
Supplementary Material for Online Learning under Adversarial
Nonlinear Constraints

A Polyhedral Intersection

Figure S1: Illustration of polyhedral intersection.

We present here a simplified geometric setting of the Assumption 1.2 Part 2, where the time-varying
constraints are linear gt,i(x) = g⊤t,ix.

In the interaction protocol of Assumption 1.2, the learner first commits a decision x1 ∈ BR. Then
the environment selects a feasible set C1 ⊆ Q1 = BR (by Assumption 1.1 Part 3) and reveals to
the learner a cost value f1(x1), a gradient ∇f1(x1), and information for all violated constraints
(g1,i(x1),∇g1,i(x1))

3
i=1. This constraint violation information restricts the adversary to selecting

successive feasible sets Cℓ, for all ℓ ≥ 2, from a polyhedral intersection Q2 = Q1 ∩ S1, where
the cone intersection S1 = {z ∈ Rn : G1(x1)

⊤(z − x1) ≥ 0} and the gradient matrix G1(x1) =
[∇g1,i(x1)]

3
i=1.

In the next iteration, the learner makes an update and commits a decision x2 = x1 + η1v1. Then,
the process is repeated: the environment selects C2 ⊆ Q2, reveals a cost value f2(x2), a gradient
∇f2(x2) and constraint violation information g2,1(x2),∇g2,1(x2). All successive feasible sets Cℓ,
for all ℓ ≥ 3, are restricted to belong to a polyhedral intersection Q3 = Q2 ∩ S2, where the cone
intersection S2 = {z ∈ Rn : G2(x2)

⊤(z−x2) ≥ 0} and the gradient matrix G2(x2) = [∇g2,1(x1)].

B Further Applications

We consider here a system identification and optimal control application where an agent must predict
a sequence of actions to minimize costs and satisfy constraints. Many real-world systems are subject
to wear, tear and drift (e.g., sensors), which naturally leads to non-stationary costs and constraints,
corresponding to slowly time-varying functions ft and {gt,i}mi=1, respectively. Furthermore, it is
common in optimal control to know analytically both the dynamics model and the cost and constraint
functions, so the gradients are naturally available. Assuming access to a constraint violation oracle,
the above scenario can be cast into our online problem formulation. More specifically, in each episode
t, an agent ϕ parameterized by weights θt ∈ Rn generates a sequence of actions {xℓ}Hℓ=1 and upon
their deployment in the environment, receives a cost value ft(θt), gradient ∇ft(θt) and information
for all violated constraints {(gt,i(θt),∇gt,i(θt)}i∈I(θt).
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C Contrasting CVV-Pro and OGD: A Comparative Study

In this section, we compare the runtime performance and regret guarantee of the standard Online
Gradient Descent (OGD) algorithm and our (CVV-Pro) algorithm in the two-player game setting
(defined in Section 4). More concretely, we consider shared constraints of the form Cxx+ Cyy ≤ b.
We report results from numerical simulations with decision dimension n = 1000, m = 100 shared
resource constraints, capacity b = 1.3, T = 2000 iterations, and 5 independently sampled instances
of the two-player game. We report below the results:

Regret: The 25th percentile of OGD has a higher regret around iteration 1400 than the function
5
√
t and stays above it. In contrast, CVV-Pro achieves better regret, with the 75th percentile being

strictly bounded by the function 5
√
t, see Figure S2a.

% Constraints Violation In each iteration, CVV-Pro requires an oracle access only to the currently
violated constraints. The percentage of violated constraints first increases from 0.01% to 57% in the
first four iterations, and then decreases rapidly to plateau at 20%, see Figure S2b.

Runtime: In Figure S2c, we report the average runtime per iteration for computing a projection.
Since CVV-Pro solves the velocity projection problem with a decreasing number of constraints, it
achieves a faster average runtime of 0.11± 0.01s compared to OGD, which requires solving the full
projection problem each time and runs in 0.18± 0.01s. Thus, for the two-player game with shared
constraints, our algorithm CVV-Pro achieves a runtime improvement of around 60% over OGD.
Further, we report in Figure S2d the total cumulative runtime of CVV-Pro and OGD for computing
the projection.

The amount of improvement in execution time is likely to be greater for higher-dimensional problems,
where fewer constraints tend to be active at each iteration. Moreover, there are important situations,
for example if constraints are non-convex, where projections are very difficult to compute (and/or
might not even be well defined). In contrast, the velocity projection step in CCV-Pro is always a
convex problem, regardless of whether the underlying feasible set is convex or not.
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Figure S2: The figure contrasts CVV-Pro and OGD by comparing the resulting regret (a) and
execution time (c,d). Panel (b) shows how the number of violated constraints evolves over time.
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D Proof of Theorem 2.1

In this section, we consider an online optimization problem with time-invariant constraints and
a bounded iterate assumption. The bounded iterate assumption will be removed subsequently in
Section E, which however, will require a more complex analysis.

We restate Theorem 2.1 below for the convenience of the reader.
Theorem D.1 (Structural). Suppose Assumption 1.1 holds and in addition xt ∈ BR for all t ∈
{1, . . . , T}. Then, on input α = LF/R, Algorithm 1 with step sizes ηt = 1

α
√
t

guarantees the
following for all T ≥ 1:

(regret)
∑T

t=1 ft(xt)−minx∈C
∑T

t=1 ft(x) ≤ 18LFR
√
T ;

(feasibility) gi(xt) ≥ −8
[
LG
R + 2βG

]
R2
√
t
, for all t ∈ {1, . . . , T} and i ∈ {1, . . . ,m}.

The rest of this section is devoted to proving the preceding statement.

