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1 EXPERIMENTAL PREPARATION
Due to the lack of an appropriate event dataset for 3D object motion,
we prepare simulated and real events to evaluate the performance of
the proposed method. In this section, we present additional details
regarding the experimental preparations.

1.1 Simulated events
We select two representative categories of objects: thosewith straight
edges, and those with curved edges from [1], effectively encom-
passing a wide range of common objects. These objects undergo
substantial rotations and translations along various motion trajec-
tories, while being captured using a stationary monocular camera
at a frame rate of 30 Hz and a resolution of 640×480 pixels. The
resulting sequence of RGB videos is rendered using Blender. This
process employs Blender to accomplish photorealistic rendering
and generate a series of RGB videos. Then, these videos are con-
verted into event streams using V2E [2], while keeping the camera
and video parameters unchanged.

Object with straight edges. The rendered RGB images and
corresponding simulated events of objects with straight edges are

depicted in Figure 1. Above are the rendered RGB images, while be-
low are the corresponding event accumulated images. These objects
move along predetermined trajectories. They are classified into fast,
normal, and slow speeds based on their respective velocities. In
the experiment, we conduct accuracy validations separately for the
aforementioned scenarios.

Object with curved edges. To simulate various complex sce-
narios encountered during object tracking, we introduce several
challenging factors, including cluttered backgrounds and extensive
occlusions. The rendered RGB images and corresponding simu-
lated events are shown in Figure 2. Left side of Figure 2 illustrates
rendered images of moving objects against a complex background.
In such scenarios, traditional monocular tracking algorithms may
be susceptible to the influence of color similarity and background
complexity, resulting in a decline in tracking performance. How-
ever, for event cameras, stationary objects scarcely generate events.
Despite the minimal interference from background events gener-
ated by v2e, our method continues to effectively maintain stable
tracking of objects. The right side of Figure 2 illustrates situations
where objects are occluded, presenting a challenging scenario. Our
method, leveraging optical flow guidance to establish associations

Figure 1: The rendered RGB images and corresponding simulated events of objects with straight edges.
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Figure 2: The rendered RGB images and corresponding simulated events of objects with curved edges.
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Figure 3: Pose tracking results of real event experiments. The red represents the edges of the 3D model, which are reprojected
onto accumulated event images using estimated poses obtained from our methods.

OptiTrack

Test object
Event camera

(Prophesee EVK4)

Figure 4: Experimental Scene Setup. Objects in motion are
captured by a stationary event camera, with pose ground
truth provided by OptiTrack.

between events and features, effectively tackles the aforementioned
challenges, achieving high-precision pose tracking.

1.2 Real events.
To validate the feasibility of the proposed method, we conduct
multiple tests using real events, including objects with straight
and curved edges. The models of these objects are known a pri-
ori. Before conducting the tests, we attach markers to the surface
of objects, which are used to obtain the ground truth pose of ob-
jects using the OptiTrack system. The experimental scenario is
as depicted in Figure 4. Firstly, we manually control the motion
of objects and record their movement using a pre-calibrated and
fixed event camera (Prophesee EVK4, resolution 1280 × 720 pix-
els). Subsequently, the tracking methods are validated using event
streams and compared against other advanced algorithms. For the
astronaut model, we control the camera movement while keeping
the model stationary, thereby enabling a more comprehensive test
of the method.

The pose tracking results are visually displayed in Figure 3. The
projected edges of the astronaut model remain tightly aligned with
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events throughout the entire tracking process, providing an intu-
itive demonstration of the accuracy of our tracking methods.
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