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1 DATASET CONSTRUCTION
To assess the effectiveness of our alignment-based objectives, we
construct a concise yet robust dataset named GOAL2K for fine-
tuning our model. In this section, we provide a detailed description
of the dataset construction process, which includes three processes:
prompts collection, image generation, and layout annotation.

1.1 Prompts Collection
GOAL2K comprises a total of 2K high-quality and semantically accu-
rate text-image pairs with layout annotations. Specifically, GOAL2K
includes 1,000 template-based prompts and 1,000 natural prompts.
To design template-based prompts, we initially selected 80 classes
from the COCO [7] dataset and devised various templates covering
different categories such as color assignment, spatial relationship,
and object counting.

• For the color assignment task, we begin by utilizing the
concept A scene with a [color] [object], where the color is
randomly selected from a predefined list (red, orange, yel-
low, green, blue, purple, pink, brown, black, white, and gray).
Then, we generate complete prompts by using concept con-
junctions to connect 1 to 5 objects with the word ’and’.

• For the spatial relationship task, we use the template prompt
A scene with [object name 1] on the [location1] and [object
name2] on the [location2], where the location is chosen from
left, right, top, and bottom.

• For the object counting task, we employ the template prompt
A scene with [number] [object name], where the number
ranges from 1 to 5.

To ensure the fluency and grammatical correctness of the gener-
ated prompts, we employ GPT-4 [1] to generate prompts based on
the provided templates and objects. This results in a total set of 1,000
template-based prompts, consisting of 400 prompts for color as-
signment, 300 for spatial relationships, and 300 for object counting.
The instructions provided to GPT-4 [1] to generate template-based
prompts for different categories are shown in Table 1.

For natural prompts, we directly select 1000 captions from the
COCO [7] dataset containing 1 to 6 objects. Specifically, we include
200 prompts mentioning colors, 261 prompts containing spatial
relations (e.g., top, right, left, side, next), and 239 prompts involving
specific numbers. Additionally, we randomly add 300 extra prompts
from COCO [7] dataset to enhance diversity. Table 2 summarizes
our dataset statistics with examples for different categories.

1.2 Image Generation
To ensure the high quality and semantic accuracy of the images
in GOAL2K, we utilize the state-of-the-art model DALLE-3 [11]
to generate images of size 1024 × 1024 for the training set, which
are then resized to 512 × 512 as input for the model. The images
generated by DALLE-3 exhibit remarkable proficiency in following
instructions and demonstrating creativity.

Figure 1: Distribution of object number of bounding boxes
in an image for GOAL2K.

1.3 Layout Annotation
In our work, we utilize GroundingDINO [8] to generate layout
annotations. Then, we manually verify the generated image-text
pairs along with the layout annotations to ensure their fidelity to
accurate semantic information. We show the distribution of the
object number of bounding boxes in an image in Figure 1. The
number of bounding boxes in an image ranges from 1 to 6, and the
average number of bounding boxes per image in GOAL2K is 3.22.
Figure 2 visualizes the data in GOAL2K. A single data of GOAL2K
contains the prompt, the input image, and the layout conditions.

2 PROMPTS FOR LAYOUT PLANNING
In our work, given that manually annotating layouts are costly,
we utilize GPT-4 [1] for layout planning during inference. The
layout generated by GPT-4 consists of a bounding box for each
foreground object, represented by coordinates in the (x, y, width,
height) format, and a brief descriptive phrase corresponding to each
bounding box. As shown in Table 3, the complete prompt utilized
for layout planning consists of two components: basic instructions
and in-context learning examples. The basic instructions indicate
the role of the large language model (LLM) and the particular task
we aim for the model to execute. Subsequently, following [2], we
provide the LLMwith several in-context learning examples to guide
the model towards improved performance and proper formatting.
In our work, we provide five examples (5-shot) for layout planning.

3 EXPERIMENTAL RESULTS
3.1 Effect of Distance Function
In ourwork, we employ discriminative semantic alignment (DSAlign)
to ensure low-level semantic alignment by minimizing the spherical
distance between the embeddings of the target region and the cor-
responding phrase. To investigate the effects of distance functions
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Table 1: The instructions provided to GPT-4 to generate template-based prompts for different tasks.

Task Instrcution of GPT-4

Color assignment

You are an intelligent prompts generator. Your task is to generate prompts for the color assignment task based on the
provided examples. Color in the generated prompts can be selected from a predefined list (red, orange, yellow, green,
blue, purple, pink, brown, black, white, gray, silver, violet gold). Note that objects in the generated prompts should be
classes of the COCO dataset. Please refer to examples below for the desired format.
Templates: A scene with a [color1] [object 1].
Examples:
1. A scene with a pink stop sign.
2. A scene with an orange tennis racket and a gray bear.
3. A scene with a red vase and a yellow backpack and black elephant.
4. A scene with a red tie and an blue bed and a blue bowl and a red dog.
5. A scene with a blue giraffe and a purple sheep and a white baseball bat and a green motorcycle and a white cup.