D.1 Structural Properties

Lemma D.2. Suppose gi is concave for every i ∈ {1, . . . ,m}. Then, for any α > 0 and all x ∈ C
the following holds

max
t≥0

∥vt∥ ≤ α∥x− xt∥+ 2∥∇ft(xt)∥.

In particular, when ft satisfies ∥∇ft(z)∥ ≤ LF for all z ∈ BcR, it follows that ∥vt∥ ≤ (c+ 1)αR+
2LF for any x ∈ BR, xt ∈ BcR, and c > 0.

Proof. By Claim 2.2, we have α(x − xt) ∈ Vα(xt) for every x ∈ C. Combining the triangle
inequality with the fact that vt is an optimal solution of the velocity projection problem in Step 8,
yields

∥vt∥ − ∥∇ft(xt)∥ ≤ ∥vt +∇ft(xt)∥
≤ ∥α(x− xt) +∇ft(xt)∥
≤ α∥x− xt∥+ ∥∇ft(xt)∥.

Using x ∈ BR, xt ∈ BcR and ∥∇ft(xt)∥ ≤ LF , we conclude
∥vt∥ ≤ α∥x− xt∥+ 2∥∇ft(xt)∥ ≤ (c+ 1)αR+ 2LF .

D.2 Cost Regret

Lemma D.3. Suppose Assumption 1.1 holds and xt ∈ BcR for all t ∈ {1, . . . , T} with c ∈ (0, 4].
Let d ≥ 0 be a constant. Then, Algorithm 1 applied with α = LF/R and step sizes ηt = 1

α
√
t+d

,
guarantees the following for all T ≥ 1:

RT =

T∑
t=1

ft(xt)− min
x⋆∈C

T∑
t=1

ft(x
⋆) ≤

√
d+ 1

[
(c+ 3)2 +

1

2
(c+ 1)2

]
LFR

√
T .

In particular, for c = 1 and d = 0 we have RT ≤ 18LFR
√
T .

Proof. We denote an optimal decision in hindsight by x⋆ ∈ argminx∈C
∑T

t=1 ft(x). For any points
x⋆, xt we have ft(xt) − ft(x

⋆) ≤ [∇ft(xt)]
⊤(xt − x⋆), since ft is convex. Summing over the

number of rounds t results in
T∑

t=1

ft(xt)− ft(x
⋆) ≤

T∑
t=1

[∇ft(xt)]
⊤(xt − x⋆).

We proceed by upper bounding the expression [∇ft(xt)]
⊤(xt − x⋆). Using xt+1 = xt + ηtvt and

vt = rt −∇ft(xt), we have

∥xt+1 − x⋆∥2 = ∥xt + ηt (rt −∇ft(xt))− x⋆∥2

= ∥xt − x⋆∥2 + η2t ∥rt −∇ft(xt)∥2 + 2ηt [rt −∇ft(xt)]
⊤
(xt − x⋆).
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Then, Lemma 2.3 gives r⊤t (xt − x⋆) ≤ 0 and thus

[∇ft(xt)]
⊤(xt − x⋆) = r⊤t (xt − x⋆) +

∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

2ηt
+

ηt
2
∥vt∥2

≤ ∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

2ηt
+

ηt
2
∥vt∥2.

Since x⋆ ∈ BR and xt ∈ BcR for all t ∈ {1, . . . , T}, by Lemma D.2 it follows for all t ∈ {1, . . . , T}
that

∥vt∥ ≤ (c+ 1)αR+ 2LF = (c+ 3)LF =: Vα. (S1)
Summing over the whole sequence, using the fact that ηt = 1

α
√
t+d

is a decreasing positive sequence
and applying Claim D.4, x⋆ ∈ BR, xt ∈ BcR, and (S1), yields

2

T∑
t=1

[∇ft(xt)]
⊤(xt − x⋆) ≤

T∑
t=1

∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

ηt
+ ηt∥vt∥2

≤ V2
α

(
T∑

t=1

ηt

)
+

(c+ 1)2R2

ηT

≤ (c+ 3)2L2
F
2

α

√
T + d+ (c+ 1)2LFR

√
T + d

=
[
2(c+ 3)2 + (c+ 1)2

]
LFR

√
T + d,

where last inequality uses
T∑

t=1

ηt =
1

α

T∑
t=1

1√
t+ d

<
1

α

T+d∑
t=1

1√
t
≤ 2

α

√
T + d.

The statement follows by combining the fact that
√
T + d ≤

√
d+ 1

√
T for any d ≥ 0 and all

T ≥ 1, and
T∑

t=1

ft(xt)− ft(x
⋆) ≤

T∑
t=1

[∇ft(xt)]
⊤(xt − x⋆) ≤

√
d+ 1

[
(c+ 3)2 +

1

2
(c+ 1)2

]
LFR

√
T .

Claim D.4 (Series). For any positive sequence {at}T+1
t=1 and any decreasing positive sequence

{ηt}Tt=1, it holds that
T∑

t=1

at − at+1

ηt
≤ A

ηT
, where A := max

t={1,...,T}
at.

