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1 APPENDIX A. THE DETAILED
OPTIMIZATION FOR 𝛼

By fixing other variables except 𝜶 , we can optimize 𝜶 by rows:

min
𝜶𝑖 1=1,𝜶𝑖≥0

∥u𝑖 −
𝑉∑
𝑣=1

𝛼𝑣
𝑖 ũ

𝑣
𝑖 ∥22. (1)

Eq. (1) can be equally transformed into the following form:

∥u𝑖 −
𝑉∑
𝑣=1

𝛼𝑣
𝑖 ũ

𝑣
𝑖 ∥22 = ∥

𝑉∑
𝑣=1

𝛼𝑣
𝑖 u𝑖 −

𝑉∑
𝑣=1

𝛼𝑣
𝑖 ũ

𝑣
𝑖 ∥22

∥
𝑉∑
𝑣=1

𝛼𝑣
𝑖 (u𝑖 − ũ𝑣𝑖 ) ∥22 = ∥𝜶𝑖D𝑖 ∥22 (2)

where D𝑖 = [d1
𝑖
; ...; d𝑉

𝑖
] ∈ R𝑉×𝑐 , and d𝑣

𝑖
= u𝑖 − ũ𝑣

𝑖
∈ R1×𝑐 . There-

fore, 𝜶𝑖 can be solved as:

min
𝜶𝑖 1=1,𝜶𝑖≥0

𝜶𝑖D𝑖D𝑇
𝑖 𝜶

𝑇
𝑖 . (3)

Since D𝑖D𝑇
𝑖

is semi-definite, Eq. (3) is a quadratic convex program-
ming problem, which can be solved efficiently [2]. Specifically,
Eq. (3) can be solved by tackling its counterpart:

min
𝜶𝑖≥0,𝜶𝑖 1=1,𝒛

𝜶𝑖D𝑖D𝑇
𝑖 𝒛

𝑇 + 𝜇

2


𝜶𝑖 − 𝒛 + 𝝉

𝜇



2
2, (4)

where 𝒛 ∈ R1×𝑉 denotes a slack variable, 𝜇 > 0 is a penalty pa-
rameter, and 𝝉 ∈ R1×𝑉 is a Lagrangian multiplier. Eq. (4) can
be iteratively optimized by the augmented Lagrangian multiplier
method. The solution steps are as follows:

Step 1. Update 𝒛: When 𝜶𝑖 is fixed, Eq. (4) is an unconstrained
optimization problem. By setting the derivative of Eq. (4) w.r.t. 𝒛 to
zero, we update 𝒛 by:

𝒛 = 𝜶𝑖 −
1
𝜇

(
𝜶𝑖D𝑖D𝑇

𝑖 − 𝝉
)
. (5)

Step 2. Update 𝜶𝑖 : When 𝒛 is fixed with its current value of 𝒛
(i.e., 𝒛∗), 𝜶𝑖 can be updated by minimizing the following problem:

min
𝜶𝑖 1=1,𝜶𝑖≥0



𝜶𝑖 − 𝒛∗ + 1
𝜇
(𝝉 + 𝒛∗D𝑖D𝑇

𝑖 )


2
2, (6)

which can be solved with a closed-form solution [1].
Step 3. Update 𝝉 and 𝜇: In each iteration, we update the Lagrange

multipliers 𝝉 and the penalty parameter 𝜇 as follows:

𝝉 = 𝝉 + 𝜇 (𝜶𝑖 − 𝒛)
𝜇 = 𝜌𝜇. (7)

where 𝜌 is a constant update rate. In this way, 𝜶𝑖 can be adaptively
updated according to the aforementioned steps.