Spatial relationship

You are an intelligent prompts generator. Your task is to generate prompts for the spatial relationship task based on
the provided examples. Location in the generated prompts can be selected from a predefined list (left, right, top, and
bottom). Note that objects in the generated prompts should be classes of the COCO dataset. Please refer to the exam-
ple below for the desired format.
Templates: A scene with [object name 1] on the [location1] and [object name2] on the [location2].
Example: A scene with a cat on the left and a dog on the right.

Object counting

You are an intelligent prompts generator. Your task is to generate prompts for the counting task based on the provi-
ded examples. The number in the generated prompts ranges from 1 to 5. Note that objects in the generated prompts sh-
ould be classes of the COCO dataset. Please refer to the example below for the desired format.
Templates: A scene with [number] [object name 1].
Example: A scene with two cats.

Table 2: Dataset statistics and examples of the GOAL2K.

Task Type Number Example Prompt

Color assignment Template-based 400 A scene with a purple cup and a red book.
Natural 200 A red painted wall is against a television.

Spatial relationship Template-based 300 A dog on the top and a chair on the bottom.
Natural 261 A cat sitting on a counter top next to a stove below an oven mitt.

Object counting Template-based 300 A scene with three chairs.
Natural 239 A thick piece of pizza with two mugs of beer.

Others Natural 300 Bench and window with shutters with bricked wall.
Total - 2,000 -

Table 3: Full prompt to the GPT-4 for layout planning.

You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to
generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene.
The images are of size 512 × 512. The top-left corner has coordinates [0, 0]. The bottom-right corner has coordinates [512, 512].
The bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (ob-
ject name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object (i.e., start the ob-
ject name with "a" or "an" if possible). If needed, you can make reasonable guesses.
Please refer to the example below for the desired format.
Caption: A green bench and a blue bowl
Objects: [(’a green bench’, [50, 284, 412, 82]), (’a blue bowl’, [217, 244, 78, 40])]
Caption: A dog is curled up on a bed under a blanket.
Objects: [(’a bed’, [59, 231, 394, 148]), (’a dog’, [210, 281, 92, 98]), (’a blanket’, [120, 281, 272, 98])]
Caption: there is a white disney bus that passed under the train tracks
Objects: [(’a white Disney bus’, [100, 204, 312, 179]), (’train tracks’, [0, 20, 512, 60])]
Caption: A cat is sitting on top of a computer chair which is covered in hair.
Objects: [(’a cat’, [201, 100, 110, 160]), (’a computer chair’, [30, 250, 452, 262])]
Caption: A black and white dog sitting on top of a bench.
Objects: [(’a black and white dog’, [156, 204, 200, 150]), (’a bench’, [51, 354, 410, 58])]
Caption:



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

GOAL: Grounded text-to-image Synthesis with Joint Layout Alignment Tuning ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 4: Effect of distance function for discriminative seman-
tic alignment (DSAlign).

Distance Function Color Shape Texture Spatial
L2 Distance 50.03 51.08 57.06 35.36

Cosine Distance 50.01 50.33 55.09 35.99
Spherical Distance 53.55 51.19 58.37 37.28

used in DSAlign, we conduct experiments on the T2I-Compbench
[5] using common distance metrics, including L2 distance and co-
sine distance. The results presented in Table 4 indicate that the
spherical distance metric is more effective compared to other dis-
tance functions and is therefore adopted as the distance function
for DSAlign.

4 MORE QUALITATIVE RESULTS
In this section, we present more qualitative results from the T2I-
Compbench [5] across attributes such as color, spatial, shape, and
texture. Figure 3 compares our proposed method with other layout-
to-image methods, while Figure 4 compares it with text-to-image
methods. The proposed method demonstrates outstanding perfor-
mance in text-image alignment, generating images faithfully cap-
turing the details of text prompts.
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Figure 2: Visualizations of the data in GOAL2K. A single data of GOAL2K contains the prompt, the input image, and the layout
conditions.
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Figure 3: Qualitative results fromT2I-Compbench for various attributes such as color, spatial, shape and texture.We demonstrate
the effectiveness of the proposed method in text-image alignment compared with other layout-to-image methods, including
GLIGEN [6], BoxDiff [13], LayoutLLM-T2I [10], Attention Refocusing [9].
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Figure 4: Qualitative results fromT2I-Compbench for various attributes such as color, spatial, shape and texture.We demonstrate
the effectiveness of the proposed method in text-image alignment compared with text-to-image methods, including Stable
Diffusion [12], Structure [4], Attend-and-Excite [3].
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