Proof. Observe that
T∑

t=1

at − at+1

ηt
=

a1 − a2
η1

+
a2 − a3

η2
+

a3 − a4
η3

+ · · ·+ aT − aT+1

ηT

=
a1
η1

− aT+1

ηT
+

⊤∑
i=2

ai

(
1

ηi
− 1

ηi−1

)
≤ A

ηT
,

where the last inequality follows by
⊤∑
i=2

ai

(
1

ηi
− 1

ηi−1

)
≤ A

⊤∑
i=2

(
1

ηi
− 1

ηi−1

)
= A

(
1

ηT
− 1

η1

)
≤ A

ηT
− a1

η1
.
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D.3 Convergence Rate of Constraint Violations

Lemma D.5 (Convergence Rate of Constraint Violations). Suppose Assumption 1.1 holds and
{xt}t≥1 ∈ BcR with x1 ∈ BR and c ∈ (0, 4]. Then, for any α > 0 and d ≥ 0, step sizes
ηt = 1/(α

√
t+ d) and Vα > 0 such that ∥vt∥ ≤ Vα for all t ≥ 1, it follows for every i ∈ {1, . . . ,m}

and t ≥ 1 that
gi(xt) ≥ −c1ηt,

where

c1 = Vα

[
2LG +

βGVα

α

]
+ Zd and Zd =

(
1− 1√

d+ 1

)√
d+ 2

[
LG

R
+ βG

]
2αR2.

In particular, when Assumption 1.1 holds, {xt}t≥1 ∈ BR, α = LF/R and d = 0, it follows that

gi(xt) ≥ −8

[
LG

R
+ 2βG

]
R2

√
t

for all t ≥ 1.

Proof. The proof is by induction on t. We start with the base case t = 1. The proof proceeds by case
distinction.

Case 1. Suppose i ∈ {1, . . . ,m}\I(x1), i.e., gi(x1) > 0. Then, by Claim D.6 Part ii) we have

gi(x2) ≥ −η2Vα

[
2LG +

VαβG

α
√
1 + d

]
≥ −c1η2.

Case 2. Suppose i ∈ I(x1), i.e., gi(x1) ≤ 0. By combining x1 ∈ BR and gi is concave βG-smooth,
it follows for every x ∈ C ⊆ BR that

gi(x1) ≥ gi(x) +∇gi(x)
T (x1 − x)− βG

2
∥x1 − x∥2

≥ −2LGR− 2βGR
2

= −η1
√
d+ 1

[
LG

R
+ βG

]
2αR2 ≥ −c1η2.

Using ηt = 1/(α
√
t+ d), η1/η2 ≤

√
2 and η21

V2
αβG
2 ≤ η22V2

αβG = η2
V2

αβG
α
√
d+2

, it follows by Claim
D.6 Part i) that

gi(x2) ≥ (1− αη1)gi(x1)− η21
V2
αβG

2

≥ −η2

[(
1− 1√

d+ 1

)√
d+ 2

[
LG

R
+ βG

]
2αR2 +

V2
αβG

α
√
d+ 2

]
≥ −c1η2.

Our inductive hypothesis is gi(xt) ≥ −c1ηt for all i. We now show that it holds for t+ 1.

Case 1. Suppose i ∈ {1, . . . ,m}\I(x1), i.e., gi(xt) > 0. Then by Claim D.6 Part ii)

gi(xt+1) ≥ −ηt+1Vα

[
2LG +

βGVα

α
√
d+ 1

]
≥ −c1ηt+1.

Case 2. Suppose i ∈ I(xt), i.e., gi(xt) ≤ 0. Combining Claim D.6 Part ii) and the inductive
hypothesis we have

gi(xt+1) ≥ (1− αηt)gi(xt)− η2t
V2
αβG

2

≥ −c1ηt + c1αη
2
t − η2t

V2
αβG

2

= −c1ηt+1 + c1ηt+1 − c1ηt + c1αη
2
t − η2t

V2
αβG

2

= −c1ηt+1 + c1ηt

[
ηt+1

ηt
− 1 + αηt − ηt

V2
αβG

2c1

]
.
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Since c1ηt > 0, it suffices to show that

α− ηt − ηt+1

η2t
≥ V2

αβG

c1
(S2)

or equivalently (using ηt =
1

α
√
t+d

for t ≥ 1)

α− α

√
t+ d

t+ d+ 1

(√
t+ d+ 1−

√
t+ d

)
≥ V2

αβG

2c1
.

Straightforward checking shows that maxt≥1

√
t

t+1

(√
t+ 1−

√
t
)
< 1

3 . Hence, inequality (S2) is

implied for c1 ≥ βGV2
α/α and thus gi(xt+1) ≥ −c1ηt+1.

Furthermore, for c = 1 and α = LF/R, by Lemma D.2, we can set Vα = 4LF . Then, for d = 0 we
have gi(xt) ≥ −8

[
LG
R + 2βG

]
R2
√
t

for all t ≥ 1.

Claim D.6 (Constraint Violation). Suppose gi is concave, βG-smooth and satisfies ∥∇gi(x)∥ ≤ LG
for all x ∈ BcR and i ∈ {1, . . . ,m}, where c > 0 is a constant. Suppose further that there exists a
constant Vα > 0 such that xt ∈ BcR and ∥vt∥ ≤ Vα, for all t ≥ 1. Then, for all t ≥ 1 we have

i) gi(xt+1) ≥ (1− αηt)gi(xt)− η2tV2
αβG/2 for every i ∈ I(xt);

ii) gi(xt+1) ≥ −ηt+1Vα

[
2LG + VαβG/(α

√
1 + d)

]
for every i ∈ {1, . . . ,m}\I(xt).

Proof. The proof proceeds by case distinction.

Case 1. Suppose i ∈ I(xt), i.e., gi(xt) ≤ 0. By combining the facts that gi is concave and βG-smooth,
xt+1 = xt + ηtvt and [∇gi(xt)]

⊤vt ≥ −αgi(xt), it follows that

gi(xt+1) ≥ gi(xt) + [∇gi(xt)]
⊤[xt+1 − xt]−

βG

2
∥xt+1 − xt∥22

≥ (1− αηt)gi(xt)− η2tV2
α

βG

2
. (S3)

Case 2. Suppose i ̸∈ I(xt), i.e., gi(xt) > 0. Using ∥∇gi(x)∥ ≤ LG for xt ∈ BcR, we have

[∇gi(xt)]
⊤[xt+1 − xt] ≤ ∥∇gi(xt)∥∥xt+1 − xt∥ ≤ ηtLGVα.