2 APPENDIX B. THE DETAILED
OPTIMIZATION FOR S

By fixing other variables except S, we have the following problem:
min

S1=1,S≥0
𝜆 ∥u𝑖 − u𝑗 ∥22𝑠𝑖 𝑗 + 𝛽 ∥S∥2𝐹 . (8)

Noting that each row of S (i.e., s𝑖 ) is uncorrelated with others, hence
Eq. (8) can be optimized for each row independently as follows:

min
s𝑖 1=1,s𝑖≥0

∥s𝑖 +
1
2𝛽𝑖

d𝑖 ∥22, (9)

where d𝑖 is a row vector with 𝑑𝑖 𝑗 = 𝜆∥u𝑖 − u𝑗 ∥22. The Lagrangian
function of the above function is:

L(s𝑖 , 𝜃𝑖 , 𝜻𝑖 ) =
1
2
∥s𝑖 +

1
2𝛽𝑖

d𝑖 ∥22 − 𝜃𝑖 (s𝑖1 − 1) − s𝑖𝜻𝑖 ,

where 𝜃𝑖 ∈ R and 𝜻𝑖 ∈ R𝑛×1 are Lagrangian multipliers. According
to the KKT condition, the optimal solution of s𝑖 is:

𝑠𝑖 𝑗 = (−
𝑑𝑖 𝑗

2𝛽𝑖
+ 𝜃∗𝑖 )+,

where 𝜃∗
𝑖

denotes the optimal value equipped for the optimal solution
of s𝑖 and (𝑥)+ = max(𝑥, 0). Since the local structure contains more
useful and detailed information about the data compared to the global
structure, it is suitable to construct a sparse graph to focus on a small
number of neighbors [4]. With d𝑖 being sorted from small to large
(i.e., d̃), there is 𝑠𝑖1 ≥ 𝑠𝑖2 ≥ · · · ≥ 𝑠𝑖𝑛 . Assuming that each sample
has 𝑓 -nearest neighbors (i.e., s𝑖 has 𝑓 nonzero elements), we derive:{

𝑠𝑖,𝑓 > 0
𝑠𝑖,𝑓 +1 = 0

=⇒

−𝑑𝑖,𝑓

2𝛽𝑖
+ 𝜃∗

𝑖
> 0

−𝑑𝑖,𝑓 +1
2𝛽𝑖

+ 𝜃∗
𝑖
≤ 0

.

Due to s𝑖1 = 1, we obtain:
𝑓∑
𝑗=1

(−
𝑑𝑖 𝑗

2𝛽𝑖
+ 𝜃∗𝑖 ) = 1 =⇒ 𝜃 ∗𝑖 =

1
𝑓
+ 1
2𝑓 𝛽𝑖

𝑓∑
𝑗=1

𝑑𝑖 𝑗 .

Based on the above analysis, the inequality on 𝛽𝑖 can be derived as:

𝑓

2
𝑑𝑖,𝑓 − 1

2

𝑓∑
𝑗=1

𝑑𝑖 𝑗 < 𝛽𝑖 ≤ 𝑓

2
𝑑𝑖,𝑓 +1 −

1
2

𝑓∑
𝑗=1

𝑑𝑖 𝑗 .

when 𝛽𝑖 =
𝑓
2𝑑𝑖,𝑓 +1 −

1
2
∑𝑓

𝑗=1 𝑑𝑖 𝑗 , it satisfies that 𝑠𝑖,𝑓 +1 = 0 and s𝑖 has
𝑓 nonzero elements exactly. With the optimal 𝛽𝑖 and 𝜃∗

𝑖
, the solution

of s𝑖 is derived as:

𝑠𝑖 𝑗 = (
𝑑𝑖,𝑓 +1 − 𝑑𝑖 𝑗

𝑓 𝑑𝑖,𝑓 +1 −
∑𝑓

𝑗=1 𝑑𝑖 𝑗
)+.

According to [3], 𝛽 =
∑𝑛
𝑖=1

𝑓 𝑑𝑖,𝑓 +1−
∑𝑓

𝑗=1 𝑑𝑖,𝑗
2𝑛 is set to the mean of

𝛽1, 𝛽2, · · · , 𝛽𝑛 .
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