), involves records of whether a compound carries
the permeability property of penetrating the blood-brain
barrier.

e Tox21 [2]. Toxicity data on 12 biological targets, which has
been used in the 2014 Tox21 Data Challenge and includes
nuclear receptors and stress response pathways.

e ToxCast [15]. Toxicology measurements based on over 600
in vitro high-throughput screenings.

e SIDER [9]. Database of marketed drugs and adverse drug
reactions (ADR), grouped into 27 system organ classes and
also known as the Side Effect Resource.

e ClinTox [6, 13]. Qualitative data classifying drugs approved
by the FDA and those that have failed clinical trials for toxi-
city reasons.

e MUV [5]. Subset of PubChem BioAssay by applying a refined
nearest neighbor analysis, designed for validation of virtual
screening techniques.

e HIV [1]. Experimentally measured abilities to inhibit HIV
replication.

e BACE [18]. Qualitative binding results for a set of inhibitors
of human f-secretase 1.

Details of Dataset Splitting. For molecular prediction tasks, fol-
lowing [14], we cluster molecules by scaffold (molecular graph
substructure) [3], and recombine the clusters by placing the most
common scaffolds in the training set, producing validation and test
sets that contain structurally different molecules. Prior work has
shown that this scaffold split provides a more realistic estimate of
model performance in prospective evaluation compared to random
split [4, 16]. The split for train/validation/test sets is 80%:10%:10%.

C DETAILED EXPERIMENT SETUP

C.1 Settings for Unsupervised Learning

Datasets. Eight benchmarks are adopted from TUDataset [12]
and summarized in Table 1, including IMDB-BINARY, REDDIT-
MULTI-5K, NCI1, MUTAG, PROTEINS, DD, REDDIT-BINARY, and
COLLAB.

Configuration. Hidden dimension is chosen from {32, 64}, and
batch size is chosen from {32, 128}. An Adam optimizer [8] is em-
ployed to minimize the contrastive lose with {0.01,0.005,0.001}
learning rate.

Learning protocols. In unsupervised representation learning [19],
all data is used for model pre-training and a non-linear SVM is
adopted as classifier to perform to perform 10-fold cross-validation
on learned graph embeddings. For graph representation learning,
models are trained 20 epochs and tested every 10 epochs. The 10-
fold evaluation are performed 5 times in total with different random
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Table 2: Datasets statistics summary.

Dataset Category Utilization l #Tasks #Graphs AvgNode Avg.Degree
ZINC15 | Biochemical Molecules | Pre-Training 2,000,000 26.63 57.72
BBBP Biochemical Molecules | Finetuning 2,039 24.06 51.90
Tox21 Biochemical Molecules | Finetuning 12 7,831 18.57 38.58
ToxCast | Biochemical Molecules | Finetuning 617 8,576 18.78 38.52
SIDER | Biochemical Molecules | Finetuning 27 1,427 33.64 70.71
ClinTox | Biochemical Molecules | Finetuning 2 1,477 26.15 55.76
MUV Biochemical Molecules | Finetuning 17 93,087 24.23 52.55
HIV Biochemical Molecules | Finetuning 41,127 25.51 54.93
BACE Biochemical Molecules | Finetuning 1,513 34.08 73.71

seeds as [19]. At last, we report the average accuracy and standard
deviation (%).

C.2 Setting for Transfer Learning

Pre-training dataset. ZINC15 [17] dataset is adopted for pre-
training. In particular, a subset with two million unlabeled molecu-
lar graphs is sampled from the ZINC15.

Pre-training details. In the graph encoder setting in [7], GIN [21]
with five convolutional layers is adopted for message passing. In
particular, the hidden dimension is fixed to 300 across all layers
and a pooling readout function that averages graph nodes is hired
for NT-Xent loss calculation with the scale parameter 7 = 0.1. The
hidden representations at the last layer are injected into the average
pooling function. An Adam optimizer [8] is employed to minimize
the integrated losses produced by the 5-layer GIN encoder. All
training processes will run 100 epochs with a batch size of 256.
Fine-tuning dataset. We employ the eight ubiquitous bench-
marks from the MoleculeNet dataset [20] as the downstream ex-
periments. These benchmarks include a variety of molecular tasks
like physical chemistry, quantum mechanics, physiology, and bio-
physics. For dataset split, the scaffold split scheme [4] is adopted for
train/validation/test set generation. Table 2 summarizes the basic
characteristics of the datasets.

Fine-tuning details. For downstream tasks, a linear layer is stacked
after the pre-trained graph encoders for final property prediction.
The downstream model still employs the Adam optimizer for 100
epochs of fine-tuning. All experiments on each dataset are per-
formed for ten runs with different seeds, and the results are the
averaged ROC-AUC scores (%) + standard deviations. The alterna-
tives of learning rate in pre-training and fine-tuning phases are
{0.0001, 0.001, 0.01}. To be in line with [22], the epochs for pre-
training range from 20 to 100 with a step of 20 epochs.
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