Hence,

gi(xt+1) ≥ gi(xt) + [∇gi(xt)]
⊤[xt+1 − xt]−

βG

2
∥xt+1 − xt∥22

≥ −ηtLGVα − η2tV2
α

βG

2

= −ηt+1
ηt

ηt+1
Vα

[
LG +

ηt
2
VαβG

]
> −ηt+1Vα

[
2LG +

VαβG

α
√
1 + d

]
,

where the last inequality follows by ηt ≤ η1 = 1/(α
√
1 + d) and

max
ℓ≥1

ηℓ
ηℓ+1

≤ max
ℓ≥1

√
ℓ+ 1

ℓ
=

√
2.
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E Guaranteeing a Bounded Decision Sequence

We now show that the second assumption in Theorem 2.1, namely, “xt ∈ BR for all t ∈ {1, . . . , T}”
can be enforced algorithmically. We achieve this by introducing an additional hypersphere constraint
gm+1(xt) =

1
2 [R

2 − ∥xt∥2] that attracts the decision sequence {xt}t≥1 to a hypersphere BR and
guarantees that it always stays inside a hypersphere B4R with a slightly larger radius. Technically, we
modify the velocity polyhedron in Step 3 of Algorithm 1 as follows: V ′

α(xt) = Vα(xt) if ∥x∥ ≤ R,
and otherwise

V ′
α(xt) = {v ∈ Vα(xt) | [∇gm+1(xt)]

⊤v ≥ −αgm+1(xt)}.

We are now ready to state our main algorithmic result for the setting of time-invariant constraints.
Theorem E.1 (Algorithm). Suppose Assumption 1.1 holds. Then, on input R,LF > 0, α = LF/R
and x1 ∈ BR, Algorithm 1 with augmented velocity polyhedron V ′

α(·) and step sizes ηt = 1
α
√
t+15

guarantees the following for all T ≥ 1:

(regret)
∑T

t=1 ft(xt)−minx⋆∈C
∑T

t=1 ft(x
⋆) ≤ 246LFR

√
T ;

(feasibility) gi(xt) ≥ −21
[
LG
R + 3βG

]
R2

√
t+15

, for all t ∈ {1, . . . , T} and i ∈ {1, . . . ,m};

(attraction) gm+1(xt) ≥ −27 R2
√
t+15

for all t ∈ {1, . . . , T}.

In addition, ∥xt∥ ≤ 4R and ∥vt∥ ≤ 7LF , for all t ≥ 1.

To ensure convergence of the hypersphere constraint −min{gm+1(xt), 0} at a rate of O(1/
√
t), we

use an inductive argument similar to Lemma D.5. We note that compared to the simplified setting of
Appendix D, our analysis requires an additional refined inductive argument, which is summarized in
Lemma E.5.

E.1 Hypersphere constraint

Definition E.2. We consider the following hypersphere constraint, parameterized by R > 0,

gm+1(x) =
1

2
[R2 − ∥xt∥2].

By construction, gm+1 is concave and 1-smooth.
Claim E.3. Suppose gi is concave for every i ∈ {1, . . . ,m} such that C ⊆ BR and ft is convex such
that ∥∇ft(x)∥ ≤ LF for all x ∈ BcR, where c > 0 is a constant. Then for any decision xt ∈ BcR, it
holds that

∥vt∥ ≤ α∥xt∥+(αR+ 2LF ) and
1

2
∥vt∥2 < −2α2gm+1(x)+

[
α2R2 + (αR+ 2LF )

2
]
.

Proof. Due to the fact that gm+1 and gi are concave for every i ∈ {1, . . . ,m}, it follows by
Lemma D.2 that

∥vt∥ ≤ 2∥∇ft(xt)∥+ α∥x⋆ − xt∥
≤ α∥xt∥+ αR+ 2LF .

Further, by definition of gm+1(x) we have

1

2
∥vt∥2 ≤ 1

2
[α∥xt∥+ (αR+ 2LF )]

2

≤ α2∥xt∥2 + (αR+ 2LF )
2

= −2α2gm+1(x) +
[
α2R2 + (αR+ 2LF )

2
]
.

Claim E.4. Suppose the assertions in Claim E.3 hold. Let the step sizes be {ηt = 1
α
√
t+15

}t≥1 and
α = LF/R. Then, we have

i) If gm+1(xt) > 0 then gm+1(xt+1) ≥ −ηt · 6LFR; and

ii) If gm+1(xt) ≤ 0 then gm+1(xt+1) ≥
(
1− α

2 ηt
)
gm+1(xt)− η2t 10L

2
F .
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Proof. The proof is by case distinction.

Case 1. Suppose gm+1(xt) > 0. Using ∥xt∥ < R it follows by Claim E.3 that

∥vt∥ ≤ 2 (αR+ LF ) = 4LF .

Using gm+1 is concave and 1-smooth, gm+1(xt) > 0, ∇gm+1(xt) = −xt and ∥xt∥ < R, we have

gm+1(xt+1) ≥ gm+1(xt) +∇gm+1(xt)
⊤(xt+1 − xt)−

1

2
∥xt+1 − xt∥2

≥ −ηtR∥vt∥ −
1

2
η2t ∥vt∥2

≥ −ηt · 6LFR

≥ −ηt+1 · 7LFR,

where we used
1

2
ηt16L

2
F =

8√
t+ 15

LFR ≤ 2LFR.

Case 2. Suppose gm+1(xt) ≤ 0, i.e., ∥xt∥ ≥ R. Using α2R2 + (αR+ 2LF )
2
= 10L2

F , it follows
by Claim E.3 that

1

2
∥vt∥2 < −2α2gm+1(x) + 10L2

F .

Combining gm+1 is concave and 1-smooth, and ∇gm+1(xt)
⊤vt ≥ −αgm+1(xt) yields

gm+1(xt+1) ≥ gm+1(xt) +∇gm+1(xt)
⊤(xt+1 − xt)−

1

2
∥xt+1 − xt∥2

≥ (1− αηt)gm+1(xt)−
1

2
η2t ∥vt∥2

>
(
1− αηt + 2α2η2t

)
gm+1(xt)− η2t 10L

2
F

≥
(
1− α

2
ηt

)
gm+1(xt)− η2t 10L

2
F ,

where the last inequality follows by: −ηtα+2η2tα
2 ≤ −ηt

α
2 , which is implied by ηt =

1
α
√
t+15

.

Lemma E.5 (Main). Suppose the assertions in Claim E.3 hold for c = 4. Given α = LF/R, step
sizes {ηt = 1

α
√
t+15

}t≥1 and an arbitrary initial decision x1 with ∥x1∥ < R, then it holds that

gm+1(xt) ≥ −27
R2

√
t
, ∥xt∥ ≤ 4R, ∥vt∥ ≤ 7LF , for all t ≥ 1. (S4)

Proof. The proof is by induction on t ≥ 1.

Part I) We show first that gm+1(xt+1) ≥ −c0ηt+1, for some c0 > 0. The proof proceeds by case
distinction.

Case 1. Suppose gm+1(xt) > 0, then by Claim E.4 we have

gm+1(xt+1) ≥ −ηt · 6LFR, (implying c0 ≥ 6LFR).

Case 2. Suppose gm+1(xt) ≤ 0. Let A := 10L2
F , then by combining Claim E.4 and the inductive

hypothesis, we have

gm+1(xt+1) ≥
(
1− ηt

α

2

)
gm+1(xt)− η2tA

≥ −
(
1− ηt

α

2

)
c0ηt − η2tA

= −c0ηt −
(
A− α

2
c0

)
η2t

= −c0ηt+1 − c0ηt + c0ηt+1 −
(
A− α

2
c0

)
η2t

= −c0ηt+1 + c0ηt

[
−1 +

ηt+1

ηt
− ηt

(
A

c0
− α

2

)]
.

8



Since c0ηt > 0, it suffices to show that

−1 +
ηt+1

ηt
− ηt

(
A

c0
− α

2

)
≥ 0 ⇐⇒ α

2
− ηt − ηt+1

η2t
≥ A

c0
.

The previous condition is equivalent to (using ηt =
1

α
√
t+15

for t ≥ 1)

α

[
1

2
−

√
t+ 15√
t+ 16

[√
t+ 16−

√
t+ 15

]]
≥ A

c0
.

Straightforward checking shows that maxt≥16

√
t

t+1

(√
t+ 1−

√
t
)
< 0.12 and thus

c0 ≥ 2.7
A

α
= 27LFR.

Hence, for c0 = 27LFR it holds that gm+1(xt+1) ≥ −c0ηt+1. We set c0 to the maximum over the
preceding two case, i.e.,

c0 := max {7LFR, 27LFR} ,
and obtain

gm+1(xt) ≥ −c0ηt = − 27R2

√
t+ 15

.

Part II) We now show that ∥xt+1∥ ≤ 4R. Combining Part I) and the definition of step size
ηt =

1
α
√
t+15

, we have

1

2

[
R2 − ∥xt+1∥2

]
= gm+1(xt+1) ≥ −c0ηt+1 ≥ −c0η1 = − c0

4α

and thus
∥xt+1∥2 ≤ R2 +

c0
2α

< 15R2 < (4R)2.

Part III) By Claim E.3, it follows that

∥vt+1∥ ≤ LF

R
∥xt+1∥+ 3LF < 7LF .

E.2 Concluding Remarks

By Lemma E.5, the decision sequence {xt}t≥1 is attracted to the hypersphere BR and always stays
inside a slightly larger hypersphere B4R.

Then, by Lemma D.3 applied with c = 4, d = 15, α = LF/R and step size ηt = 1/(α
√
t+ d) we

obtain

RegretT ≤
√
15 + 1

[
(4 + 3)2 +

1

2
(4 + 1)2

]
LFR

√
T

= 246LFR
√
T .

Moreover, by Lemma D.5, we have Zd = 3
2

√
17
[
LG
R + βG

]
LFR and

c1 = Vα

[
2LG +

βGVα

α

]
+ Zd ≤ 21

[
LG

R
+ 3βG

]
LFR.

Hence, the convergence rate to the feasible C satisfies for every t ≥ 1 and i ∈ {1, . . . ,m}

gi(xt) ≥ −c1ηt ≥ −21

[
LG

R
+ 3βG

]
R2

√
t+ 15

.
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F Proof of Theorem 3.3

In this section, we consider an online optimization problem with adversarially generated time-varying
constraints. More precisely, at each time step t, the learner receives partial information on the current
cost ft and feasible set Ct, and seeks to minimize (1). To make this problem well posed, we restrict
the environment such that each feasible set Ct is contained in Qt (see Section 1) and the rate of
change between consecutive time-varying constraints decreases over time. We quantify a sufficient
rate of decay in Assumption 3.1, which we restate below for the convenience of the reader.
Assumption F.1 (TVC Decay Rate). We assume that the adversarially generated sequence {gt}t≥1

of time-varying constraints are such that for every x ∈ B4R and all t ≥ 1, the following holds
∥gt+1(x)− gt(x)∥∞ ≤ 98

t+16

[
LG
R + 3βG

]
R2.

We note that Assumption F.1 essentially only requires ∥gt+1(x) − gt(x)∥∞ ≤ O(1/t), as R can
be chosen large enough such that the bound is satisfied. Of course, R will appear in our regret and
feasibility bounds, but it will not affect the dependence on t or T (up to constant factors).

We restate Theorem 3.3 below for the convenience of the reader.
Theorem F.2 (Time-Varying Constraints). Suppose the functions {ft, gt}t≥1 satisfy Assump-
tions 1.1, 1.2 and F.1. Then, on input R,LF > 0 and x1 ∈ BR, Algorithm 1 applied with α = LF/R,
augmented velocity polyhedron V ′

α(·) and step sizes ηt = 1
α
√
t+15

guarantees the following for all
T ≥ 1:

(regret)
∑T

t=1 ft(xt)−minx⋆∈C
∑T

t=1 ft(x
⋆) ≤ 246LFR

√
T ;

(feasibility) gt,i(xt) ≥ −265
[
LG
R + 4βG

]
R2

√
t+15

, for all t ∈ {1, . . . , T} and i ∈ {1, . . . ,m};

(attraction) gm+1(xt) ≥ −27 R2
√
t+15

for all t ∈ {1, . . . , T}.

Outline This section is organized as follows. In Subsection F.1, we introduce a key geometric
property that allows us to generalize the standard online gradient descent analysis to the setting
of time-varying constraints. In Subsection F.2, we give an overview of our proof approach for
Theorem 3.3. In Subsection F.3, we present the analysis that quantifies the convergence rate to the
feasible set for the setting of slowly time-varying constraints. Finally, in Subsection F.4, we give an
important special case, slightly generalizing Lemma 3.2, for which Assumption F.1 is satisfied.

F.1 Key Geometric Property

Our regret analysis builds upon the following key geometric property that generalizes Lemma 2.3 to
time-varying constraints. We show that for any subset CT of the polyhedral intersection QT , every
decision x ∈ CT satisfies the normal cone constraint −r⊤t (x− xt) ≤ 0, for every pair (xt, rt) in the
decision sequence {(xt, rt)}Tt=1 up to step T . As a result, a similar argument as in (2) yields O(

√
T )

regret in the time-varying constraint setting.
Lemma F.3 (Polyhedral Intersection). Let CT be any subset of the polyhedral intersection QT . Then,
every decision x ∈ CT satisfies the normal cone constraint −r⊤t (x− xt) ≤ 0, ∀t ∈ {1, . . . , T}.

Proof. Using S0 = Rn, CT is contained in ∩T−1
t=1 {x ∈ Rn | G(xt)

⊤(x − xt) ≥ 0}. Since x ∈ CT ,
it follows by Lemma 2.3 that r⊤T (x − xT ) ≤ 0. The proof proceeds by case distinction. Let t ∈
{1, . . . , T−1} be arbitrary. Suppose xt ∈ Ct, then by Part 1 in the proof of Lemma 2.3 we have rt = 0.
Suppose xt ̸∈ Ct, then x ∈ CT implies G(xt)

⊤(x−xt) ≥ 0 or equivalently ∇gt,i(xt)
⊤(x−xt) ≥ 0

for all i ∈ I(xt). Since vt ∈ Vα(xt), it follows that v(x) = vt + x − xt ∈ Vα(xt). Moreover,
the vector −rt belongs to the normal cone NVα(xt)(vt), which implies −r⊤t (v − vt) ≤ 0 for all
v ∈ Vα(xt). In particular, for v(x) we have −r⊤t (x− xt) ≤ 0.
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F.2 Proof Overview of Theorem 3.3

By Assumption 1.1, the slowly time-varying constraints gt,i(x) are concave and βG-smooth such
that ∥∇gt,i(x)∥ ≤ LG for all x ∈ B4R, t ≥ 1 and i ∈ {1, . . . ,m}. By construction, see Lemma E.5,
ηt = 1/(α

√
t+ 15), α = LF/R and Vα = 7LF implies that ηt+1Vα = 7R/

√
t+ 16. We note that

Lemma E.5 still holds for time-varying constraints, which implies ∥xt∥ ≤ 4R and ∥vt∥ ≤ 7LF .

Further, by Assumption F.1 we have for every x ∈ B4R, t ≥ 1 and i ∈ {1, . . . ,m} that

|gt+1,i(x)− gt,i(x)| ≤
98

t+ 16

[
LG

R
+ 3βG

]
R2 = 2η2t+1

[
LG

R
+ 3βG

]
V2
α. (S5)

Then, applying the preceding inequality and using similar arguments as in Part 2) of Section 2.5, we
give in Corollary F.5 bounds on the slowly time-varying constraints gt,i(x) from below. In particular,
we show that

gt+1,i(xt+1) ≥ (1− αηt)gt,i(xt)− η2t

[
2
LG

R
+ 7βG

]
V2
α for all i ∈ I(xt),

and

gt+1,i(xt+1) ≥ −ηt+17Vα

[
LG +

βGVα

4α

]
for all i ∈ {1, . . . ,m}\I(xt).

Using a similar inductive argument as in Lemma D.5, we show in Lemma F.4 that in the setting of
slowly time-varying constraints, the following feasibility convergence rate holds

gt,i(xt) ≥ −
[
265

LG

R
+ 927βG

]
R2

√
t+ 15

, for all t ∈ {1, . . . , T} and i ∈ {1, . . . ,m}.

Then, the regret and the attraction to the feasible sets follow as in Theorem E.1.

F.3 Slowly Time-Varying Constraints

Lemma F.4 (Slowly TVC). Suppose Assumption 1.1 holds, x1 ∈ BR, α = LF/R and step sizes
ηt = 1/(α

√
t+ 15). Then, for every i ∈ {1, . . . ,m} and T ≥ 1 we have

gt,i(xt) ≥ −
[
265

LG

R
+ 927βG

]
R2

√
t+ 15

, for all t ∈ {1, . . . , T} and i ∈ {1, . . . ,m}.

Proof. The proof is by induction on t. We start with the base case t = 1. The proof proceeds by case
distinction.

Case 1. Suppose i ∈ {1, . . . ,m}\I(x1), i.e., g1,i(x1) > 0. Then, by Corollary F.5 Part ii) we have

g2,i(x2) ≥ −η27Vα

[
LG +

βGVα

4α

]
≥ −η2

[
49

LG

R
+ 86βG

]
LFR.

Case 2. Suppose i ∈ I(x1), i.e., g1,i(x1) ≤ 0. By combining x1 ∈ BR and g1,i is concave
βG-smooth, it follows for every x ∈ C1 ⊆ BR that

g1,i(x1) ≥ g1,i(x) +∇g1,i(x)
T (x1 − x)− βG

2
∥x1 − x∥2

≥ −2LGR− 2βGR
2

= −η1

[
8
LG

R
+ 8βG

]
LFR.

Using ηt = 1/(α
√
t+ 15) and η1/η2 ≤

√
2, it follows that

(1− αη1)g1,i(x1) ≥ −η1

[
LG

R
+ βG

]
6LFR ≥ −η2

[
9
LG

R
+ 9βG

]
LFR

and

η21

[
2
LG

R
+ 7βG

]
V2
α ≤ η22

[
4
LG

R
+ 14βG

]
V2
α ≤ η2

[
49

LG

R
+ 172βG

]
LFR.
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Then, by Corollary F.5 Part i) we have

g2,i(x2) ≥ (1− αη1)g1,i(x1)− η21

[
2
LG

R
+ 7βG

]
V2
α

≥ −η2

[
58

LG

R
+ 181βG

]
LFR.

Our inductive hypothesis is gt,i(xt) ≥ −c2ηt for all i. We now show that it holds for t+ 1.

Case 1. Suppose i ∈ {1, . . . ,m}\I(x1), i.e., gi(xt) > 0. Then by Corollary F.5 ii)

gt+1,i(xt+1) ≥ −ηt+17Vα

[
LG +

βGVα

4α

]
≥ −ηt+1

[
49

LG

R
+ 86βG

]
LFR.

Case 2. Suppose i ∈ I(xt), i.e., gi(xt) ≤ 0. Let A =
[
2LG

R + 7βG

]
V2
α. By combining Corollary F.5

Part i), the inductive hypothesis and using similar arguments as in the proof of Lemma E.5 Case 2,
yields

gt+1,i(xt+1) ≥ −c2ηt+1, where c2 = 2.7
A

α
=

[
265

LG

R
+ 927βG

]
LFR.

The feasibility convergence rate is then given by

gt,i(xt) ≥ −
[
265

LG

R
+ 927βG

]
R2

√
t+ 15

.

Corollary F.5. Suppose Assumptions 1.1 and Assumption F.1 hold. Let α = LF/R, Vα = 7LF and
step sizes ηt = 1/(α

√
t+ 15). Then, for every t ≥ 1 we have

i) gt+1,i(xt+1) ≥ (1− αηt)gt,i(xt)− η2t
[
2LG

R + 7βG
]
V2
α for all i ∈ I(xt); and

ii) gt+1,i(xt+1) ≥ −ηt+17Vα

[
LG + βGVα

4α

]
for all i ∈ {1, . . . ,m}\I(xt).

Proof. Combining Assumption F.1 and (S5) gives

gt+1,i(xt+1) ≥ gt,i(xt+1)− 2η2t+1

[
LG

R
+ 3βG

]
V2
α.

Then, by Claim D.6, it follows for every i ∈ I(xt) that

gt+1,i(xt+1) ≥ gt,i(xt+1)− 2η2t+1

[
LG

R
+ 3βG

]
V2
α.

≥ (1− αηt)gt,i(xt)− η2t
V2
αβG

2
− η2t

[
2
LG

R
+ 6βG

]
V2
α

> (1− αηt)gt,i(xt)− η2t

[
2
LG

R
+ 7βG

]
V2
α,

and for every i ∈ {1, . . . ,m}\I(xt) that

gt+1,i(xt+1) ≥ gt,i(xt+1)− 2η2t+1

[
LG

R
+ 3βG

]
V2
α

≥ −ηt+1Vα

[
2LG +

βGVα

4α

]
− ηt+1Vα

[
LGVα

2αR
+

3βGVα

2α

]
≥ −ηt+17Vα

[
LG +

βGVα

4α

]
.

where we used that α = LF/R and Vα = 7LF implies LGVα

Rα = 7LG .
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F.4 Average Time-Varying Constraints

An important special case where Assumption F.1 is satisfied, is summarized in the following slightly
more general version of Lemma 3.2.

Lemma F.6. Suppose the functions g̃t,i satisfy Assumption 1.1 and in addition there is a decision
xt,i ∈ BR such that |g̃t,i(xt,i)| ≤ 1

2

[
LG
R + 3βG

]
R2, for every t ≥ 1 and i ∈ {1, . . . ,m}. Then the

following average time-varying constraints, satisfy Assumption 1.1 and Assumption F.1:

gt,i(x) :=
1

t

t∑
ℓ=1

g̃ℓ,i(x) ∈ Rm. (S6)

The rest of this subsection is devoted to proving Lemma F.6. We achieve this in two steps. We start
by showing in Lemma F.7 that the average time-varying constraints satisfy Assumption 1.1, and then
in Lemma F.8 we demonstrate that they also satisfy Assumption F.1.

Lemma F.7. Suppose g̃t,i is concave βG-smooth such that ∥∇g̃t,i(x)∥ ≤ LG for all x ∈ B4R, t ≥ 1
and i ∈ {1, . . . ,m}. Then, the average function

gt,i(x) :=
1

t

t∑
ℓ=1

g̃ℓ,i(x)

is concave and βG-smooth and ∥∇gt,i(x)∥ ≤ LG holds for all x ∈ B4R, t ≥ 1 and i ∈ {1, . . . ,m}.

Proof. By assumption, each g̃ℓ,i is concave and βG-smooth, which implies

g̃ℓ,i(xt+1) ≥ g̃ℓ,i(xt) + [∇g̃ℓ,i(xt)]
⊤[xt+1 − xt]−

βG

2
∥xt+1 − xt∥2.

Summing over all ℓ ∈ {1, ..., t} yields

1

t

t∑
ℓ=1

g̃ℓ,i(xt+1) ≥
1

t

t∑
ℓ=1

g̃ℓ,i(xt) +
[1
t

t∑
ℓ=1

∇g̃ℓ,i(xt)
]⊤

[xt+1 − xt]−
1

t

t∑
ℓ=1

βG

2
∥xt+1 − xt∥2,

since 1
t

∑t
ℓ=1 ∇g̃ℓ,i(x) = ∇gt,i(x), which is equivalent to

gt,i(xt+1) ≥ gt,i(xt) + [∇gt,i(x)]
⊤[xt+1 − xt]−

βG

2
∥xt+1 − xt∥22.

Hence, gt,i is concave and βG-smooth.

Moreover, since ∥∇g̃t,i(x)∥ ≤ LG for all x ∈ B4R, we have

∥∇gt,i(x)∥ =

∥∥∥∥∥1t
t∑

ℓ=1

∇g̃ℓ,i(x)

∥∥∥∥∥ ≤ 1

t

t∑
ℓ=1

∥∇g̃ℓ,i(x)∥ ≤ LG .

We show next that the average time-varying constraints satisfy Assumption F.1.

Lemma F.8 (Average TVC). Suppose g̃t,i is concave βG-smooth such that ∥∇g̃t,i(x)∥ ≤ LG for all
x ∈ B4R, t ≥ 1 and i ∈ {1, . . . ,m}. Further, suppose for every t ≥ 1 and i ∈ {1, . . . ,m}, there
exists a decision xt,i ∈ BR such that

|g̃t,i(xt,i)| ≤
1

2

[
LG

R
+ 3βG

]
R2. (S7)

Then, for α = LF/R, step sizes ηt = 1/(α
√
t+ 15) and Vα = 7LF , it holds for every x ∈ B4R that

|gt+1,i(x)− gt,i(x)| ≤ 2η2t+1

[
LG

R
+ 3βG

]
V2
α.
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Proof. Using the inequality 1
t+1 ≤ 17

2
1

t+16 for every t ≥ 1 and η2t+1 = 1/(α2(t+ 16)), it follows
by construction that

|gt+1,i(x)− gt,i(x)| =

∣∣∣∣ 1

t+ 1
g̃t+1,i(x) +

t

t+ 1
gt,i(x)− gt,i(x)

∣∣∣∣
=

1

t+ 1
|g̃t+1,i(x)− gt,i(x)|

=
1

t+ 1

1

t

∣∣∣∣∣
t∑

ℓ=1

g̃t+1,i(x)− g̃ℓ,i(x)

∣∣∣∣∣
≤ η2t+1

17

2
α2 · 1

t

t∑
ℓ=1

|g̃t+1,i(x)− g̃ℓ,i(x)| . (S8)

By triangle inequality |g̃t+1,i(x)− g̃ℓ,i(x)| ≤ |g̃t+1,i(x)|+ |g̃ℓ,i(x)| and thus it suffices to bound the
term |g̃t,i(x)| for every t ≥ 1, i ∈ {1, . . . ,m} and x ∈ B4R.

By assumption, x ∈ B4R and there is xt,i ∈ BR satisfying inequality (S7). Further, g̃t,i is concave,
which implies

g̃t,i(x)− g̃t,i(xt,i) ≤ [∇g̃t,i(xt,i)]
⊤[x− xt,i] ≤ 5LGR

and the fact that g̃t,i is concave βG-smooth yields

g̃t,i(x)− g̃t,i(xt,i) ≥ [∇g̃t,i(xt,i)]
⊤[x− xt,i]−

βG

2
∥xt,i − x∥2

≥ −5

[
LG

R
+ 3βG

]
R2.

Further, by combining
∣∣g̃t,i(x) − g̃t,i(xt,i)

∣∣ ≤ 5
[
LG
R + 3βG

]
R2, triangle inequality and assump-

tion (S7), we obtain for every x ∈ B4R that

|g̃t,i(x)| = |g̃t,i(x)− g̃t,i(xt,i) + g̃t,i(xt,i)|
≤ |g̃t,i(x)− g̃t,i(xt,i)|+ |g̃t,i(xt,i)|

≤ 11

2

[
LG

R
+ 3βG

]
R2.

The statement follows by combining α = LF/R, Vα = 7LF , (S8) and

|gt+1,i(x)− gt,i(x)| ≤ η2t+1

17

2
α2 · 1

t

t∑
ℓ=1

|g̃t+1,i(x)− g̃ℓ,i(x)|

≤ η2t+1

[
LG

R
+ 3βG

]
11

2
· 17α2R2

< 2η2t+1

[
LG

R
+ 3βG

]
V2
α.
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